Автоматизированное устройство для обнаружения микробов

Иллюстрации

Показать все

Заявленная группа изобретений относится к средствам для быстрого неинвазивного обнаружения микробного агента в тестируемом образце. Устройство, обеспечивающее обнаружение микробного агента, содержит герметизируемый контейнер для образцов, имеющий внутреннюю полость с помещенной в него культуральной средой для культивирования любых микроорганизмов, которые могут присутствовать в тестируемом образце; корпус, окружающий внутреннюю камеру; накопитель, находящийся во внутренней камере и содержащий множество ячеек для размещения одного или более контейнеров для образцов; узел позиционирования контейнера, содержащий вращающийся диск, снабженный одним или более позиционирующими гнездами, каждое из которых способно удерживать один из указанных контейнеров для образцов, причем указанный вращающийся диск выполнен с возможностью вращения в горизонтальной плоскости вокруг вертикальной оси и размещения указанных контейнеров для образцов между одним или более операционными участками; автоматический загрузочный механизм для автоматизированной загрузки указанного контейнера для образцов во внутреннюю камеру, содержащий транспортерную ленту, выполненную с возможностью установки одного из указанных контейнеров для образцов в одно из указанных позиционирующих гнезд; установленный во внутренней камере автоматический механизм переноса для автоматизированного переноса контейнера для образцов в пределах внутренней камеры и установленный во внутренней камере блок обнаружения для обнаружения роста микроорганизмов в контейнере для образцов. Указанное устройство реализует соответствующий способ обнаружения роста микроорганизмов. Предложенная группа изобретений позволяет сократить время и полностью автоматизировать процесс анализа образцов на наличие в них микробных агентов. 2 н. и 12 з.п. ф-лы, 30 ил.

Реферат

Перекрестная ссылка на родственную заявку

Приоритет данной заявки определяется по датам подачи предварительной патентной заявки США №61/216,339 от 15.05.2009, озаглавленной "System for Combining a Non-invasive Rapid Detection Blood Culture System with an Invasive Microbial Separation and Characterization System"; предварительной патентной заявки США №61/277,862 от 30.09.2009, озаглавленной "Automated Loading Mechanism for Microbial Detection Apparatus", и предварительной патентной заявки США №61/337,597 от 8.02.2010, озаглавленной "Automated Microbial Detection Apparatus". Содержание этих заявок включено в данное описание посредством ссылки на них.

Область техники

Изобретение относится к автоматизированной системе обнаружения присутствия микробного агента (микроорганизмов) в тестируемом (например, биологическом) образце. При этом автоматизированная система по изобретению является усовершенствованием известных систем обнаружения, предназначенных для работы с содержимым контейнеров для хранения и транспортировки образцов (далее - контейнеры для образцов), таких как флаконы с культуральной средой.

Уровень техники

Обнаружение патогенных микроорганизмов в биологических жидкостях желательно производить как можно быстрее, особенно в случае сепсиса, при возникновении которого смертность остается высокой, несмотря на широкий выбор доступных для врачей антибиотиков. Присутствие в жидкости (преимущественно в крови) организма пациента биологически активных агентов, таких как микроорганизмы, обычно определяют с использованием флакона для культивирования крови. Небольшое количество крови инъецируют через резиновую пробку в стерильный флакон, содержащий культуральную среду, после чего флакон инкубируют при 37°С, осуществляя мониторинг роста микроорганизмов.

В настоящее время на американском рынке предлагаются различные приборы, детектирующие рост микроорганизмов в биологическом образце. Одним из таких приборов является прибор BacT/ALERT® 3D, выпускаемый заявителем настоящего изобретения. Устройство принимает флакон для культивирования крови, содержащий образец крови, взятой, например, от человека (пациента). Устройство осуществляет инкубацию флакона. Во время инкубации находящийся в инкубаторе оптический блок обнаружения периодически анализирует состояние колориметрического датчика, встроенного во флакон, чтобы определить, имеет ли место микробный рост внутри флакона. Оптический блок обнаружения, флаконы и датчики описаны в патентной литературе (см, например, патенты США 4945060; 5094955; 5162229; 5164796; 5217876; 5795773 и 5856175, содержание каждого из которых полностью включено в данное описание посредством ссылки). Другие представляющие интерес известные решения, относящиеся к обнаружению микроорганизмов в биологическом образце, описаны в патентах США 5770394, 5518923, 5498543, 5432061, 5371016, 5397709, 5344417, 5374264, 6709857 и 7211430, содержание каждого из которых полностью включено в данное описание посредством ссылки.

Существенные клинические преимущества для пациента (вплоть до спасения его жизни) становятся возможными при условии сокращения времени, необходимого для обнаружения микробного агента в образце крови и доведения этих сведений до лечащего врача. Однако системы, полностью удовлетворяющие этому условию, пока отсутствуют, хотя, в частности, описанный выше прибор уже обеспечивает быстрое обнаружение микробного агента в биологическом образце, таком как образец крови.

Раскрытие изобретения

Предлагаемые система и способы основаны на системе обнаружения, способной определять контейнер, содержащий тестируемый образец (например, биологический), как положительный в отношении присутствия микробного агента. Система и способы согласно изобретению обладают значительным потенциалом для:

(а) сокращения трудозатрат в лаборатории и ошибок со стороны пользователя; (b) улучшенного отслеживания образца и управления информацией; (с) взаимодействия с системами автоматизации лаборатории; (d) улучшенной производительности и эргономики; (е) выдачи релевантной клинической информации; (f) ускоренного получения результатов.

Многие другие достоинства и преимущества изобретения перед уровнем техники станут ясны из дальнейшего описания.

Далее будет описана архитектура автоматизированной системы и устройства, обеспечивающая возможность автоматического обнаружения присутствия микробного агента (например, микроорганизмов) в тестируемом образце, заключенном в контейнере для образцов. В одном варианте автоматизированное устройство для обнаружения представляет собой автоматизированное культивационное устройство для обнаружения роста микробного агента, который содержится или предположительно содержится в тестируемом образце, культивируемом в контейнере для образцов, например во флаконе с культуральной средой.

Контейнер для образцов (например, флакон с культуральной средой), содержащий культуральную среду и тестируемый образец (например, образец крови), в котором, возможно, содержатся микроорганизмы, вводят в автоматизированную систему обнаружения. Система обнаружения содержит корпус, узел держателя и/или взбалтывающий узел для удерживания и/или взбалтывания содержимого контейнера для образцов с целью инициировать или ускорить в нем рост микроорганизмов. В качестве опции, система может содержать один или более нагревательных элементов, чтобы создать нагреваемую полость, т.е. инкубационную камеру. Автоматизированная система обнаружения содержит также один или более блоков обнаружения, который (которые) определяет (определяют), является ли контейнер положительным в отношении присутствия микробного агента в тестируемом образце. Блок обнаружения может обладать признаками, раскрытыми в патентах США 4945060; 5094955; 5162229; 5164796; 5217876; 5795773 и 5856175. Альтернативно, он может использовать другую технологию обнаружения присутствия микробного агента в тестируемом образце. "Положительными" в данном описании именуются контейнеры (например, флаконы), в которых присутствует микробный агент.

В одном варианте устройство по изобретению соответствует автоматизированной системе обнаружения для быстрого неинвазивного обнаружения роста микроорганизмов в тестируемом образце, содержащее: (а) герметизируемый контейнер для образцов, имеющий внутреннюю полость с помещенной в него культуральной средой для культивирования любых микроорганизмов, которые могут присутствовать в тестируемом образце; (b) корпус, окружающий внутреннюю камеру (например, инкубационную камеру, используемую с целью инициировать и/или ускорить рост микроорганизмов); (с) накопитель, который может содержать взбалтывающий узел (например, устройство для придания накопителю колебательного движения), находящийся внутри корпуса и содержащий множество ячеек для размещения контейнеров, причем взбалтывающий узел выполнен с возможностью взбалтывания контейнера для образцов, чтобы инициировать и/или ускорить рост микроорганизмов; (а) узел позиционирования контейнера, выполненный с возможностью перемещения контейнера для образцов к одному или более операционным участкам; (е) автоматический загрузочный механизм для автоматизированной загрузки контейнера для образцов во внутреннюю камеру; (f) автоматический механизм переноса для автоматизированного переноса контейнера для образцов от входа к накопителю и/или для автоматизированного переноса контейнера для образцов внутри корпуса и/или (д) установленный внутри корпуса блок обнаружения для осуществления мониторинга и/или обнаружения роста микроорганизмов в контейнере для образцов.

Предлагается также способ обнаружения роста микроорганизмов в автоматизированной системе обнаружения, включающий следующие операции: (а) обеспечение наличия контейнера для образцов, содержащего культуральную среду, чтобы инициировать и/или ускорить рост указанных микроорганизмов; (b) инокулирование контейнера для образцов образцом, подлежащим тестированию на присутствие микроорганизмов; (с) обеспечение наличия автоматизированного устройства для обнаружения роста микроорганизмов, содержащего: корпус, окружающий инкубационную камеру, обеспечивающую инициирование и/или ускорение роста микроорганизмов, накопитель, находящийся внутри корпуса и содержащий множество ячеек для размещения одного или более контейнеров для образцов, автоматический загрузочный механизм для автоматизированной загрузки контейнера для образцов в автоматизированное устройство для обнаружения, узел позиционирования контейнера для перемещения контейнера для образцов к одному или более операционным участкам, автоматический механизм переноса для автоматизированного переноса контейнера для образцов внутри указанного корпуса к накопителю и блок обнаружения для обнаружения одного или более продуктов, возникающих в результате роста микроорганизмов в контейнере для образцов; (d) загрузку, с использованием автоматического загрузочного механизма, инокулированного контейнера для образцов в устройство для обнаружения; (е) перенос, с использованием автоматического механизма переноса, инокулированного контейнера для образцов к накопителю, находящемуся внутри устройства для обнаружения; (f) инкубирование контейнера для образцов в инкубационной камере и (д) периодический мониторинг контейнера для образцов с целью обнаружения одного или более продуктов, возникающих в результате роста микроорганизмов. При этом контейнер для образцов определяют как положительный в отношении роста микроорганизмов путем обнаружения в нем указанных одного или более продуктов, возникающих в результате роста микроорганизмов.

Еще в одном варианте автоматизированная система обнаружения может содержать один или более операционных участков для проведения одного или более измерений или считываний данных с контейнера для получения информации, такой как тип контейнера, номер партии контейнеров, дата истечения срока годности контейнера, сведения о пациенте, тип образца, тип теста, уровень заполнения, вес и т.д. Так, автоматизированная система обнаружения может содержать один или более из следующих участков: (1) участок считывания штрих-кодов; (2) участок сканирования контейнеров; (3) участок получения изображения контейнера; (4) участок взвешивания контейнера; (5) участок захвата контейнера и/или (6) участок (станцию) переноса контейнера. Согласно этому варианту автоматизированная система обнаружения может дополнительно содержать средство управления контейнером (т.е. узел позиционирования контейнера) для позиционирования и/или перемещения контейнера для образцов между различными операционными участками системы обнаружения.

В другом варианте система обнаружения может дополнительно содержать удерживающее приспособление для удерживания контейнера в накопителе, содержащем одну или более приемных ячеек для размещения одного или более контейнеров. Данное приспособление содержит: (а) скошенную винтовую пружину, расположенную вблизи приемных ячеек, и (b) удерживающую пластину, снабженную v-образной канавкой, примыкающую к скошенной винтовой пружине для удерживания указанной пружины вблизи приемных ячеек. При этом скошенная винтовая пружина обеспечивает удерживание одного или более контейнеров в приемной ячейке или приемных ячейках.

Изобретение направлено также на создание тестирующего устройства для хранения и/или тестирования образца. Устройство содержит: (а) контейнер для образцов с содержащимся в нем тестируемым образцом; (b) корпус, окружающий внутреннюю камеру, и (с) узел позиционирования контейнера, содержащий множество позиционирующих гнезд для помещения в него или в них одного или более контейнеров для образцов и выполненный с возможностью перемещения одного или более контейнеров для образцов к одному или более операционным участкам, находящимся во внутренней камере.

Изобретение направлено также на создание автоматизированного устройства для быстрого неинвазивного обнаружения роста микроорганизмов в тестируемом образце. Данное устройство содержит: (а) герметизируемый контейнер для образцов, имеющий внутреннюю полость с помещенной в него культуральной средой для культивирования любых микроорганизмов, которые могут присутствовать в тестируемом образце; (b) корпус, окружающий внутреннюю камеру; (с) узел позиционирования контейнера для образцов, содержащий одно или более позиционирующих гнезд для приема контейнера для образцов и его перемещения к одному или более операционным участкам, находящимся во внутренней камере, и (а) установленный во внутренней камере блок обнаружения для обнаружения роста микроорганизмов в контейнере для образцов.

Кроме того, изобретение направлено на создание способа автоматизированного управления одним или более контейнерами в устройстве для хранения и/или тестирования образца. Способ включает следующие операции: (а) обеспечение наличия одного или более контейнеров; (b) обеспечение наличия устройства для хранения и/или тестирования, содержащего: корпус, окружающий внутреннюю камеру и содержащий вход и узел позиционирования контейнера, содержащий множество позиционирующих гнезд для помещения в них контейнера и выполненный с возможностью перемещения контейнеров к одному или более операционным участкам, находящимся во внутренней камере для проведения одного или более измерений или считываний данных с контейнера для образцов; и (с) перемещение одного или более контейнеров для образцов к одному или более операционным участкам, находящимся во внутренней камере и проведение одного или более указанных измерений или считываний данных с контейнера для образцов.

Краткое описание чертежей

Различные аспекты изобретения станут более понятными при рассмотрении нижеследующего описания различных вариантов вместе с прилагаемыми чертежами.

На фиг.1 представлена, в перспективном изображении, автоматизированная система для быстрого неинвазивного обнаружения микробного агента в тестируемом образце, содержащая автоматический загрузочный механизм.

На фиг.2 показана, в перспективном изображении, часть системы обнаружения по фиг.1, в которой размещен автоматический загрузочный механизм.

На фиг.3 иллюстрируется, в перспективном изображении, часть системы обнаружения по фиг.1 с показом автоматического загрузочного механизма и выдвинутого нижнего ящика, в котором установлен сборник для выброшенных отрицательных контейнеров с негативным результатом теста на присутствие микробного агента.

На фиг.4 показан, на виде сбоку, один из контейнеров для образцов, протестированный в системе обнаружения по фиг.1-3. Хотя в системе могут использоваться контейнеры различных форм, представленный контейнер сконфигурирован, как флакон для культивирования крови.

На фиг.5А, на виде сбоку, иллюстрируется возможная конфигурация системы по фиг.1.

На фиг.5В система обнаружения по фиг.5А представлена в перспективном изображении, с открытыми верхней и нижней дверцами. Видны внутренние камеры и полки для размещения множества контейнеров типа показанного на фиг.4.

На фиг.6 представлен, в перспективном изображении, механизм переноса, показанный на фиг.5А, 5В и снабженный горизонтальными и вертикальным несущими рельсами. Показаны также первый и второй поворотные механизмы, способные поворачивать механизм переноса вокруг одной или более осей.

На фиг.7А представлены, в перспективном изображении, роботизированная головка и вертикальный несущий рельс, показанный на фиг.5А и 5В. На фиг.7А роботизированная головка имеет вертикальную ориентацию, так что контейнер для образцов, зафиксированный в данной головке, также ориентирован вертикально.

На фиг.7 В представлено другое перспективное изображение роботизированной головки и вертикального несущего рельса. На фиг.7 В роботизированная головка имеет горизонтальную ориентацию, так что контейнер для образцов, зафиксированный в данной головке, также ориентирован горизонтально.

На фиг.8А-8С иллюстрируются этапы загрузки контейнера для образцов в полость роботизированной головки по фиг.7А и 7 В. На фиг.8А показано, как захватный механизм захватывает верхнюю часть контейнера. На фиг.8В контейнер показан на промежуточном этапе процесса загрузки. На фиг.8С контейнер показан после завершения его загрузки в роботизированную головку.

На фиг.9А и 9В представлена, в перспективном изображении и на виде сбоку, альтернативная конфигурация системы обнаружения по фиг.1-3 и 5А-5В с открытыми верхней и нижней дверцами. Видны компоненты альтернативного варианта накопителя. В варианте системы по фиг.9А и 9В накопитель имеет барабанную (цилиндрическую) конфигурацию.

На фиг.10 представлена, в перспективном изображении, другая конфигурация автоматического загрузочного механизма. Видны первая и вторая транспортерные ленты, перемещающиеся соответственно в горизонтальной и в вертикальной плоскостях.

На фиг.11 представлена, в перспективном изображении, еще одна конфигурация автоматического загрузочного механизма. Видны первая транспортерная лента, перемещающаяся в горизонтальной плоскости, и вторая транспортерная лента, снабженная множеством пластин и перемещающаяся в вертикальной плоскости.

На фиг.12 показаны, в перспективном изображении, крышка и кожух, в котором размещен автоматический загрузочный механизм.

На фиг.13 в перспективном изображении показан вариант автоматического загрузочного механизма, отделенный от системы обнаружения. В соответствии с этим вариантом автоматический загрузочный механизм содержит станцию загрузки, транспортный механизм и вход для полностью автоматизированной загрузки контейнера для образцов. Часть одной стороны станции загрузки удалена, чтобы показать дополнительные детали автоматического загрузочного механизма в этом варианте.

На фиг.14 представлено другое перспективное изображение автоматического загрузочного механизма по фиг.13. Чтобы нагляднее показать особенности автоматического загрузочного механизма, станция загрузки представлена как наблюдаемая через прозрачную стенку.

На фиг.15 в увеличенном масштабе и в перспективном изображении показаны выделенные из системы обнаружения загрузочного механизма барабанного типа, вертикальный желоб, узел позиционирования и механизм переноса по фиг.14.

На фиг.16 в поперечном разрезе представлен автоматический загрузочный механизм по фиг.14-15. Более конкретно, на фиг.16 показаны загрузочный механизм барабанного типа и вертикальный желоб в момент, когда по нему падает контейнер для образцов. Как показано на фиг.16, верхняя часть (колпачок) контейнера для образцов кратковременно удерживается скошенным выступом, тогда как его нижняя часть опускается по желобу, придавая контейнеру для образцов вертикальную ориентацию.

На фиг.17 представлено, в перспективном изображении, автоматизированное устройство для обнаружения, содержащее автоматический загрузочный механизм, показанный на фиг.14. Показано, что станция загрузки в составе автоматического загрузочного механизма находится в легкодоступном для пользователя месте, на передней стороне автоматизированной системы для быстрого неинвазивного обнаружения микробного агента. Автоматизированная система обнаружения и станция загрузки контейнеров представлены со снятыми боковыми панелями, чтобы показать компоненты, которые будут описаны далее.

На фиг.18 представлено, в перспективном изображении, автоматизированное устройство для обнаружения, содержащее альтернативный загрузочный механизм. Станция загрузки контейнеров в составе этого загрузочного механизма находится в легкодоступном для пользователя месте, на передней стороне автоматизированной системы для быстрого неинвазивного обнаружения микробного агента. Автоматизированная система обнаружения и станция загрузки контейнеров показаны при снятых боковых панелях, чтобы показать другие компоненты системы.

На фиг.19, на виде сбоку, представлена нижняя часть автоматизированной системы для быстрого неинвазивного обнаружения микробного агента, показанной на фиг.17. Данная система изображена при снятых боковых панелях, чтобы показать другие ее компоненты.

На фиг.20 представлены, в перспективном изображении, накопитель и автоматический механизм переноса, показанные на фиг.17-19. Видно, что в этом варианте для переноса контейнера для образцов внутри устройства для обнаружения автоматический механизм переноса содержит нижний горизонтальный несущий рельс, вертикальный несущий рельс, поворачивающую плиту и роботизированную головку. Для наглядности, накопитель и автоматический механизм переноса показаны отдельно от устройства для обнаружения.

На фиг.21А-21В в перспективном изображении представлены поворотная пластина и роботизированная головка автоматического механизма переноса по фиг.20. Захватный механизм и контейнер для образцов роботизированной головки показаны в разрезе, чтобы пояснить конструкцию захватного механизма. На фиг.21А роботизированная головка показана на первом конце поворачивающей плиты и в горизонтальной ориентации, так что контейнер для образцов также имеет горизонтальную ориентацию. На фиг.21В роботизированная головка показана находящейся на втором конце поворачивающей плиты и в вертикальной ориентации; соответственно; контейнер для образцов также имеет вертикальную ориентацию.

На фиг.22 представлена, в перспективном изображении, альтернативная конфигурация автоматизированного устройства для обнаружения. Показаны пользовательский интерфейс, экран статуса, крышка узла позиционирования и два выходных порта для положительных контейнеров.

На фиг.23 представлена, в перспективном изображении, другая конфигурация системы обнаружения. Как показано на фиг.23, данная система содержит первое устройство для обнаружения и второе устройство для обнаружения.

На фиг.24 представлен, в перспективном изображении, еще один вариант автоматизированной системы обнаружения. Она содержит первое устройство для обнаружения, имеющее автоматический загрузочный механизм, и второе (последующее) устройство для обнаружения, образующее вместе с первым устройством для обнаружения функциональную цепочку.

На фиг.25А-25С показан механизм с толкателем для проталкивания контейнера для образцов от первого устройства для обнаружения ко второму (последующему) устройству для обнаружения.

На фиг.26 представлены, в перспективном изображении и отдельно от системы обнаружения, накопитель и взбалтывающий узел.

На фиг.27А представлены, в перспективном изображении, накопитель и удерживающее приспособление для надежного удерживания контейнера для образцов внутри накопителя.

На фиг.27 В накопитель и удерживающее приспособление по фиг.27А представлены в поперечном разрезе.

На фиг.27С накопитель и удерживающее приспособление по фиг.27А представлены на виде сверху, в разрезе, чтобы нагляднее показать схематично изображенную скошенную винтовую пружину.

На фиг.28А-28В представлены перспективные изображения поддона для переноса множества контейнеров для образцов к устройству для обнаружения. Поддон содержит множество приемных гнезд для удерживания множества контейнеров для образцов. На фиг.28А показаны также две противолежащие рукоятки и механизм для освобождения множества контейнеров для образцов в зоне загрузки.

На фиг.29 представлена, в перспективном изображении, другая возможная конфигурация системы обнаружения. Показанная на фиг.29 система обнаружения содержит механизм для освобождения одного или более контейнеров для образцов из поддона по фиг.28А-28В.

На фиг.30 представлена блок-схема операций, выполняемых в процессе функционирования системы обнаружения.

Осуществление изобретения

Далее будут описаны автоматизированная система (автоматизированное устройство) для неинвазивного обнаружения присутствия микробного агента (т.е. микроорганизмов) в тестируемом образце, содержащемся в контейнере для образцов, например во флаконе с культуральной средой. Один из вариантов такой системы (такого устройства) будет далее описан со ссылками на фиг.1-8С. Другие возможные варианты и альтернативные конструкции будут описаны со ссылками на фиг.9А-30. Автоматизированная система может содержать одну или более из следующих частей:

(1) корпус, окружающий внутреннюю камеру; (2) автоматический загрузочный механизм для загрузки одного или более контейнеров во внутреннюю камеру системы; (3) автоматический механизм управления контейнерами (узел позиционирования контейнера) для перемещения или позиционирования контейнера между различными операционными участками, находящимися внутри системы; (4) автоматический механизм переноса для переноса контейнера внутри системы; (5) один или более накопителей для размещения множества контейнеров для образцов, который (которые) можно дополнительно снабдить взбалтывающим узлом; (6) блок обнаружения для обнаружения микробного роста и/или (7) выгружающий механизм для автоматизированной выгрузки контейнера для образцов из системы. Чтобы сделать функционирование этого варианта устройства более понятным, в нижеследующем описании оно будет рассматриваться на примере конкретного применения устройства (для тестирования образцов крови) и конкретного контейнера для образцов (в виде флакона для культивирования крови). Однако для специалистов будет очевидно, что устройство согласно изобретению может использоваться и в других вариантах и что возможны различные модификации описываемых далее вариантов, соответствующие конкретным применениям. Соответственно, описываемые предпочтительные варианты осуществления изобретения приводятся только в иллюстративных целях, не ограничивая изобретения.

Общая характеристика системы

Рассматриваемая автоматизированная система 100 обнаружения (например, типа представленной на фиг.1-3 и 5А-5В) обладает новой архитектурой и обеспечивает осуществление нового способа автоматизированного обнаружения микробного агента (микроорганизма), который может присутствовать в тестируемом образце или пробе. Может использоваться, по существу, любой пригодный для тестирования образец (например, биологической). В частности, тестируемым образцом может служить клинический или неклинический образец, который предположительно содержит один или более микробных агентов. Клинические образцы, такие как жидкости организма, включают (не ограничиваясь ими) кровь, серозную жидкость, плазму и другие фракции крови, комбинированные жидкости, мочу, семенную жидкость, слюну, испражнения, спинномозговую жидкость, содержимое желудка, вагинальные секреты, тканевые гомогенаты, аспираты костного мозга, костные гомогенаты, мокроту, аспираты, мазки и смывы, а также другие жидкости организма и подобные среды. Пригодные для тестирования образцы, не являющиеся клиническими, могут включать (не ограничиваясь приводимыми примерами) пищевые продукты, безалкогольные напитки, лекарства, косметику, воду (например, питьевую, непитьевую или загрязненную воду), балластную морскую воду, воздух, почву, сточные воды, растительный материал (например, семена, листья, стебли, корни, цветы, плоды), компоненты крови (например, тромбоциты, сыворотку, плазму, фракции белых кровяных телец и др.), образцы донорского органа или ткани, образцы бактериологического оружия и т.д. В одном варианте тестируемым биологическим образцом является образец крови.

Представленная на чертежах система 100 обнаружения может иметь различные конфигурации. Например, как показано на фиг.1-3 и 5А-5В, автоматизированная система 100 обнаружения содержит корпус 102 и один или более механизмов, загружающих (см., например, механизм 200 на фиг.1), перемещающих или позиционирующих (не изображены), переносящих (см, например, механизм 650 на фиг.5А-5В), взбалтывающих (не изображены) и/или загружающих/выгружающих контейнеры 500 для образцов в систему/из системы 100 обнаружения. У корпуса 102 имеются передняя и задняя панели 104А и 104В, противолежащие боковые панели (левая и правая) 106А, 106В, верхняя панель 108А и нижняя панель (дно) 108 В, которые окружают внутреннюю камеру 620 (см., например, фиг.5А-5В) системы 100. В одном варианте внутренняя камера 620 системы 100 обнаружения является камерой с контролируемой атмосферой (например, инкубационной камерой с контролируемой температурой, поддерживаемой у 37°С), чтобы способствовать микробному росту или ускорять его. Как показано на фиг.1-3, корпус может иметь также первый (входной) порт 110 для ввода контейнеров, второй порт 120 (зону для неидентифицированных контейнеров), третий порт 130 (зону для "положительных" контейнеров), нижнюю панель 140 доступа (фиг.1) или ящик 142 (фиг.3) и/или дисплей пользовательского интерфейса 150. Как обычно, у нижней панели 140 доступа или ящика 142 может иметься ручка 144. Как показано на фиг.1, корпус 102 может быть разделен на верхнюю и нижнюю секции 160 и 170, у каждой из которых может иметься дверца (соответственно верхняя и нижняя дверцы 162 и 172 - см., например, фиг.5 В). Верхняя и нижняя дверцы 162 и 172 обеспечивают доступ во внутреннюю камеру 620 системы 100 обнаружения. Однако специалистам будет понятно, что возможны и другие конструктивные выполнения. Так, в другом возможном варианте на всей передней панели может находиться единственная дверца (не изображена).

Как показано, например, на фиг.1-3, в одном варианте нижняя секция 170 может иметь большую высоту и большее поперечное сечение, чем верхняя секция 160. В соответствии с этим вариантом на верхней поверхности корпуса нижней секции 170 сформирована полка 180, примыкающая к верхней секции 160, т.е. расположенная перед ней. Эта полка может служить для пользователя рабочей зоной и/или зоной доступа к входному потоку контейнеров в системе 100 обнаружения. Кроме того, на полке 180 может быть установлено автоматическое загрузочное средство (автоматический загрузочный механизм) 200. На полке 180 могут также находиться зоны доступа к первому порту (входу для контейнеров) 110, ко второму порту (зоне для несчитанных контейнеров) 120 и к третьему порту (зоне для "положительных" контейнеров) 130.

В одном варианте, как показано, например, на фиг.1-3 и 5А-5 В, система 100 обнаружения может содержать автоматический загрузочный механизм 200 для автоматизированной загрузки контейнера 500 для образцов в систему 100 обнаружения. Данный механизм может содержать станцию (зону) 202 загрузки контейнеров, транспортный механизм 204 и входной порт (вход для контейнеров) 110. При использовании системы пользователь (например, лаборант) может ввести один или более контейнеров 500 для образцов (см., например, фиг.4) в зону 202 загрузки контейнеров. Транспортный механизм 204, например его транспортерная лента 206, перенесет контейнер для образцов к первому порту (входу для контейнеров) 110 и далее, через данный порт внутрь системы 100 обнаружения, т.е. загрузит контейнер в систему. Далее автоматический загрузочный механизм 200 будет описан более подробно.

Специалисту должна быть понятна возможность использования других конструкций автоматического загрузочного механизма, некоторые из которых также будут описаны далее. Так, примеры альтернативных автоматических загрузочных механизмов показаны на фиг.10-16. В одном варианте, представленном на фиг.13-16 и более подробно описанном далее, в системе 100 обнаружения может иметься зона 302 загрузки контейнеров в виде емкости, а с целью автоматизированной загрузки контейнера для образцов в систему 100 обнаружения может быть применено загрузочное устройство 308 барабанного типа.

В другом варианте, как показано, например, на фиг.14-15 и 18, автоматизированная система 100 обнаружения может содержать один или более операционных участков 404, служащих для выполнения одного или более измерений, снятий отсчетов, сканирований и/или получения изображений контейнера для образцов с обеспечением тем самым информации, такой как тип контейнера, номер партии контейнеров, дата истечения срока годности контейнера, сведения о пациенте, тип образца, тип теста, уровень заполнения, вес и т.д. Кроме того, один или более операционных участков 404 могут содержать один или более участков выполнения операций с контейнерами, таких как участок захвата контейнера или участок (станцию) переноса контейнера. Например, автоматизированная система обнаружения может содержать один или более из следующих участков контроля: (1) участок считывания штрих-кодов; (2) участок сканирования контейнеров; (3) участок получения изображения контейнера; (4) участок взвешивания контейнера; (5) участок захвата контейнера и/или (6) участок (станцию) переноса контейнера. В соответствии с данным вариантом система 100 обнаружения может дополнительно содержать средство 400 управления контейнером (узел позиционирования контейнера), показанное (показанный), например, на фиг.13-15, 18 и 24. При использовании узла 400 позиционирования он перемещает контейнер 500 для образцов так, чтобы поместить его на один или более операционных участков 404. Согласно одной конфигурации один или более операционных участков находятся внутри корпуса 102 системы 100 обнаружения. В одном варианте, наиболее наглядно представленном на фиг.13-15, чтобы поместить контейнер для образцов в позиционирующее гнездо 402 (которое будет описано далее), могут использоваться барабанное или аналогичное загрузочное устройство 308 и вертикально ориентированный желоб 332 автоматического загрузочного механизма 300. В другом варианте (см. фиг.18 и 24) для установки контейнера для образцов в позиционирующее гнездо 402 может использоваться транспортный механизм 204 или транспортерная лента 206 автоматического загрузочного механизма 200. Как известно специалистам, система 100 обнаружения может также содержать один или более направляющих рельсов (не изображены), по которым контейнер для образцов попадает в позиционирующее гнездо 402. Затем, в соответствии с любым из этих вариантов, средство 400 управления контейнером (узел позиционирования) может быть приведено (приведен) во вращение, чтобы подводить контейнер для образцов к различным имеющимся в системе операционным участкам 404, например таким, как участок считывания штрих-кодов, участки сканирования контейнеров, участок получения изображения контейнера, участок взвешивания контейнера, участок захвата контейнера и/или участок переноса контейнера. Узел 400 позиционирования будет описан далее более подробно.

Как показано, например, на фиг.5А-8С, система 100 обнаружения может содержать также автоматическое средство (автоматический механизм) 650 переноса для переноса контейнера 500 для образцов внутри корпуса 102 системы 100 обнаружения. Данный механизм может, например, переносить контейнер 500 для образцов от входного порта 110 (см., например, фиг.1-3) во внутреннюю камеру 620 системы 100 обнаружения и подавать контейнер 500 в один из приемных элементов типа ячейки 602, имеющийся в одном из множества накопителей 600, выполненных в виде полок. В другом варианте механизм 650 переноса может быть использован для осуществления других действий по управлению контейнером 500 для образцов или по его переносу внутри системы. Так, в одном варианте механизм 650 переноса может быть применен для переноса контейнера 500 для образцов, давшего положительный результат в отношении микробного роста (далее именуемого положительным контейнером), от накопителя (полки) 600 в зону для положительных контейнеров (выходной порт 130) (см., например, фиг.1), откуда пользователь (лаборант) может легко забрать положительный контейнер 500. В другом варианте механизм 650 переноса может быть использован для переноса контейнера 500, давшего, по истечении заданного времени, отрицательный результат в отношении микробного роста (и именуемого далее отрицательным контейнером), от накопителя (полки) 600 в зону для отрицательных контейнеров внутри системы, например в сборник 146 сброшенных отрицательных контейнеров (см., например, фиг.1), к которому пользователь (лаборант) имеет легкий доступ для извлечения и выбрасывания контейнера 500. Специалисту должна быть ясна возможность альтернативных конструкций автоматического механизма переноса, в том числе описываемых далее, например в связи с фиг.17-21В.

Система 100 обнаружения содержит также средство обнаружения микробного роста в контейнере 500 для образцов (например, блок обнаружения, показанный на фиг.27). Для обнаружения микробного роста в контейнере может быть использ