Композиция тонкостенных трубчатых элементов и способ получения тонкостенных трубчатых элементов
Изобретение относится к области получения тонкостенных трубчатых элементов на основе карбида кремния. Технический результат изобретения заключается в повышении термо-, радиационно- и химической стойкости изделий. Осуществляют совместный вибропомол смеси карбида кремния (71-79 мас.%) и фенолформальдегидной смолы (10-25 мас.%). Смешивают полученный порошок с пластификатором (5-15 мас.%), проводят таблетирование шихты, непрерывное формование трубчатых изделий при температуре 80-120°C, предварительную карбонизацию до температуры не менее 500°C со скоростью нагрева не более 8°C/час. Окончательную карбонизацию до температуры не менее 900°C проводят со скоростью нагрева не более 75°C/час с последующим силицированием образца. 2 н.п. ф-лы, 2 табл.
Реферат
Изобретение относится к области получения тонкостенных трубчатых элементов из термостойких, радиационностойких и химически стойких материалов на основе карбида кремния. Изделие предназначено для использования в системах охлаждения перспективных реакторов, а также в любых агрессивных средах, сохраняя длительную работоспособность при температурах более 700°C.
Известна графитсодержащая композиция для получения силицированных изделий, включающая углерод (графит), карбид кремния и связующее при следующем соотношении: графит - 2-70 масс.%; связующее - 10-30 масс.%; карбид кремния в виде порошка - остальное. Соотношение фракций карбида кремния следующее: (-250+91) мкм - 50-70 масс.%; менее 90 мкм - 30-50 масс.% [1].
Материал, изготовленный по данному способу, может быть использован при получении подшипников, уплотнений насосов, облицовочных плит, волокон. Однако данный материал в силу отсутствия пластичности даже при нагреве не может быть использован для формования из него тонкостенных трубчатых изделий. Также высокое содержание графита в исходной шихте приводит к снижению химической, термической и радиационной стойкости конечного продукта.
Наиболее близким техническим решением к предполагаемому является способ получения композитного материала на основе β-SiC, включающий: получение смеси, называемой «смесь-предшественник», содержащей, по меньшей мере, один предшественник β-SiC и, по меньшей мере, одну углеродсодержащую смолу, предпочтительно термоотверждаемую; формование указанной смеси-предшественника, в частности, в виде труб, для получения промежуточного изделия; полимеризацию смолы; введение указанных промежуточных изделий в емкость и закрытие указанной емкости с помощью негерметичного средства для закрывания, позволяющего избежать повышения давления газа; термообработку указанных промежуточных изделий при температуре 1100-1500°C для удаления органических компонентов смолы и образования β-SiC в конечном изделии.
Изделия, полученные указанным способом, могут быть использованы в качестве внутренней облицовки электролизной ванны расплавленной соли или внутренней облицовки печи прокаливания.
Плотность образцов, изготовленных по данной технологии, варьируется в пределах 2,45-3,75 г/см3 [2]. Однако изделия, изготовленные по данной технологии, не могут иметь состава, близкого к стехиометрическому. Это приводит к снижению физико-механических свойств, а также к снижению химической, реакционной и радиационной стойкости, что ограничивает область их применения [3-5].
В основу изобретения поставлена задача получения шихты достаточной пластичности, необходимой для формования тонкостенного трубчатого элемента заданной геометрии, и в то же время с высоким (более 80%) содержанием карбида кремния в составе конечного продукта, которое обеспечивало бы высокую термо-, радиационно- и химическую стойкость конечных изделий.
Решение поставленной задачи обеспечивается тем, что способ получения тонкостенных трубчатых элементов включает в себя получение смеси, содержащей карбид кремния и фенолформальдегидную смолу, и отличается тем, что в состав смеси дополнительно вводится пластификатор, перед стадией непрерывного формования трубчатых изделий при температуре 80-120°C производится таблетирование или грануляция шихты, термообработка производится в два этапа: предварительная карбонизация до температуры не менее 500°C со скоростью нагрева не более 8°C/час и окончательная карбонизация до температуры не менее 900°C со скоростью нагрева не более 75°C/час; заключительным этапом получения композитного материала является силицирование.
Композиция тонкостенных трубчатых элементов включает в качестве наполнителя первичный карбид кремния с размерами частиц 1-50 мкм, фенолформальдегидную смолу, пластификатор, при следующем массовом соотношении компонентов, масс.%:
первичный карбид кремния - 71-79%;
фенолформальдегидная смола - 10-25%;
пластификатор 5-15%.
Необходимость использования карбида кремния в качестве основного наполнителя в шихте обусловлена задачей получения плотности конечного изделия, близкой к теоретической. Реакция Si+C=SiC идет с уменьшением объема.
Поэтому использование карбида кремния минимизирует количество кремния, необходимого для связывания зерен SiC наполнителя (первичного SiC) вторичным SiC, образованным из остаточного углерода заготовки и Si, поступающего в заготовку во время операции пропитки. Соответственно, использование порошка Si или смеси порошков Si и C вместо порошка SiC с минимумом связующего в составе исходной шихты (при одинаковой пористости) снижает плотность полученных заготовок. Данное утверждение легко проверить соответствующими расчетами.
Однако именно образцы с высоким содержанием SiC и минимумом связующего являются наиболее трудным, а зачастую просто невозможным объектом для осуществления процесса непрерывного формования изделий.
Образцы с большим содержанием первичного карбида кремния (от 80 масс.% и более) на выходе из фильеры имеют поперечные трещины, неровности и разрывы. Также большое содержание первичного карбида кремния в шихте приводит к резкому увеличению давления прессования и к невозможности формования из-за ограничений мощности применяемого оборудования вплоть до выхода его из строя.
Можно заметить, что изделия с содержанием первичного карбида кремния 70 масс.% и менее и большим содержанием связующего хуже проходит стадию термообработки: вспучиваются, трескаются, теряют форму.
Образцы трубчатых изделий, полученные на крупном зерне с размером частиц первичного карбида кремния более 50 мкм, обладают более низкой плотностью и худшими физико-механическими свойствами [6].
Использование в качестве наполнителя карбида кремния с более мелким размером зерна (менее 1 мкм) резко снижает пластичность шихты [6], что приводит к невозможности проведения процесса формования тонкостенных трубчатых элементов.
В качестве связующего берутся твердые фенолформальдегидные смолы в количестве 10-25 масс.%. Однако количество связующего нельзя уменьшать менее чем 10 масс.% вследствие ухудшения формуемости и уменьшения количества коксового остатка, необходимого для образования вторичного карбида кремния.
В качестве пластификатора может использоваться стеарат цинка, парафин, глицерин в количестве 5-15 масс.%. Он добавляется для придания пластичности и формуемости.
Недостаток количества пластификатора (менее 5 масс.%) приводит к резкому снижению пластичности шихты, что приводит к невозможности проведения процесса формования тонкостенных трубчатых элементов.
Избыток пластификатора, и/или связующего выше необходимого уровня, обеспечивающего формуемость, приводит к повышенному газовыделению на стадии карбонизации и вспучиванию труб.
Способ получения тонкостенных трубчатых элементов согласно изобретению включает: совместный вибропомол смеси карбида кремния и связующего; смешение полученного порошка с пластификатором; таблетирование или грануляция шихты; непрерывное формование трубчатых изделий при температуре 80-120°C; предварительную карбонизацию до температуры не менее 500°C со скоростью нагрева не более 8°C/час; окончательную карбонизацию до температуры не менее 900°C со скоростью нагрева не более 75°C/час; для конечной операции - силицирования - использовали металлический кремний КР-0 (ГОСТ 2169-69). Силицирование проводили методом орошения в электровакуумной печи.
При производстве данного материала используется стандартное оборудование [7-8].
Таблетирование/грануляция шихты необходима вследствие конструкционных особенностей формующего оборудования.
Температура проведения стадии формования выбрана опытным путем и составляет 80-120°C. При снижении или повышении температуры за обозначенные рамки происходит резкое снижение вязкости шихты, что приводит к невозможности проведения процесса непрерывного формования.
Основные процессы предварительной карбонизации, процессы полимеризации связующего и удаление пластификатора сопровождаются наибольшим газовыделением и проходят при температуре 150-450°C, следовательно, скорость нагрева в данном интервале температур должна быть минимальной. Скорость нагрева не более 8°C/час была подобрана экспериментально.
При проведении окончательной карбонизации при температуре 500-900°C значительно снижается газовыделение, происходят незначительные усадки. Снижение скорости нагрева менее чем 75°C/час - не имеет необходимости, а подъем скорости нагрева выше 75°C/час может привести к возникновению пузырей и трещин в образце. При температуре 900°C происходит окончательная карбонизация связующего.
Пример конкретного выполнения.
Шихту, состоящую из 800 г SiC марок М40, М7 (зерновой состав соответствует ГОСТ 3647-80, химический состав соответствует ГОСТ 26327-84) со средним размером частиц 45-50 мкм и 200 г фенольной смолы пульвербакелит СФП-012А1 (ТУ 2257-074-05015227-2002) подвергли совместному смешиванию и измельчению в шаровой мельнице. К полученной массе добавили 100 г стеарата цинка (ТУ 6-09-17-316-96). Смешение данной массы проводили на вибрационном смесителе в течение времени, необходимого для получения однородной шихты. Таблетирование шихты проводили на вертикальном гидравлическом прессе в цилиндрическую матрицу. Стадию непрерывного формования трубчатых изделий проводили на горизонтальном шранг-прессе с использованием обогреваемой трубной головки с заданной геометрией при температуре 80-120°C. Предварительную карбонизацию до 500°C проводили в печи СНОЛ со скоростью нагрева 8°C/час. Окончательную карбонизацию до 900°C проводили в печи СНОЛ со скоростью нагрева 75°C/час. Термообработанную трубу силицировали в вакуумной печи по стандартным режимам. Для конечной операции - силицирования - использовали металлический кремний КР-0 (ГОСТ 2169-69).
В приведенной ниже таблице №1 представлены данные по плотностям и фазовому составу полученных образцов тонкостенных карбидкремниевых трубчатых изделий.
В таблице 2 представлены режимы формования и термообработки изделий.
Таблица 1 | ||||||||
Опробованные варианты композиций и фазовый состав полученных изделий | ||||||||
№ | SiC, масс. % | масс. % ФФС | масс.% Пластификатора | Размер частиц исходного SiC, MKM | Фазовый состав полученного изделия | Плотность, г/см3 | ||
SiC, масс.% | Si, масс.% | с, масс. % | ||||||
1 | 70 | 15 | 15 | +50 | 72,8 | 21,6 | 5,6 | 2,47 |
2 | 80 | 7 | 13 | 1-50 | На выходе из фильеры образцы имели поперечные трещины, неровности и разрывы даже при увеличении давления прессования | |||
3 | 72 | 25 | 3 | -1 | При последующей термообработке образцы вспучились, трескались и теряли форму | |||
4 | 71 | 19 | 10 | 1-50 | 80,3 | 18,5 | 1,2 | 2,86 |
5 | 75 | 10 | 15 | +50 | 75,9 | 22,7 | 1,4 | 2,60 |
6 | 75 | 15 | 10 | +50 | 75,8 | 21,3 | 2,9 | 2,73 |
7 | 75 | 20 | 5 | +50 | 74,1 | 22,0 | 3,9 | 2,64 |
8 | 75 | 10 | 15 | 1-50 | 85,1 | 14,9 | 0 | 2,93 |
9 | 75 | 15 | 10 | 1-50 | 89,7 | 10,3 | 0 | 3,06 |
10 | 75 | 20 | 5 | 1-50 | 85,9 | 12,8 | 1,3 | 2,97 |
11 | 75 | 10 | 15 | - 1 | 77,2 | 20,8 | 2,0 | 2,73 |
12 | 75 | 15 | 10 | - 1 | 79,5 | 17,2 | 3,3 | 2,78 |
13 | 75 | 20 | 5 | - 1 | 75,8 | 19,6 | 4,6 | 2,74 |
14 | 79 | 13 | 8 | 1-50 | 85,5 | 14,5 | 0 | 2,90 |
15 | 80 | 15 | 5 | +50 | 78,4 | 18,3 | 3,3 | 2,53 |
16 | 71 | 27 | 3 | 1-50 | При последующей термообработке образцы вспучились, трескались и теряли форму | |||
17 | 72 | 11 | 17 | -1 | На выходе из фильеры образцы имели поперечные трещины, неровности и разрывы даже при увеличении давления прессования |
Как видно из таблицы №1, образцы с размером частиц наполнителя в диапазоне 1-50 мкм имели максимальное содержание фазы SiC и максимальную плотность (образцы 2, 8-10, 14). Содержание в исходной шихте первичного карбида кремния от 80 масс.% и более приводит к снижению плотности изделий, а также снижению вязкости формуемой шихты, что приводит к резкому увеличению давления формования или невозможности формования изделий (образец 2). Снижение содержания карбида кремния ниже 71 масс.% не позволит получить изделия с большим содержанием SiC в итоговой шихте (образец 1). Избыток связующего и пластификатора приводит к невозможности формования изделий правильной формы (образец №17) или к отбраковке изделий после стадии термообработки (образце №16).
Таблица 2 | ||||||||
Режимы формования и термообработки изделий | ||||||||
№ | Формование | Предварительная карбонизация | Окончательная карбонизация | |||||
Температура, °C | Результат | Температура, °C | Скорость нагрева, °С/час | Результат | Температура, °C | Скорость нагрева, °C/час | Результат | |
1 | 60 | Не сформована труба | - | - | - | - | - | - |
2 | 80 | + | 400 | 10 | Обилие пузырей и трещин на изделии | - | - | - |
3 | 100 | + | 500 | 8 | + | 900 | 75 | + |
4 | 120 | + | 600 | 6 | + | 800 | 100 | Обилие пузырейи трещин на изделии |
5 | 140 | Не сформована труба | - | - | - | - | - | - |
Образцы 1 и 5 не были сформованы из-за высокой вязкости шихты при данных температурах. Образец 2 не прошел стадию предварительной карбонизации из-за высокой скорости нагрева. Выделяющиеся летучие вещества не успевают удалиться через поры изделия, что приводит к браку. Образец 4 не прошел стадию окончательной карбонизации из-за высокой скорости нагрева. Выделяющиеся летучие вещества не успевают удалиться через поры изделия, что приводит к браку. Образец 3 прошел все стадии термообработки и сохранил свою геометрию.
Источники информации
1. Патент РФ №2174947 от 20.10.2001. Заявка: 2000102869/12 от 09.02.2000.
2. Патент РФ №2375331 от 10.12.2009. Заявка: 2006144450/03 от 10.05.2005.
3. Самойлов В.М., Водовозов А.Н., Смирнов В.К., Зайцев Г.Г. Физико-механические и теплофизические свойства керамики на основе SiC; Неорганические материалы, 2011 г., том 47, №7, с. 1-6.
4. Snead L.L. Handbook of SiC properties for fuel performance modeling / L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D. A. Petti // Journal of Nuclear Materials. - 2007 г. - №371. - p. 1-3.
5. Kim W. Fabrication and material issues for the application of SiC composites to LWL fuel cladding nuclear engineering and technology / W. Kim, D. Kim, J.Y. Park // 2013 august, VOL. 45 №4.
6. Гнесин Г.Г. Карбидкремниевые материалы; М. «Металургия», 1977 г., 216 с.
7. Сиденко П.М. Измельчение в химической промышленности. - М.: Недра, 1977. - 368 с.
8. Фиалков А.С. Процессы и аппараты производства порошковых углеграфитовых материалов. - М.: Аспект Пресс, 2008. - 688 с.
1. Композиция для тонкостенных трубчатых элементов, включающая в качестве наполнителя первичный карбид кремния с размерами частиц 1-50 мкм, фенолформальдегидную смолу, пластификатор, при следующем массовом соотношении компонентов, масс. %:первичный карбид кремния - 71-79%;фенолформальдегидная смола - 10-25%;пластификатор 5-15%.
2. Способ получения тонкостенных трубчатых элементов, включающий получение смеси, содержащей карбид кремния и фенолформальдегидную смолу, отличающийся тем, что в состав смеси дополнительно вводится пластификатор, перед стадией непрерывного формования трубчатых изделий при температуре 80-120°C производится таблетирование или грануляция шихты, термообработка производится в два этапа: предварительная карбонизация до температуры не менее 500°C со скоростью нагрева не более 8°C/час и окончательная карбонизация до температуры не менее 900°C со скоростью нагрева не более 75°C/час; заключительным этапом получения композитного материала является силицирование.