Способ получения бутанола

Иллюстрации

Показать все

Настоящее изобретение относится к способу получения бутанола, который имеет важное промышленное значение как исходное сырье для получения химических и фармацевтических продуктов, а также в качестве растворителя и топлива. Способ включает: стадию А, где содержащий бутанол раствор, полученный путем микробиологической ферментации, фильтруют через нанофильтрационную мембрану и содержащий бутанол раствор выделяют со стороны фильтрата; стадию В, где указанный содержащий бутанол раствор, полученный на стадии А, пропускают через обратноосмотическую мембрану и, таким образом, его концентрируют с тем, чтобы вызвать разделение двух фаз на бутанольную фазу и водную фазу; и стадию С, где бутанол выделяют из указанной бутанольной фазы, полученной на стадии В. Предлагаемый способ позволяет получить бутанол высокой степени чистоты. 9 з.п. ф-лы, 2 ил., 10 табл., 15 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу получения бутанола путем выделения бутанола из содержащего бутанол раствора.

УРОВЕНЬ ТЕХНИКИ

Бутанол является соединением, которое имеет важное промышленное значение как исходное сырье для получения химических и фармацевтических продуктов, а также в качестве растворителя и топлива. Бутанол обычно получают методом химического синтеза, используя пропилен в качестве исходного соединения (оксо-способ), однако из-за проблем, связанных с сокращением источников сырой нефти и значительным ее подорожанием, а также в связи с контролированием выбросов парниковых газов (GHG) внимание привлекли технологии получения бутанола путем микробиологической ферментации с использованием в качестве исходного сырья биомассы, которая не является минеральным сырьем, и сообщается о разработке нескольких подобных способов (в частности, в патентном документе 1). Тем не менее, в общем случае получение бутанола путем микробиологической ферментации позволяет накопить бутанол в ферментативном бульоне лишь приблизительно до 1-3% масс., поскольку бутанол ингибирует рост микроорганизмов. Таким образом, чтобы получить, чистый бутанол из ферментативного бульона, необходимо удалить большое количество воды, содержащейся в ферментативном бульоне. В качестве общего способа удаления воды применяют нагревание в вакууме, однако удаление воды затруднено, поскольку бутанол обладает способностью легко образовывать азеотропные смеси с водой.

В патентном документе 2 в качестве способа разделения/очистки бутанола из содержащего бутанол раствора, получаемого путем микробиологической ферментации, раскрывается способ, в котором ферментативный бульон концентрируют с помощью обратноосмотической мембраны, а бутанольную фазу полученного концентрата, содержащего две раздельные фазы, подвергают дистилляции, с целью извлечения бутанола. Однако ферментативные бульоны обычно содержат примеси, такие как неорганические соли, сахариды и белки, образовавшиеся в ферментативной среде; и спирты и органические кислоты, образующиеся в качестве побочных продуктов. Подобные примеси вызывают загрязнение мембраны, что может привести к повышению осмотического давления и необходимости повышать давление с тем, чтобы добиться концентрирования бульона до такой степени, при которой происходит разделение двух фаз. Однако в том случае, когда содержатся примеси, являющиеся поверхностно-активными веществами, разделение двух фаз может не наблюдаться, что вызывает проблемы. Кроме того, поскольку в бутанольной фазе содержатся окрашенные компоненты, то при получении бутанола высокой степени чистоты с низким содержанием окрашивающих веществ путем дистилляции могут возникать трудности, что также вызывает проблемы. Поскольку в патентном документе 2 не описываются ни примеры использования обратноосмотической мембраны, ни примеры влияния примесей в случае концентрирования с использованием обратноосмотической мембраны, то не ясно, может ли приведенный в патентном документе 2 способ использоваться для получения бутанола.

Далее, в патентном документе 3 раскрывается способ извлечения растворителя, содержащегося в водном растворе, с помощью нанофильтрационной мембраны, и бутанол включен в качестве конкретного примера растворителя. Целью указанного способа является регенерация растворителя, такого как бутанол, со стороны исходного продукта нанофильтрационной мембраны, и механизм извлечения бутанола в указанном способе показывает специалистам в данной области техники, что нанофильтрационная мембрана непроницаема для бутанола. В патентном документе 3 не раскрывается реальный пример фильтрации содержащего бутанол раствора через нанофильтрационную мембрану и не приводится описание разделения извлеченного водного раствора бутанола на две фазы.

ИЗВЕСТНЫЕ ИЗ ОБЛАСТИ ТЕХНИКИ ДОКУМЕНТЫ

[Патентные документы]

[Патентный документ 1] Переведенная с японского языка выложенная заявка на патент РСТ №2009-539407

[Патентный документ 2] WO 2009/086391

[Патентный документ 3] JP 2006-151821 A

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Проблемы, которые решает настоящее изобретение.

С целью решения указанных выше проблем, в настоящем изобретении предлагается способ выделения бутанола высокой степени чистоты из содержащего бутанол раствора.

СПОСОБ РЕШЕНИЯ УКАЗАННЫХ ПРОБЛЕМ

Авторы настоящего изобретения провели интенсивные исследования, с целью решения вышеуказанных проблем, и в процессе проведенных исследований авторы настоящего изобретения неожиданно обнаружили, что нанофильтрационные мембраны проницаемы для бутанола. Основываясь на этом факте, авторы настоящего изобретения установили, что бутанол высокой степени чистоты с небольшими энергозатратами можно с высокой эффективностью получить путем фильтрации содержащего бутанол раствора через нанофильтрационную мембрану, извлекая содержащий бутанол раствор со стороны образовавшегося фильтрата, с последующим пропусканием содержащего бутанол раствора через обратноосмотическую мембрану, с целью увеличения концентрации бутанола, и тем самым было осуществлено настоящее изобретение.

Таким образом, настоящее изобретение составляют приведенные ниже пункты (1)-(11).

(1) Способ получения бутанола, при этом указанный способ включает:

стадию А, где содержащий бутанол раствор фильтруют через нанофильтрационную мембрану и содержащий бутанол раствор извлекают со стороны фильтрата, образовавшегося после прохождения мембраны;

стадию В, где содержащий бутанол раствор, полученный на стадии А, пропускают через обратноосмотическую мембрану и тем самым его концентрируют с тем, чтобы вызвать разделение двух фаз на бутанольную фазу и водную фазу; и

стадию С, где бутанол извлекают из бутанольной фазы, полученной на стадии В.

(2) Способ получения бутанола согласно (1), где бутанол представляет собой н-бутанол или изобутанол.

(3) Способ получения бутанола согласно (1) или (2), где содержащий бутанол раствор представляет собой ферментативный бульон, полученный микробиологической ферментацией.

(4) Способ получения бутанола согласно любому из (1)-(3), где функциональный слой нанофильтрационной мембраны включает полиамид.

(5) Способ получения бутанола согласно любому из (1)-(4), где полиамид включает в качестве основного компонента поперечно-сшитый пиперазин и дополнительно содержит составляющий компонент, представленный химической формулой 1:

(где R обозначает -Н или -СН3, n обозначает целое число от 0 до 3).

(6) Способ получения бутанола согласно любому из (1)-(5), где на стадии В температура содержащего бутанол раствора в процессе концентрирования находится в диапазоне от 4 до 60°С.

(7) Способ получения бутанола согласно любому из (1)-(6), где на стадии В концентрирование осуществляют таким образом, что концентрация бутанола в концентрате составляет не менее 8% масс.

(8) Способ получения бутанола согласно любому из (1)-(7), где водную фазу возвращают обратно в поток, который должен быть пропущен через нанофильтрационную мембрану на стадии А и/или обратноосмотическую мембрану на стадии В.

(9) Способ получения бутанола согласно любому из (1)-(8), где выделенную бутанольную фазу очищают методом дистилляции на стадии С.

(10) Способ получения бутанола согласно (9), где содержащий бутанол раствор, который извлекают со стороны паровой фазы при очистке путем дистилляции, вновь возвращают поток, который должен быть пропущен через нанофильтрационную мембрану на стадии А и/или обратноосмотическую мембрану на стадии В.

(11) Способ получения бутанола согласно (9) или (10), где содержащий бутанол раствор, который извлекают со стороны жидкой фазы при очистке путем дистилляции, затем подвергают очистке дистилляцией с последующим извлечением бутанола со стороны паровой фазы.

ЭФФЕКТ ОТ ИСПОЛЬЗОВАНИЯ ИЗОБРЕТЕНИЯ

По настоящему изобретению бутанол высокой степени чистоты может быть с высокой эффективностью выделен из содержащего бутанол раствора.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 приведена схематичная диаграмма, на которой показан предпочтительный вариант осуществления настоящего изобретения.

На Фиг.2 приведена схематичная диаграмма, на которой показан предпочтительный вариант воплощения устройства мембранной фильтрации/концентрирования, применяемого в настоящем изобретении.

ОПИСАНИЕ СИМВОЛОВ

1. Бак для исходной жидкости, которую необходимо подвергнуть фильтрации через нанофильтрационную мембрану.

2. Модуль нанофильтрационной мембраны.

3. Модуль обратноосмотической мембраны

4. Сосуд для проведения экстракции

5. Дистилляционная колонна

6. Поток водного раствора бутанола

7. Поток содержащего бутанол фильтрата после мембраны.

8. Не прошедшая через мембрану жидкость, содержащая большое количество примесей

9. Поток не прошедшей через мембрану жидкости, содержащей концентрированный бутанол

10. Фильтрат после мембраны, который практически не содержит бутанол и содержит воду

11. Поток водной фазы, содержащий бутанол в количестве, эквивалентном растворимости при насыщении

12. Водная фаза

13. Бутанольная фаза

14. Поток бутанольной фазы

15. Поток бутанола высокой степени чистоты

16. Поток, содержащий бутанол и воду

17. Насос высокого давления

18. Бак для исходной жидкости, которую необходимо подвергнуть фильтрации через обратноосмотическую мембрану

19. Насос высокого давления

20. Поток жидкости, которая не проникает через обратноосмотическую мембрану.

НАИЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ

Далее настоящее изобретения описывается более подробно.

Бутанол в настоящем изобретении является общим термином для одноатомных спиртов, имеющих 4 атома углерода, и конкретные примеры бутанола включают н-бутанол (1-бутанол), изобутанол, 2-бутанол и 2-метил-2-пропанол. Бутанол может включать как один тип, так и несколько типов подобных бутанолов, и настоящее изобретение, предпочтительно, применимо к способу получения н-бутанола и изобутанола.

Способ получения содержащего бутанол раствора, который используют в настоящем изобретении, специально не ограничивается, поскольку указанный способ является способом, известным специалистам. В том случае, когда используют метод химического синтеза, конкретные примеры указанного метода включают синтез из ацетальдегида по Вакер-процессу и синтез из пропилена, монооксида углерода и воды по Реппе-процессу. Содержащий бутанол раствор можно получить ферментацией под действием культуры микроорганизма, такой как анаэробная культура Clostridium butylicum.

Предпочтительным способом получения содержащего бутанол раствора, который применяют в настоящем изобретении, является ферментация под действием культуры микроорганизма. Таким образом, содержащий бутанол раствор, который используют в настоящем изобретении, предпочтительно, представляет собой ферментативный бульон, полученный ферментацией под действием культуры микроорганизма. Например, в тех случаях, когда бутанолом является изобутанол, содержащий изобутанол раствор можно, предпочтительно, получить по способу, который описан в US 2009/0226991 В; Appl. Microbiol. Biotechnol (2010) 85, 651-657; Current Opinion in Biotechnology (2009) 20, 307-315; и т.п., а в тех случаях, когда бутанолом является н-бутанол, содержащий н-бутанол раствор можно, предпочтительно, получить по способу, который описан в разделе Acetone-butanol Fermentation (p.19) в монографии Fermentation Handbook (ed. Japan Bioindustry Association) и т.п.

Настоящее изобретение составляют: Стадия А, где содержащий бутанол раствор фильтруют через нанофильтрационную мембрану и содержащий бутанол раствор выделяют со стороны фильтрата, образовавшегося после прохождения мембраны; стадия В, где содержащий бутанол раствор, полученный на стадии А, пропускают через обратноосмотическую мембрану и тем самым его концентрируют с тем, чтобы вызвать разделение на бутанольную фазу и водную фазу; и стадия С, где бутанол извлекают из бутанольной фазы, полученной на стадии В. Теперь каждая стадия будет рассмотрена более подробно.

(Стадия А)

Нанофильтрационную мембрану, используемую в настоящем изобретении, называют также нанофильтром (нанофильтрационной мембраной, NF мембраной) и в общем случае определяют как "мембрану, которая позволяет проникать одновалентным ионам, однако блокирует двухвалентные ионы". Считается, что мембрана содержит мелкие поры, размер которых составляет приблизительно несколько нанометров, и ее в основном применяют для блокирования мелких частиц, молекул, ионов, солей и т.п., находящихся в воде.

Термин "фильтрация через нанофильтрационную мембрану" означает, что содержащий бутанол раствор фильтруют через нанофильтрационную мембрану, чтобы удалить примеси, которые являются веществами, отличными от бутанола, в основной со стороны исходных веществ, в то время как содержащий бутанол раствор извлекают со стороны фильтрата после мембраны. Например, в тех случаях, когда содержащий бутанол раствор представляет собой ферментативный бульон, полученный ферментацией под действием культуры микроорганизма, ферментативный бульон фильтруют через нанофильтрационную мембрану с тем, чтобы удалить, заблокировать или отделить примеси, такие как неорганические кислоты, сахариды, органические кислоты, окрашенные компоненты, которые растворены или выпадают в осадок в виде твердых веществ, в то время как содержащему бутанол раствору дают проникнуть сквозь мембрану в виде фильтрата. Поскольку не прошедшая сквозь мембрану содержащая примеси жидкость содержит также бутанол, то не прошедшую сквозь мембрану жидкость, предпочтительно, возвращают в неочищенную жидкость (исходную жидкость), с целью повысить степень выделения бутанола.

Примеры известных веществ для изготовления нанофильтрационной мембраны в общем случае включают макромолекулярные соединения, такие как полимеры ацетата целлюлозы, полиамиды, полиэфиры, полиимиды и виниловые полимеры. В настоящем изобретении, преимущественно, используют нанофильтрационную мембрану, содержащую полиамид в функциональном слое, поскольку она позволяет осуществить очистку с высокой эффективностью. В мембранах могут также содержаться многочисленные другие вещества, используемые для изготовления мембран, при условии, что функциональный слой содержит полиамид. Что касается структуры мембраны, то используют либо асимметричную мембрану, по крайней мере, одна стороны которой имеет плотный слой, при этом мембрана имеет поры, диаметр которых постепенно возрастает в направлении от плотного слоя внутрь мембраны или к другой стороне мембраны, либо композиционную мембрану, у которой на плотном слое асимметричной мембраны располагается очень тонкий функциональный слой, образованный другим веществом. Примеры композиционной мембраны, которая может применяться согласно настоящему изобретению, включают композиционную мембрану, описанную в JP 62-201606 А, где нанофильтрационную мембрану с полиамидным функциональным слоем помещают на держатель для мембраны, изготовленный из такого применяемого в мембранах вещества как полисульфон.

Нанофильтрационная мембрана с полиамидным функциональным слоем, которую предпочтительно используют в настоящем изобретении, представляет собой композиционную мембрану, стойкую к воздействию высокого давления, хорошо проницаемую для воды и обладающую высокой способностью удалять растворенные вещества. Кроме того, с целью обеспечить стойкость по отношению к высокому давлению, высокую проницаемость для воды и высокую блокирующую способность, мембрана, преимущественно, имеет структуру, в которой полиамидный функциональный слой располагается на основе, изготовленной из пористой мембраны или нетканого материала. Для нанофильтрационной мембраны, имеющей полиамидный функциональный слой, предпочтительные примеры карбоксильного компонента мономеров, составляющих полиамид, включают ароматические карбоновые кислоты, такие как тримезиновая кислота, бензофенонтетракарбоновая кислота, тримеллитовая кислота, промеллитовая кислота, изофталевая кислота, терефталевая кислота, нафталиндикарбоновая кислота, дифенилкарбоновая кислота и пиридинкарбоновая кислота, и, с точки зрения растворимости в пленкообразующем растворе, более предпочтительными являются тримезиновая кислота, изофталевая кислота или терефталевая кислота или их смеси.

Предпочтительные примеры аминового компонента мономеров, составляющих полиамид, включают первичные диамины с ароматическим(ими) циклом(ами), такие как м-фенилендиамин, п-фенилендиамин, бензидин, метилен-бис-дианилин, 4,4'-диаминодифениловый эфир, дианизидин, 3,3',4-триаминодифениловый эфир, 3,3',4,4'-тетрааминодифениловый эфир, 3,3'-диоксибензидин, 1,8-нафталиндиамин, м(п)-монометилфенилендиамин, 3,3'-монометиламино-4,4'-диаминодифениловый эфир, 4,N,N'-(4-аминобензоил)-п(м)-фенилендиамин-2,2'-бис(4-аминофенилбензимидазол), 2,2'-бис(4-аминофенилбензоксазол) и 2,2'-бис(4-аминофенилбензотиазол); и вторичные диамины, такие как пиперазин и пиперидин и их производные соединения; и, в частности, нанофильтрационная мембрана с функциональным слоем, состоящим из поперечно-сшитого полиамида, содержащего пиперазин или пиперидин в качестве мономеров, обладает повышенной стойкостью к действию высокого давления и долговечностью, а также теплостойкостью и химической стойкостью, а потому ее преимущественно используют. Более предпочтительно, полиамид представляет собой полиамид, включающий в качестве основного компонента полиамид с поперечно-сшитым пиперазином, или полиамид с поперечно-сшитым пиперидином и дополнительно содержит составляющий компонент, представленный Химической формулой 1. Еще более предпочтительно, полиамид в качестве основного компонента включает полиамид с поперечно-сшитым пиперазином и дополнительно содержит составляющий компонент, представленный Химической формулой 1. Кроме того, в Химической формуле 1, преимущественно, n=3. Примеры нанофильтрационной мембраны с полиамидным функциональным слоем, включающим в качестве основного компонента полиамид с поперечно-сшитым пиперазином и дополнительно содержащим составляющий компонент, представленный Химической формулой 1, включают нанофильтрационную мембрану, которая описана в документе JP 62-201606 А, и конкретные примеры подобной нанофильтрационной мембраны включают нанофильтрационную мембрану из полиамида с поперечно-сшитым пиперазином UTC60, изготавливаемую компанией Toray Industries, Inc., которая имеет полиамидный функциональный слой, включающий в качестве основного компонента полиамид с поперечно-сшитым пиперазином и дополнительно содержащий составляющий компонент, представленный Химической формулой 1, где n=3.

Нанофильтрационную мембрану обычно используют в виде модуля мембранного элемента рулонного типа, и нанофильтрационная мембрана, которую применяют в.настоящем изобретении, предпочтительно, также используется в виде модуля мембранного элемента рулонного типа. Конкретные примеры предпочтительных мембранных модулей включают нанофильтрационную мембрану GE Sepa, изготавливаемую компанией GE Osmonics, которая представляет собой нанофильтрационную мембрану из ацетата целлюлозы; нанофильтрационные мембраны NF99 и NF99HF, изготавливаемые компанией Alfa-Laval, которые имеют полиамидные функциональные слои; нанофильтрационные мембраны MPS-34 и MPS-36, изготавливаемые компанией КОСН; нанофильтрационные мембраны NF-45, NF-90, NF-200, NF-270 и NF-400, изготавливаемые компанией FilmTec Corporation, которые имеют функциональные слои полиамида с поперечно-сшитым пиперазином; и нанофильтрационные мембранные модули SU-210, SU-220, SU-600, SU-610 и SU-620, изготавливаемые компанией Toray Industries, Inc., включая UTC60, изготавливаемую тем же самым производителем, которая имеет полиамидный функциональный слой, включающий в качестве основного компонента полиамид с поперечно-сшитым пиперазином и дополнительно содержащий составляющий компонент, представленный Химической формулой 1. Нанофильтрационный мембранный модуль, предпочтительно, является мембраной NF99 или NF99HF, изготавливаемой компанией Alfa-Laval, которая имеет полиамидный функциональный слой; нанофильтрационной мембраной NF-45, NF-90, NF-200 или NF-400, изготавливаемой компанией FilmTec Corporation, которая имеет функциональный слой полиамида с поперечно-сшитым пиперазином; нанофильтрационную мембрану MPS-34 или MPS-36, изготавливаемую компанией КОСН; или нанофильтрационный мембранный модуль SU-210, SU-220, SU-600, SU-610 или SU-620, изготавливаемый компанией Toray Industries, Inc., включая мембрану UTC60, изготавливаемую тем же самым производителем, которая имеет полиамидный функциональный слой, включающий в качестве основного компонента полиамид с поперечно-сшитым пиперазином и дополнительно содержащий составляющий компонент, представленный Химической формулой 1. Нанофильтрационный мембранный модуль, более предпочтительно, представляет собой нанофильтрационный мембранный модуль SU-210, SU-220, SU-600, SU-610 или SU-620, изготавливаемый компанией Toray Industries, Inc., включая мембрану UTC60, изготавливаемую тем же самым производителем, которая имеет полиамидный функциональный слой, включающий в качестве основного компонента полиамид с поперечно-сшитым пиперазином и дополнительно содержащий составляющий компонент, представленный Химической формулой 1.

Примеры метода оценки степени удаления, блокирования или отделения растворенных или осажденных в виде твердых веществ примесей, нанофильтрационной мембраной, которую применяют в настоящем изобретении, включают метод оценки путем расчета степени удаления (степени блокированная) неорганического иона, однако способ не ограничивается указанным методом. Степень удаления неорганической соли (степень блокирования) можно рассчитать, определяя концентрацию неорганической соли, содержащейся в неочищенной жидкости (исходной жидкости) (концентрация неорганической соли в неочищенной жидкости), и концентрацию неорганической соли, содержащейся в фильтрате после мембраны (концентрация неорганической соли в фильтрате), с помощью анализа методом ионной хроматографии и используя уравнение 1.

Степень удаления неорганической соли (%)=(1 - концентрация неорганической соли в фильтрате/концентрация неорганической соли в неочищенной жидкости)×100 (уравнение 1)

Что касается мембранной разделительной способности используемой в настоящем изобретении нанофильтрационной мембраны, то нанофильтрационная мембрана показывает степень удаления, рассчитанную в соответствии с уравнением 1, которая составляет не менее чем 45% в случае использования хлорида натрия (500 мг/л) при температуре 25°С и рН 6,5.

Что касается эффективности фильтрации нанофильтрационной мембраны, то, преимущественно, применяют нанофильтрационную мембрану, у которой скорость течения фильтрата хлорида натрия (500 мг/л) на единицу площади мембраны (м32/день) при давлении фильтрации 0,3 МПа составляет не менее 0,5. Скорость течения фильтрата на единицу площади мембраны (поток фильтрата через мембрану) можно рассчитать, определяя количество фильтрата, время сбора фильтрата и площадь мембраны и используя уравнение 2.

Поток фильтрата через мембрану (м32/день)=количество фильтрата/площадь мембраны/время сбора фильтрата (уравнение 2)

Проницаемость нанофильтрационной мембраны для бутанола в процессе выделения бутанола из содержащего бутанол раствора при использовании вышеуказанного способа можно оценить, рассчитав значение проницаемости для бутанола. Значение проницаемости для бутанола можно определить, измеряя концентрацию бутанола, содержавшегося в неочищенной жидкости (исходной жидкости) (концентрация бутанола в исходной жидкости), и концентрацию бутанола, содержавшегося в фильтрате после мембраны (в содержащем бутанол растворе) (концентрация бутанола в фильтрате), с помощью анализа методом высокоэффективной жидкостной хроматографии и используя уравнение 3.

Величина проницаемости бутанола через мембрану (%)=(концентрация бутанола в фильтрате/концентрация бутанола в исходной жидкости)×100 (уравнение 3)

Фильтрацию через нанофильтрационную мембрану можно осуществить под давлением, и давление при фильтрации, преимущественно, находится в диапазоне от 0,1 МПа до 8 МПа. В тех случаях, когда давление при фильтрации меньше чем 0,1 МПа, степень проницаемости мембраны может снизиться, в то время как в том случае, когда давление при фильтрации превышает 8 МПа, мембрана может быть повреждена. В тех случаях, когда мембрану используют при давлении фильтрации в диапазоне от 0,5 МПа до 7 МПа, поток фильтрата через мембрану высок, так что водный раствор бутанола может эффективно проникать через мембрану, а возможность повреждения мембраны мала, что более предпочтительно. Наиболее предпочтительно, мембрану используют при давлении фильтрации в диапазоне от 1 МПа до 6 МПа.

(Стадия В)

Термин "прошедший через обратноосмотическую мембрану и тем самым сконцентрированный" в настоящем изобретении означает, что содержащий бутанол раствор, который получают на стадии А, пропускают через обратноосмотическую мембрану и содержащий бутанол концентрат извлекают со стороны исходной жидкости, в то время как воде в основном позволяют проникать на сторону фильтрата и таким образом ее удаляют.

Что касается материала, из которого изготовлена обратноосмотическая мембрана, которую применяют в настоящем изобретении, то примеры мембраны включают композитные мембраны с функциональным слоем полимера на основе ацетата целлюлозы (в данном описании далее обозначают как обратноосмотические мембраны из ацетата целлюлозы) и композитные мембраны с полиамидным функциональным слоем (в данном описании далее обозначают как полиамидные обратноосмотические мембраны). Примеры полимера на основе ацетата целлюлозы в данном описании включают полимеры, полученные с использованием неполных сложных эфиров целлюлозы, таких как ацетат целлюлозы, диацетат целлюлозы, триацетат целлюлозы, пропионат целлюлозы и бутират целлюлозы, которые могут быть использованы самостоятельно, в виде смеси или в виде смешанного эфира. Примеры полиамида включают линейные полимеры и поперечно-сшитые полимеры, составленные алифатическими и/или ароматическими диаминовыми мономерами.

Конкретные примеры обратноосмотической мембраны, которую преимущественно используют в настоящем изобретении, включают полиамидные обратноосмотические мембраны UTC-70, SU-710, SU-720, SU-720F, SU-710L, SU-720L, SU-720LF, SU-720R, SU-710P, SU-720P, SU-810, SU-820, SU-820L, SU-820FA, SUL-G10, SUL-G20, SUL-G10F, SUL-G10P, SUL-G20P, мембраны серии ТМ800, серии ТМ800С, серии ТМ800А, серии ТМ800Н, серии ТМ800Е и серии TM800L, которые изготавливает компания Toray Industries, Inc.; обратноосмотические мембраны из ацетата целлюлозы SC-L100R, SC-L200R, SC-1100, SC-1200, SC-2100, SC-2200, SC-3100, SC-3200, SC-8100 и SC-8200, которые изготавливает компания Toray Industries, Inc.; NTR-759HR, NTR-729HF, NTR-70SWC, ES10-D, ES20-D, ES20-U, ES15-D, ES15-U и LF10-D, которые изготавливает компания Nitto Denko Corporation; Ro98pHt, R099, HR98PP и CE4040C-30D, которые изготавливает компания Alfa-Laval; серия A, GE Sepa, серия HL, серия Duraslick, серия MUNI RO, серия MUNI RO LE, серия Duratherm RO HF, серия СК, серия DK, серия Seasoft, серия Duratherm RO HF, серия Duratherm HWS, серия PRO RO и серия PRO RO LE, которые изготавливает компания GE; серия BLF, серия BLR и серия BE, которые изготавливает компания SAEHAN CSM; серия SelRO, которую изготавливает компания КОСН; и BW30-4040, TW30-4040, XLE-4040, LP-4040, LE-4040, SW30-4040 и SW30HRLE-4040, которые изготавливает компания FilmTec Corporation.

Что касается формы мембраны, то, соответственно, могут применяться плоские мембраны, мембранные элементы рулонного типа, мембраны из полых волокон и т.п.

Что касается разделительной способности мембраны для обратноосмотической мембраны, которую применяют в настоящем изобретении, то обратноосмотическая мембрана, предпочтительно, показывает степень удаления хлорида натрия не меньше чем 90%, более предпочтительно, не меньше чем 95%, когда используют хлорид натрия (концентрация хлорид натрия в исходной жидкости, 3,5%) с температурой 25°С и рН 6,5 при давлении фильтрации 5,5 МПа. Степень удаления хлорида натрия можно рассчитать согласно уравнению 1.

Что касается эффективности фильтрации обратноосмотической мембраны, то, предпочтительно, используют мембрану, поток фильтрата (м3/(м2/день)) через которую составляет не меньше чем 0,2 для хлорида натрия (3,5%) при давлении фильтрации 5,5 МПа, поскольку степень концентрирования ферментативного бульона может быть увеличена. Поток фильтрата через мембрану в данном описании означает скорость потока фильтрата на единицу площади мембраны на единицу давления, который можно рассчитать, измеряя количество фильтрата, время сбора фильтрата и площадь мембраны и используя уравнение 2.

В настоящем изобретении, предпочтительно, используют обратноосмотическую мембрану, обладающую низкой проницаемостью по отношению к бутанолу и высокой проницаемостью по отношению к воде (водонепроницаемость). Примеры метода оценки проницаемости обратноосмотической мембраны по отношению к бутанолу в данном описании включают оценку путем расчета степени проницаемости для бутанола. Степень проницаемости для бутанола можно рассчитать, измеряя концентрацию бутанола, содержащегося в неочищенной жидкости (исходной жидкости) (концентрация бутанола в исходной жидкости), и концентрацию бутанола, содержавшегося в фильтрате после мембраны (в содержащем бутанол растворе) (концентрация бутанола в фильтрате), с помощью анализа методом высокоэффективной жидкостной хроматографии и используя уравнение 3.

Фильтрацию через обратноосмотическую мембрану можно осуществить под давлением, и давление при фильтрации, преимущественно, находится в диапазоне от 0,1 МПа до 8 МПа. В тех случаях, когда давление при фильтрации меньше чем 0,1 МПа, степень проницаемости мембраны может снизиться, в то время как в тех случаях, когда давление при фильтрации превышает 8 МПа, мембрана может быть повреждена. В тех случаях, когда мембрану используют при давлении фильтрации в диапазоне от 0,5 МПа до 7 МПа, поток фильтрата через мембрану высок, так что водный раствор бутанола может быть эффективно сконцентрирован, а возможность повреждения мембраны мала, что более предпочтительно. Наиболее предпочтительно, мембрану используют при давлении фильтрации в диапазоне от 1 МПа до 6 МПа.

Температура содержащего бутанол раствора в процессе концентрирования с помощью обратноосмотической мембраны не ограничивается и, предпочтительно, она находится в диапазоне от 4 до 60°С, более предпочтительно, в диапазоне от 20 до 50°С. В тех случаях, когда температура содержащего бутанол раствора меньше чем 4°С, разделение двух фаз на бутанольную фазу и водную фазу может быть затруднено, а в тех случаях, когда температура содержащего бутанол раствора превышает 60°С, обратноосмотическая мембрана может быть повреждена и, таким образом, проведение операции концентрирования может оказаться неудачным.

Концентрация бутанола в концентрате, полученном на стадии В, не ограничена и, предпочтительно, составляет не меньше чем 8% масс., более предпочтительно, не меньше чем 15% масс., еще более предпочтительно, не меньше чем 30% масс. и, наиболее предпочтительно, не меньше чем 40% масс. В тех случаях, когда концентрация бутанола составляет не меньше чем 8% масс., концентрация превышает растворимость при насыщении бутанола в воде, что приводит к разделению на две фазы, т.е. на бутанольную фазу и водную фазу. При возникновении разделения на две фазы порцию водной фазы дополнительно концентрируют с помощью обратноосмотической мембраны, что приводит к тому, что в бутанольной фазе бутанол смещается в сторону количества, при котором количество бутанола превышает растворимость при насыщении. Таким образом, поскольку концентрация бутанола постоянно поддерживается на уровне растворимости при насыщении, то становится возможным постоянно поддерживать повышение концентрации бутанола при постоянной разнице осмотического давления. Поскольку содержащий бутанол раствор, который должен быть пропущен через обратноосмотическую мембрану, уже был подвергнут фильтрации через нанофильтрационную мембрану, то концентрация примесей в растворе чрезвычайно мала, так что примеси оказывают незначительное влияние на осмотическое давление, что позволяет проводить концентрирование при низком рабочем давлении. Кроме того, поскольку обладающие поверхностной активностью примеси были удалены фильтрацией, то разделение на две фазы протекает легко.

(Стадия С)

Бутанол может быть получен путем выделения бутанольной фазы из концентрата бутанола, который получают на стадии В, где проходило разделение двух фаз на бутанольную фазу и водную фазу. Поскольку полученный бутанол был подвергнут фильтрации через нанофильтрационную мембрану на стадии А, то концентрация примесей в нем чрезвычайно низка. Поскольку бутанол сохраняется в водной фазе, которая не была извлечена, в количестве, эквивалентном растворимости при насыщении, то водную фазу можно рециклировать в качестве исходной жидкости, которую необходимо подвергнуть фильтрации через обратноосмотическую мембрану на стадии В, с тем, чтобы повысить общую степень извлечения бутанола.

Далее, путем очистки выделенной бутанольной фазы методом дистилляции можно получить бутанол высокой степени чистоты. Стадию очистки бутанола дистилляцией, предпочтительно, проводят при пониженном давлении не меньше, чем 1 Па и не больше, чем атмосферное давление (нормальное давление, составляющее приблизительно 101 кПа), более предпочтительно, проводят при пониженном давлении не меньше, чем 100 Па и не больше, чем 80 кПа, еще более предпочтительно, проводят при пониженном давлении не меньше, чем 100 Па и не больше, чем 50 кПа. В тех случаях, когда перегонку проводят при пониженном давлении, температура дистилляции, предпочтительно, составляет не меньше чем 20°С и не больше чем 200°С, более предпочтительно, не меньше чем 40°С и не больше чем 150°С.

На стадии очистки бутанола методом дистилляции на стороне жидкости может быть получен бутанол высокой степени чистоты. Тем не менее, поскольку паровая сторона содержит бутанол и воду в результате образования азеотропной смеси, то конденсат, извлеченный на паровой стороне, можно рециклировать в исходную жидкость, которая должна быть подвергнута фильтрации через нанофильтрационную мембрану на стадии А, и/или рециклировать в исходную жидкость, которая должна быть подвергнута фильтрации через обратноосмотическую мембрану на стадии В, и/или поместить в сосуд для проведения экстракции с тем, чтобы повысить общее количество извлеченного бутанола. Кроме того, вновь подвергая дистилляции бутанол, извлеченный на стороне жидкости, и извлекая бутанол на паровой стороне, можно дополнительно повысить чистоту бутанола.

Ниже со ссылкой на чертежи подробно излагается суть способа получения бутанола по настоящему изобретению. На фигуре 1 приведен предпочтительный вариант осуществления настоящего изобретения, и в указанном варианте осуществления настоящего изобретения поток содержащего бутанол раствора, 6, подвергают фильтрации через нанофильтрационную мембрану, с целью разделить общий поток на поток содержащего бутанол фильтрата, 7, и поток не прошедшей через мембрану, жидкости, содержащей примеси, 8. Поток содержащего бутанол фильтрата, 7, подвергают фильтрации через обратноосмотическую мембрану, а поток не прошедшей через мембрану жидкости, содержащей большое количество примесей, 8, вновь возвращают в поток водного раствора бутанола, 6, или в бак с неочищенной жидкостью 1. Поток 7, подвергнутый фильтрации через обратноосмотическую мембрану, разделяют на поток не прошедшей через мембрану жидкости, в которой накапливается бутанол, 9, и фильтрат, который практически не содержит бутанол, а содержит воду, 10. Поток не прошедшей через мембрану жидкости, в которой накапливается бутанол, 9, поступает в сосуд для экстракции 4 и подвергается разделению двух фаз на бутанольную фазу и водную фазу, содержащую бутанол в количестве, эквивалентном растворимости при насыщении. Поток водной фазы, содержащей бутанол в количестве, эквивалентном растворимости при насыщении, 11, вновь возвращают в поток содержащего бутанол фильтрата, 7, с тем, чтобы подве