Система, способ и машиночитаемый носитель с компьютерной программой для прогнозирования геометрии скважины
Иллюстрации
Показать всеИзобретение относится к картированию и бурению скважин. Техническим результатом является повышение точности определения траектории скважины между пунктами инклинометрии и расчета положения скважины. Предложен способ определения траектории скважины, формируемой бурильной колонной. Указанный способ содержит: прием данных, характеризующих один или более параметров бурения между, по меньшей мере, двумя точками инклинометрии; усреднение полученных данных за заданные шаги приращения между указанными, по меньшей мере, двумя точками инклинометрии; расчет исходя из, по меньшей мере, указанных усредненных данных прогнозируемой реакции бурильной колонны для каждого из заданных шагов приращения; определение исходя из, по меньшей мере, указанной прогнозируемой реакции бурильной колонны изменения угла наклона и азимута для каждого из заданных шагов приращения; формирование прогнозируемой траектории скважины исходя из указанного изменения угла наклона и азимута; сравнение указанной прогнозируемой траектории скважины с измеренной траекторией скважины; и если результаты указанного сравнения приемлемы, определение вероятного положения скважины исходя из указанного изменения угла наклона и азимута для каждого из заданных шагов приращения. Раскрыты также машиночитаемый носитель и система для реализации указанного способа. 3 н. и 17 з.п. ф-лы, 3 ил.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к картированию и бурению скважин и, в частности, к системам и способам измерения и прогнозирования геометрии сложных скважин.
Уровень техники
Скважины (обычно обозначаемые в англоязычной терминологии как «boreholes», «wellbores» или «drill holes») выполняют для различных целей, в том числе для разведочного бурения с целью определения местоположения подземных залежей различных полезных ископаемых, добычи полезных ископаемых и проектирования с целью строительства новых подземных коммуникаций. Зачастую имеет место ошибочное представление, что все скважины вертикально выровнены относительно буровой установки, однако многие применения требуют бурения скважин, которые имеют геометрию с отклонением от вертикали или имеют горизонтальную ориентацию. К известным технологиям, применяемым для бурения горизонтальных, отклоненных от вертикали и других геометрически сложных скважин, относится наклонно-направленное бурение. К наклонно-направленному бурению обычно относят процесс бурения скважины, характерный тем, что курс скважины в земле имеет направление, отличное от вертикального, то есть оси образуют угол с вертикальной плоскостью (называемый «отклонением от вертикали») и направлены в азимутальной плоскости.
Типовые технологии наклонно-направленного бурения обычно реализуют с применением бурового устройства, которым проталкивают или проводят последовательно соединенные бурильные трубы с направляемым буровым долотом, установленным на дальнем конце указанных труб, в результате чего формируют геометрию сложной скважины. При разведке подземных залежей углеводородов, например нефти и природного газа, и при их добыче наклонно-направленную скважину обычно пробуривают вращающимся буровым долотом, закрепленным на конце компоновки низа бурильной колонны КНБК. Направляемая КНБК может содержать, например, гидравлический забойный двигатель ГЗД (PDM, от англ. positive displacement motor), также называемый «забойным двигателем», утяжеленные бурильные трубы, расширители, амортизаторы и инструменты для расширения скважины. Для контроля изгиба КНБК и направления долота по требуемой траектории (обеспечения требуемого угла наклона и азимута) к КНБК могут прикреплять стабилизатор. КНБК, в свою очередь, прикрепляют к низу трубного узла, который обычно содержит трубное сочленение или относительно гибкую трубу, сворачиваемую в бухту, также называемую «колтюбингом». Такая система наклонно-направленного бурения, представляющая собой функционально взаимосвязанные трубы, буровое долото и КНБК, обычно называется «бурильной колонной». При использовании в бурильной колонне трубного сочленения буровое долото поворачивают путем вращения указанного сочленения с поверхности, или при помощи забойного двигателя, предусмотренного в КНБК. В то же время, бурильные колонны, содержащие колтюбинги, обычно вращают буровое долото посредством забойного двигателя, предусмотренного в КНБК.
Независимо от профиля скважины, будь он горизонтальным, наклонным, вертикальным или любым другим допустимым сочетанием перечисленных конфигураций - для обеспечения оптимальной добычи углеводородов из месторождения траектория скважины должна быть картирована максимально возможно точно. Путь или траекторию скважины принято определять на основе серии измерений направления и угла наклона скважины (D&l - от английского direction and inclination), например азимута и угла наклона, в отдельных местоположениях («точках инклинометрии») вдоль пути скважины. По результатам указанных угловых измерений, с учетом известной длины бурильной колонны, можно построить теоретическую модель траектории скважины. Азимут и угол наклона можно измерить посредством датчиков инклинометрии, расположенных вдоль бурильной колонны. На результаты этих измерений могут влиять случайные изменения состояния бурильной колонны и условий бурения. Например, часть колонны, к которой прикреплены датчики, может изогнуться или «перекоситься», что может привести к тому, что ось скважины не обязательно будет ориентирована в том же направлении, что и ось инструмента с датчиками.
В рамках существующей практики бурения кривизну скважины определяют путем расчета кривизны между точками (пунктами) инклинометрии на основе данных, измеряемых забойным инклинометром. Наиболее широко известным способом определения траектории скважины является метод минимальной кривизны (Minimum Curvature Method), описанный, например, в работе «A Compendium of Directional Calculations Based on the Minimum Curvature Method», by S.J. Sawaryn и J.T. Thorogood, SPE Annual Technical Conference and Exhibition) Denver, Colorado, 5-8 October (2003), содержание которой во всей полноте включено в настоящую заявку посредством ссылки. Применение указанного способа подразумевает представление траектории скважины в виде последовательности тангенциальных векторов, соединенных дугой окружности. Для представления других объектов, например соседних скважин, сборных промысловых трубопроводов, геологических целевых объектов и разрывов, могут быть использованы множества других точек, линий и плоскостей. Взаимосвязи между указанными элементами имеют простые геометрические интерпретации, что позволяет осуществлять их математическую обработку.
Данные о точном положении скважины важны при определении расстояния, отделяющего указанную скважину от соседних скважин, уточнении границ нефтяных и газовых залежей, расчете объемов нефти в пласте-коллекторе. Следует отметить, что в процессе осуществления буровых операций путь буровых инструментов фактически проходит не вдоль единственной непрерывной кривой, а состоит из серии кривых различной кривизны. При расчете положения скважины по методу минимальной кривизны изменения траектории скважины между точками инклинометрии не учитываются. Таким образом, существующие типовые способы определения траектории скважины не обеспечивают наивысшую точность определения положения и кривизны скважины. Кроме того, при коррекции несоосности измерений, произведенных в пунктах инклинометрии, не учитывают несоосность буровых инструментов относительно скважины сложной формы. В рамках существующих технологий несоосность скважины корректируют на основе формы скважины с минимальной кривизной, однако применение данных технологий дает неудовлетворительные результаты в отношении компенсации несоосности скважины.
Таким образом, существует потребность более точного определения пути скважины между пунктами инклинометрии и более точного расчета положения скважины.
Раскрытие изобретения
Согласно одному из аспектов настоящего изобретения, представлен способ определения траектории скважины. Указанный способ содержит: получение данных, характеризующих один или более параметров бурения между по меньшей мере двумя точками инклинометрии; усреднение полученных данных за заданные шаги приращения между указанными по меньшей мере двумя точками инклинометрии; расчет исходя из по меньшей мере указанных усредненных данных прогнозируемой реакции бурильной колонны для каждого из заданных шагов приращения; определение исходя из по меньшей мере указанной прогнозируемой реакции бурильной колонны изменения угла наклона и азимута для каждого из заданных шагов приращения; формирование прогнозируемой траектории скважины исходя из по меньшей мере указанного изменения угла наклона и азимута; сравнение указанной прогнозируемой траектории скважины с измеренной траекторией скважины; и, если результаты указанного сравнения приемлемы, определение вероятного положения скважины исходя из по меньшей мере указанного изменения угла наклона и азимута для каждого из заданных шагов приращения.
Согласно другому аспекту настоящего изобретения раскрыт постоянный машиночитаемый носитель, содержащий компьютерную программу с набором команд, причем указанный набор команд выполнен с возможностью вызывать, при исполнении одним или более контроллерами, следующие действия: усреднение набора измеренных данных за заданные шаги приращения между по меньшей мере двумя точками инклинометрии, причем указанный набор данных характеризует множество параметров бурения; расчет исходя из по меньшей мере указанного набора усредненных данных прогнозируемой реакции бурильной колонны для каждого заданного шага приращения, определение исходя из по меньшей мере указанной прогнозируемой реакции бурильной колонны изменения угла наклона и азимута для каждого заданного шага приращения; формирование прогнозируемой траектории скважины исходя из по меньшей мере указанного изменения угла наклона и азимута; сравнение указанной прогнозируемой траектории скважины с измеренной траекторией скважины; если результаты указанного сравнения неприемлемы, перерасчет указанной прогнозируемой реакции бурильной колонны с применением поправочного коэффициента, учитывающего систематическую погрешность, и повторение указанных действий по определению, формированию и сравнению; и если результаты указанного сравнения приемлемы, определение вероятного положения скважины исходя из указанного изменения угла наклона и азимута для каждого заданного шага приращения.
Согласно другому аспекту настоящего изобретения, раскрыта система прогнозирования пути сложной скважины. Скважина может быть пробурена системой наклонно-направленного бурения, имеющей по меньшей мере один датчик, функционально соединенный с бурильной колонной, содержащей компоновку низа бурильной колонны КНБК и буровое долото. Указанная система содержит устройство ввода для приема входных данных от пользователя, контроллер и запоминающее устройство для хранения команд. Указанные команды, при их исполнении контроллером, вызывают выполнение указанным контроллером следующих действий: прием от указанного по меньшей мере одного датчика результатов измерений, характеризующих множество параметров бурения между первой и второй точками инклинометрии; усреднение принятых результатов измерений за каждый из множества назначенных пользователем шагов приращения глубины между указанными первой и второй точками инклинометрии; расчет исходя из по меньшей мере указанных усредненных результатов измерений прогнозируемой реакции КНБК и прогнозируемой реакции бурового долота для каждого из указанных шагов приращения глубины; определение исходя из по меньшей мере указанной прогнозируемой реакции КНБК и указанной прогнозируемой реакции бурового долота изменения угла наклона и азимута для каждого из указанных шагов приращения глубины; формирование прогнозируемой траектории скважины в указанной первой точке инклинометрии исходя из по меньшей мере указанного изменения угла наклона и азимута; сравнение указанной прогнозируемой траектории скважины с измеренной траекторией скважины в указанной второй точке инклинометрии; и если результаты сравнения приемлемы, определение вероятного положения скважины исходя из указанного изменения угла наклона и азимута для каждого из указанных шагов приращения глубины.
Вышеприведенное раскрытие настоящего изобретения не охватывает все варианты осуществления изобретения или все аспекты изобретения. Напротив, в вышеприведенном раскрытии изобретения приведены лишь иллюстративные примеры некоторых новых аспектов и признаков, раскрытых в данном документе. Вышеупомянутые преимущества и признаки, а также другие преимущества и признаки настоящего изобретения становятся понятны из нижеследующего подробного описания вариантов осуществления настоящего изобретения и предпочтительных вариантов осуществления настоящего изобретения, рассматриваемых во взаимосвязи с прилагаемыми чертежами и формулой настоящего изобретения.
Краткое описание чертежей
На фиг. 1 показано схематическое изображение примера буровой системы в соответствии с аспектами настоящего изобретения.
На фиг. 2 показано схематическое изображение примера компоновки низа бурильной колонны КНБК в соответствии с аспектами настоящего изобретения.
На фиг. 3 показана блок-схема примера способа или алгоритма, соответствующего командам, которые могут быть исполнены, например, контроллером или процессором в соответствии с аспектами настоящего изобретения.
На фиг. 4 показан график, иллюстрирующий на различных измеренных глубинах рассчитанную скорость бурения для примера вращающейся направляемой установки и рассчитанную скорость бурения при использовании датчика наклона, расположенного вблизи долота.
Настоящее изобретение может быть подвержено разнообразным модификациям и изменениям, при этом конкретные варианты его осуществления, подробно описанные в данной заявке и проиллюстрированные на прилагаемых чертежах, приведены только в качестве примеров. Следует понимать, что настоящее изобретение никоим образом не ограничено конкретными вариантами его осуществления, приведенными в данной заявке. Напротив, настоящее изобретение охватывает все модификации, эквиваленты и варианты, находящиеся в рамках объема настоящего изобретения, ограниченного прилагаемой формулой настоящего изобретения.
Осуществление изобретения
Осуществление настоящего изобретения может принимать различные формы. Варианты осуществления настоящего изобретения проиллюстрированы на прилагаемых чертежах и подробно описаны в данной заявке, однако приведенное описание настоящего изобретения носит пояснительный характер и никоим образом не ограничивает сущность настоящего изобретения проиллюстрированными вариантами его осуществления.
На прилагаемых чертежах сходные элементы обозначены сходными номерами позиций на нескольких видах. На фиг. 1 показан пример системы наклонно-направленного бурения, в целом обозначенной позицией 10, в соответствии с аспектами настоящего изобретения. Большинство раскрытых принципов изобретения описаны со ссылкой на бурильные операции, направленные на разведку месторождений и добычу залегающих под землей углеводородов, например нефти и природного газа. Однако раскрытые принципы изобретения не ограничены указанной областью применения и могут быть использованы при выполнении других бурильных операций. В связи с этим аспекты настоящего изобретения не обязательно ограничены конфигурациями и элементами, приведенными на фиг. 1 и 2. Кроме того, следует понимать, что указанные чертежи необязательно представлены в масштабе, а приведены исключительно в пояснительных целях; таким образом, настоящее изобретение не ограничено абсолютными и относительными размерами и ориентациями, приведенными на чертежах. Дополнительная информация касательно систем наклонно-направленного бурения содержится, например, в опубликованной патентной заявке США 2010/0259415 А1 «Method and System for Predicting Performance of a Drilling System Having Muitipie Cutting Structures» за авторством Michael Strachan и др., содержание которой во всей полноте включено в настоящий документ посредством ссылки.
На фиг. 1 показан пример системы 10 наклонно-направленного бурения, содержащей башню или «вышку» 11, как она наиболее часто обозначается в области техники, укрепленную посредством пола 12 вышки. Пол 12 вышки служит опорой для поворотного стола 14, приводимого в движение с требуемой скоростью вращения, например, через систему с цепной передачей посредством работы первичного двигателя (не показан). В свою очередь, поворотный стол 14 передает необходимое вращающее усилие к бурильной колонне 20. Бурильная колонна 20, содержащая участок 24 бурильной трубы, проходит вниз от поворотного стола 14 в наклонно-направленную скважину 26. Как показано на чертежах, скважина 26 может проходить вдоль многомерного пути или «траектории». Трехмерное направление низа 54 скважины 26, показанной на фиг.1, обозначено вектором 52.
К дальнему, забойному концу бурильной колонны 20 прикреплено буровое долото 50. При вращении, например посредством поворотного стола 14, долото 50 разбивает и в целом измельчает геологическую формацию 46. Бурильная колонна 20 соединена с «лебедочным» спускоподъемным устройством 30, например, через ведущую бурильную трубу 21, шарнирный механизм 28 и линию 29 через систему шкивов (не показана). Лебедка 30 может содержать различные компоненты, в том числе барабан, один или более двигателей, редуктор, главный тормоз и дополнительный тормоз. В процессе бурения в некоторых вариантах осуществления изобретения через лебедку 30 можно регулировать нагрузку на долото 50 и скорость погружения бурильной колонны 20 вглубь скважины 26. Принцип работы лебедки 30 известен, поэтому его подробное описание в данной заявке не приведено.
Во время бурильных операций подходящая буровая текучая среда (обычно обозначаемая в данной области техники как «буровой раствор») 31 может циркулировать по контуру из отстойника 32 в скважину 26 через бурильную колонну 20 под давлением, нагнетаемым гидравлическим насосом 34 бурового раствора. Буровая текучая среда 31 может содержать буровые растворы на водной основе (WBM, от англ. water-based mud), обычно содержащие композицию на основе воды и глины, буровой раствор на нефтяной основе (ОВМ, от англ. oil-based mud), в котором базовой текучей средой является нефтепродукт, например дизельное топливо, буровой раствор на синтетической основе (SBM, от англ. synthetic-based mud), в котором базовой текучей средой является синтетическое масло, а также газосодержащие буровые текучие среды. Буровая текучая среда 31 поступает от насоса 34 бурового раствора в бурильную колонну 20 по каналу 38 текучей среды (обычно называемому «трубопроводом бурового раствора») и ведущей буровой трубе 21. Буровая текучая среда 31 выходит у низа скважины 54 через отверстие в буровом долоте 54 и циркулирует вверх по стволу скважины по направлению к поверхности через кольцевое пространство 27 между бурильной колонной 20 и стенкой скважины 26. Когда буровая текучая среда 31 достигает поворотного стола 14, она вытекает через возвратную линию 35 в отстойник 32. На поверхности скважины 26 надлежащим образом размещено множество наземных датчиков 48, которые функционируют независимо или совместно с забойными датчиками 70, 72, размещенными внутри скважины 26, для обеспечения информации о различных относящихся к бурению параметрах, например о расходе буровой текучей среды, нагрузке на долото, нагрузке на крюк и так далее, как подробно описано ниже.
Сигналы от наземных и забойных датчиков и устройств может принимать наземный блок 40 управления через датчик или приемник 43, который может быть установлен на линии 38 текучей среды. Наземный блок 40 управления можно быть выполнен с возможностью обработки указанных сигналов в соответствии с запрограммированными командами, передаваемыми наземному блоку 40 управления. Наземный блок 40 управления может представлять оператору требуемые параметры бурения и другую информацию посредством одного или нескольких устройств 42 вывода, например дисплея, компьютерного монитора, громкоговорителей, индикаторных лампочек и так далее, которые могут использоваться оператором для контроля процесса бурения. Наземный блок 40 управления может содержать компьютер, запоминающее устройство для хранения данных, устройство для записи данных и прочие известные внешние устройства, а также внешние устройства, которые будут разработаны в будущем. Кроме того, наземный блок 40 управления может содержать модели, а также может обрабатывать данные в соответствии с запрограммированными командами, реагировать на команды пользователя, вводимые через подходящее устройство 44 ввода, которое по своей сути может представлять собой клавиатуру, сенсорный экран, микрофон, компьютерную мышь, джойстик и другие подобные устройства.
В некоторых вариантах осуществления настоящего изобретения вращающееся буровое долото 50 прикреплено к дальнему концу управляемой компоновки 22 низа бурильной колонны КНБК. В проиллюстрированном варианте осуществления изобретения КНБК 22 прикреплена между буровым долотом 50 и участком 24 бурильной трубы бурильной колонны 20. КНБК 22 может содержать показанную на фиг.1 систему 58 измерения в процессе бурения (MWD, от англ. measurement while drilling), датчики которой передают информацию о формации 46 и параметрах бурения скважины. MWD-датчики в КНБК 22 могут содержать, но не ограничены таковыми, устройство для измерения удельного электрического сопротивления формации вблизи бурового долота, устройство гамма-излучения для измерения интенсивности гамма-излучения формации, устройства для определения угла наклона и азимута бурильной колонны, а также датчики давления для измерения давления буровой текучей среды в скважине. MWD-средства также могут содержать дополнительные/альтернативные датчики для измерения упругих волн, вибрации, крутящего момента, телеметрических сигналов и так далее. Вышеупомянутые устройства могут передавать данные в забойный передатчик 33, который, в свою очередь, передает указанные данные вверх по стволу скважины в наземный блок 40 управления. В некоторых вариантах осуществления изобретения КНБК 22 также может содержать систему каротажа в процессе бурения (LWD, от англ. logging while drilling).
В некоторых вариантах осуществления изобретения для передачи данных от забойных датчиков и устройств в процессе бурения могут применять технологию телеметрии по гидроимпульсному каналу связи. Примеры способов и устройств, реализующих телеметрию по гидроимпульсному каналу связи, раскрыты в патенте США 7106210 В2 за авторством Christopher A. Golla и др., содержание которого во всей полноте включено в настоящую заявку посредством ссылки. К другим известным способам осуществления телеметрии, которые могут быть использованы без выхода за пределы сущности настоящего изобретения, среди прочих относятся электромагнитная телеметрия, акустическая телеметрия, проводная телеметрия по бурильной колонне.
Приемник 43, расположенный в линии 38 подачи бурового раствора, детектирует импульсы в буровом растворе, отвечающие данным, поступающим от забойного передатчика 33. Приемник 43, в свою очередь, генерирует электрические сигналы в ответ на изменения давления бурового раствора и передает указанные сигналы в наземный блок 40 управления. Альтернативно, могут применяться другие технологии телеметрии, например электромагнитная и/или акустическая или любые другие подходящие известные технологии или технологии телеметрии, которые будут разработаны в будущем. Например, для передачи данных между наземными и забойными устройствами может быть использована бурильная труба с жестким кабелем. Кроме того, перечисленные технологии могут использоваться в любых сочетаниях. Как показано на фиг. 1, передача данных осуществляется между забойными приборами и приемопередатчиком 80 при помощи любой упомянутой технологии передачи, например технологии телеметрии по гидроимпульсному каналу связи. Это обеспечивает возможность двунаправленной передачи данных между наземным блоком 40 управления и забойными инструментами, описанными ниже.
Согласно аспектам настоящего изобретения КНБК 22 обеспечивает передачу на долото 50 требуемого усилия для пробивания сквозь формацию 46 (так называемой «нагрузки на долото»), и обеспечивает управление направлением бурения скважины 26. В вариантах осуществления изобретения, проиллюстрированных на фиг. 1 и 2, КНБК 22 может содержать буровой двигатель 90, а также первый и второй стабилизаторы 60 и 62, отстоящие друг от друга в продольном направлении. По меньшей мере один из стабилизаторов 60, 62 может представлять собой регулируемый стабилизатор, способствующий управлению направлением бурения скважины 26. Для регулирования угла между КНБК 22 и осью скважины 26 в КНБК 22 направляемой системы 10 наклонно-направленного бурения могут применяться дополнительные радиально регулируемые стабилизаторы. В отличие от типовых стабилизаторов с фиксированным диаметром радиально регулируемые стабилизаторы обеспечивают возможность регулировки направления в широком диапазоне. Возможность такого регулирования позволяет значительно сократить время бурения, так как позволяет регулировать конфигурацию КНБК 22 внутри скважины, вместо того чтобы извлекать КНБК 22 на поверхность для осуществления каких-либо изменений. Тем не менее, даже указанный радиально регулируемый стабилизатор позволяет регулировать направление скважины лишь в ограниченном диапазоне. Дополнительная информация с описанием регулируемых стабилизаторов и применения их в системах наклонно-направленного бурения содержится в публикации патентной заявки США 2011/0031023 А1 «Borehole Drilling Apparatus, Systems, and Methods» за авторством Clive D. Menezes и др., содержание которой во всей полноте включено в настоящую заявку посредством ссылки.
Как показано в варианте осуществления на фиг. 2, расстояние между буровым долотом 50 и первым стабилизатором 60, обозначенное как L1, может быть фактором, определяющим изгибные характеристики КНБК 22. Аналогично, расстояние между первым стабилизатором 60 и вторым стабилизатором 62, обозначенное как L2, может быть другим фактором, определяющим изгибные характеристики КНБК 22. Что касается первого стабилизатора 60, отклонение бурового долота 50 КНБК 22 является нелинейной функцией расстояния L1, так как даже относительно небольшое изменение расстояния L1 может приводить к значительным изменениям изгибных характеристик КНБК 22. За счет радиально подвижных лопаток стабилизатора, угол заваливания или угол подъема, например А или В, может быть задан долотом 50 при нахождении указанного стабилизатора в положении Р. Посредством передвижения стабилизатора 60 по оси из точки Р в точку Р′ можно увеличить отклонение долота 50 с А до А′ или с В до В′. Согласно некоторым аспектам раскрытых принципов изобретения применение стабилизатора, регулируемого в осевом и радиальном направлениях, может существенно расширить диапазон регулировки направления скважины, тем самым позволяя сэкономить время, которое потребовалось бы на изменение конфигурации КНБК 22. В некоторых вариантах осуществления изобретения стабилизатор выполнен с возможностью осевого перемещения. Положение и регулировка второго стабилизатора 62 обеспечивают дополнительную гибкость регулирования КНБК 22 для достижения требуемого изгиба КНБК 22, требуемых кривизны и направления скважины. Таким образом, функциональность второго стабилизатора 62 может быть идентичной функциональности первого стабилизатора 60. Хотя и проиллюстрирована в двух измерениях, надлежащая регулировка КНБК 22 также может обеспечивать поворот КНБК 22 по трем измерениям.
В данной заявке термин «траектория», как правило, относится к пути скважины. В данной заявке термин «положение», как правило, относится к положению вдоль пути скважины, которое может быть отсчитано, например, от некоторой вертикальной и/или горизонтальной линии приведения (обычно от положения устья скважины и базисной высотной отметки), или может быть получена путем измерения с применением технологий инерционных измерений. В данной заявке термин «азимут», как правило, относится к направлению углового курса (или угловому измерению) в сферической системе координат, относительно опорного направления, например направления на север, в положении измерения. Кроме того, в рамках настоящего изобретения, термином «угол наклона» обозначается угловое отклонение скважины от вертикали, обычно отсчитываемое от направления силы тяжести. В данной заявке словосочетание «измеренная глубина», как правило, относится к расстоянию, измеренному от опорного местоположения на поверхности до положения вдоль пути скважины. В качестве примера, не имеющего ограничительного характера, измеренная глубина может содержать глубину бурения, а также может содержать алгоритмы корректировки глубины, учитывающие упругое растяжение и сжатие бурильной колонны по ее длине.
На фиг. 3 показан общий вид блок-схемы алгоритма усовершенствованного способа 100 определения траектории скважины в соответствии с аспектами настоящего изобретения. В некоторых конкретных вариантах осуществления изобретения блок-схема, показанная на фиг. 3, может представлять способ или алгоритм динамического построения прогнозируемой траектории сложной скважины между двумя точками инклинометрии. Фиг. 3 может дополнительно (или альтернативно) представлять алгоритм, соответствующий по меньшей мере некоторым командам, которые могут храниться, например в запоминающем устройстве, и выполняться, например контроллером или процессором, для осуществления какого-либо или всех нижеописанных или вышеописанных действий, относящихся к раскрытым принципам изобретения. Указанное запоминающее устройство может содержать постоянный машиночитаемый носитель, содержащий компьютерную программу с набором команд, причем указанные команды выполнены с возможностью, при их исполнении одним или более контроллерами, вызывать выполнение указанными контроллерами некоторых или всех действий, представленных на фиг. 3.
В общем случае способ 100 начинается с создания теоретической модели сложной геометрии скважины (также называемой в данной заявке «прогнозируемой траекторией скважины») в первом или исходном пункте инклинометрии. Например, на этапе 101 способа 100, проиллюстрированного на фиг. 3, получают данные, характеризующие один или более параметров бурения между по меньшей мере двумя точками инклинометрии (также называемыми в данной заявке «пунктами инклинометрии»). В некоторых вариантах осуществления изобретения для измерения и/или записи множества параметров бурения между двумя пунктами инклинометрии используют наземные и забойные датчики, например датчики 48, 70, 72, показанные на фиг. 1 и 2. Каждый из указанных пунктов инклинометрии может быть выбран из числа или «набора» точек инклинометрии, которые расположены на одной линии, например, по существу на одинаковом расстоянии друг от друга вдоль траектории скважины. Пункт инклинометрии может быть создан путем выполнения измерений, используемых для оценки положения и/или ориентации скважины на одной позиции внутри скважины. К не имеющим ограничительного характера примерам указанных параметров бурения относятся следующие параметры, как по отдельности, так и в любой логически допустимой комбинации; измеренная глубина, скорость вращения колонны, нагрузка на долото, забойный крутящий момент, крутящий момент на поверхности, входящий поток, давление на поверхности, забойное давление, плотность текучей среды, результаты непрерывных измерений угла наклона, ориентация долота (передней грани инструмента), отклонение долота, диаметр ствола скважины, оценочный износ долота и так далее. Хотя некоторые из этих параметров известны, некоторые из них рассмотрены ниже для ясности и полного понимания сути настоящего изобретения, при этом следует иметь в виду, что нижеприведенные разъяснения никоим образом не ограничивают аспекты настоящего изобретения указанными параметрами или их соответствующими описаниями.
«Входящий поток», содержащий измеренный расход потока бурового раствора, поступающего в скважину, может изменять эффективность процесса бурения. Например, изменение расхода бурового раствора может приводить к изменению направленности работы забойных инструментов. Кроме того, путем изменения расхода потока могут быть изменены характеристики ствола скважины.
Соотнесение изменений расхода потока с изменениями пути прохождения скважины позволяет описать посредством указанной модели более точный путь прохождения скважины. Указанное соотнесение может содержать итерационный процесс определения корректных параметров модели, которая ограничена, по меньшей мере частично, измеренным значением входящего потока.
«Нагрузка на долото» (WOB, от англ. weight-on-bit), содержащая количественное значение направленной вниз силы, действующей на буровое долото и обычно измеряемой в тысячах фунтов, также может изменять эффективность процесса бурения. Изменение нагрузки на долото может привести к изменению направленности работы забойных инструментов. Аналогично входящему потоку, соотнесение изменений нагрузки на долото с изменениями пути прохождения скважины позволяет описать посредством указанной модели более точный путь прохождения скважины. Указанное соотнесение может содержать итерационный процесс определения корректных параметров модели, обусловленных, по меньшей мере частично, измеренным значением нагрузки на долото.
Указанные настройки передней грани инструмента (TF, от англ. tool facing) содержат настройку направления забойного инструмента, которая описывает направление, к которому обращен указанный изгиб, а также степень изгиба («переменный изгиб»). Таким образом, настройки передней грани инструмента непосредственно связаны с путем скважины, и поэтому путь скважины будет изменен в направлении настройки передней грани инструмента.
Измерения забойного (дискретного) угла наклона и азимута, которые представляют собой настройку забойного инструмента, описывают угол наклона и азимут скважины. Аналогично настройкам передней грани инструмента, измерение забойного угла наклона представляет собой измерение пути скважины и, следовательно, в значительной степени влияет на указанный путь скважины.
Забойный крутящий момент, представляющий собой крутящий момент на дальнем конце бурильной колонны вблизи бурового долота, также может изменять эффективность процесса бурения. Аналогично, крутящий момент на поверхности, соответствующий крутящему моменту на верхнем конце бурильной колонны вблизи поворотного стола 14, также может влиять на эффективность процесса бурения. Как и в случае изменений входящего потока и нагрузки на долото, изменение забойного крутящего момента и/или крутящего момента в верхней части скважины может привести к изменению направленности работы забойных инструментов. Соотнесение изменений крутящего момента с изменениями пути скважины позволяет формировать посредством указанной модели более точный путь скважины. Указанное соотнесение может содержать, например, итерационный процесс определения корректных параметров модели, ограниченной, по меньшей мере частично, измеренным значением забойного крутящего момента и/или измеренного крутящего момента в верхней части скважины.
Забойное давление внутри колонны также может изменять эффективность процесса бурения, так как изменение забойного давления может приводить к изменению направленности работы забойных инструментов. В некоторых вариантах осуществления изобретения забойное давление измеряют на буровом инструменте, например на гидравлическом забойном двигателе, буровом долоте или как на буровом двигателе, так и на буровом долоте. Еще одним параметром бурения, который может изменять эффективность процесса бурения, является плотность текучей среды «бурового раствора», изменение которой может приводить к изменению направленности работы забойных инструментов. Более точный путь скважины может быть описан путем соотнесения изменений забойного давления и/или плотности текучей среды с изменениями пути скважины. Указанное соотнесение может содержать, например, итерационный процесс определения корректных параметров модели, ограниченной, по меньшей мере частично, измеренным значением забойного давления. Диаметр ствола скважины и оценочный износ долота, непосредственно связанный с указанным диаметром ствола скважины, также могут влиять на направленность работы инструмента, и в частности, на измерение степени перекоса (или изгиба) КНБК.
Этап 101 способа 100, проиллюстрированного на фиг. 3, также содержит усреднение полученных данных за заданные шаги приращения между двумя точками инклинометрии. Указанные данные могут содержать результаты измерения параметров бурения по времени, выполненные за заданный шаг приращения глубины. В некоторых вариантах осуществления изобретения каждый шаг приращения настроен на назначенный пользователем шаг приращения глубины. В связи с этим, упомянутые данные затем можно усреднить за назначенный пользователем шаг приращения глубины, который может быть введен или выбран, например посредством устройства 44 ввода, причем вводимые данные могут содержать предварительно установленные доступные для выбора варианты, например