Медицинское устройство, аппарат и хирургический способ

Иллюстрации

Показать все

Группа изобретений относится к медицине. Педикулярное крепежное устройство для имплантации в позвонок человека или животного, по существу, с дорсальной стороны через одну из ножек позвонка, так что дистальный участок крепежного устройства входит в тело позвонка. Педикулярное крепежное устройство содержит корпус, имеющий проксимальный головной участок для крепления ортопедического устройства для стабилизации позвоночного столба и дистальный стержневой участок, выполненный с возможностью крепления в позвонке. В корпусе указанного устройства имеется продольный канал, проходящий дистально от проксимального конца, и по меньшей мере одно отверстие, отходящее от продольного канала в направлении наружу. Педикулярное крепежное устройство содержит разжижаемый элемент, вставляемый или вставленный в продольный канал, и, по меньшей мере, частично разжижаемый под воздействием энергии, воздействующий с проксимальной стороны, так что разжижаемый материал вытекает из продольного канала через по меньшей мере одно указанное отверстие в структуры твердой ткани и/или заменяющего твердую ткань материала. Указанный стержневой участок не имеет резьбы и имеет некруглое поперечное сечение. Стержневой участок закручен в спираль так, что диапазон угла закручивания педикулярного крепежного устройства по всей его длине лежит в пределах от 10° до 270°. По меньшей мере, участок стержневого участка является плоским, образуя две плоские стороны, и имеет по меньшей мере два отверстия, отходящих от продольного канала в направлении наружу. На каждой из указанных плоских сторон расположено по одному отверстию. Изобретения обеспечивают повышение прочности крепления в случае остеопороза, остеопении или ослабленных по иным причинам тканей. 2 н. и 5 з.п. ф-лы, 25 ил.

Реферат

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

Изобретение относится к медицинской технике. В частности оно относится к медицинским устройствам, аппаратам и способам, особенно к имплантатам, аппаратам для имплантации и способам имплантации.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Частой проблемой, возникающей при фиксации винтов в живой костной ткани позвоночника, является недостаточная прочность кости или недостаточная прочность крепления. Это особенно заметно в губчатых костных тканях, где любая нагрузка, действующая на винт, передается лишь нескольким трабекулам, приводя к неблагоприятным последствиям как в отношении допустимой нагрузки соединения между винтом и костью, так и в отношении его долговременной стабильности. Особенно сильно это проявляется в случае остеопороза, остеопении или ослабленных по иным причинам тканей.

К важной группе винтов, закрепляемых в ткани костей позвоночника, относятся педикулярные винты. Педикулярные винты состоят из головки винта, прикрепляемой к стержню или иному устройству стабилизации позвоночника, и стержня с резьбой, имплантируемого в позвоночник с дорсальной стороны через ножку позвонка и проникающего в тело позвонка. Педикулярные винты позвоночника являются, таким образом, частью устройства стабилизации позвоночного столба и поэтому подвергаются значительным механическим нагрузкам.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задача настоящего изобретения заключается в том, чтобы предложить медицинское устройство и способ, позволяющие устранить недостатки существующих педикулярных винтов и соответствующего способа стабилизации позвоночника.

В соответствии с первым аспектом изобретения предусмотрено педикулярное крепежное устройство. Педикулярное крепежное устройство предназначено для использования в качестве педикулярного винта, т.е. для имплантации в позвоночник с дорсальной стороны (но, по существу, под некоторым углом к сагиттальной плоскости, с небольшим наклоном внутрь по направлению к сагиттальной плоскости) через ножку позвонка, при этом дистальный участок устройства проникает в тело позвонка. Педикулярное крепежное устройство содержит корпус. Проксимальный участок корпуса педикулярного крепежного устройства имеет головной участок, обеспечивающий возможность крепления ортопедического стержня или иного устройства для стабилизации позвоночника. Корпус педикулярного крепежного устройства состоит, таким образом, из головного и стержневого участков. Головной и стержневой участок выполняют в виде одной детали, либо возможно их соединение с помощью многоосного или иного крепления. Стержневой участок предназначен для крепления в позвоночнике подобно педикулярному винту (называемому также «штифтом»). Головной участок может быть, например, изготовлен как головной участок любого известного из уровня техники педикулярного винта, или в соответствии с техническими характеристиками нового устройства стабилизации позвоночника. Основным требованием к головному участку является необходимость непосредственной фиксации на стержне или на ином устройстве стабилизации позвоночника или возможность крепления на промежуточном устройстве, на котором закрепляют стержень (или другое устройство стабилизации позвоночника и/или иное промежуточное устройство).

Согласно первому аспекту изобретения корпус педикулярного крепежного устройства имеет также продольный канал, проходящий от его проксимального конца и имеющий отверстие или ряд отверстий, отходящих от продольного канала в направлении наружу канала, например, в радиальном направлении.

Кроме того, педикулярное крепежное устройство содержит разжижаемый элемент, устанавливаемый или установленный в продольном отверстии, выполненный с возможностью по меньшей мере частичного разжижения под воздействием энергии, воздействующей с проксимальной стороны, при котором разжиженный материал вытекает через отверстия, имеющиеся в стенке корпуса из продольного канала в структуры твердой ткани и/или заменяющего твердую ткань материала. Таким образом, после затвердевания разжижаемого (предпочтительно термопластичного) материала, достигается надежное крепление в твердой ткани и/или в заменяющем твердую ткань материале.

Возможно выполнение разжижаемого элемента в виде единого цельного элемента. Такой единый цельный элемент обладает преимуществами при передаче механической энергии от проксимального к дистальному концу. Альтернативно, могут применять несколько разжижаемых элементов, например, в виде профилированных компонентов, дробленых элементов, хлопьев, и других подобных элементов.

Принцип разжижения под действием механической энергии материала, содержащегося в оболочке (в контексте данного описания такой элемент представляет собой оболочку, или трубчатый элемент или охватывающий элемент, содержащий продольный канал и отверстия, отходящие от этого канала в направлении наружу), имеющей боковые отверстия, и выдавливания разжиженного материала из оболочки через эти боковые отверстия, описан, например, в патентных документах США 7,335,205, США 6,921,264, WO 2009/055 952, WO 2009/010247, WO 2009/010234 и РСТ/СН 2009/000138, коотрые включены в настоящее описание посредством ссылки.

В соответствии с первой группой вариантов осуществления педикулярное крепежное устройство представляет собой педикулярный винт, на стержне которого имеется резьба.

В некоторых вариантах осуществления, относящихся к первой группе вариантов осуществления, резьба имеет постоянный внешний диаметр (больший диаметр), в то время как внутренний диаметр (меньший диаметр) на проксимальной стороне больше, чем на дистальной. Например, внутренний диаметр постепенно уменьшается по всей длине резьбовой части или изменяется дискретно или каким-либо иным образом. В других альтернативных вариантах осуществления внутренний диаметр постоянен.

В вариантах осуществления изобретения, относящихся к первой группе, крепление осуществляется за счет резьбового соединения и за счет разжижения и последующего отверждения материала, проникшего в структуру твердой ткани/заменяющего твердую ткань материала.

В вариантах осуществления, относящихся ко второй группе, стержень педикулярного крепежного устройства не имеет резьбы.

В этих вариантах осуществления форма поперечного сечения стержня отличается от круглой. Например, оно имеет уплощенную форму, например, форму лезвия. В частности в том месте, где стержень проникает в ножку позвонка, его размер в продольном направлении превышает поперечный размер, и тем самым стержень следует форме ножки. В данном примере стержень может составлять острый угол с поперечной плоскостью, так, чтобы больший его размер, перпендикулярный к проксимодистальной оси, был ориентирован в направлении, приблизительно соответствующем направлению большего размера ножки (в сечении, поперечном относительно проксимодистальной оси).

Некруглое сечение позволяет обеспечить при необходимости дополнительную устойчивость по отношению к изгибающим усилиям.

В специальных вариантах осуществления возможно применение закрученного стержня с некруглым сечением. Указанное закручивание приводит к увеличению эффективного сечения крепления: большие части ткани или другие части ткани участвуют в креплении.

При закручивании стержня предпочтительными являются углы закручивания до 270°, поскольку при угле около 270° для расположения устройства внутри ножки позвонка используют пространство, доступное внутри ножки позвонка, закручивание же на большие углы приводит к тому, что крепежное устройство будет сильно закручено внутри ножки, при этом необходимо согласование большего размера стержня с размером меньшего поперечного сечения ножки (в сечении, перпендикулярном оси имплантации). В общем, предпочтительный диапазон угла закручивания педикулярного крепежного устройства по всей его длине лежит в пределах от 10° до 270°.

Например, возможно закручивание стержня приблизительно на четверть спирали, в частности, на 80°-120°, так что плоскость лезвия на дистальном конце примерно перпендикулярна плоскости лезвия на проксимальном конце стержня. Например, стержень, принимающий головной элемент (или другое приспособление для крепления устройства стабилизации позвоночного столба), направляют по отношению к закрученному стержню так, что плоскость лезвия на проксимальном конце стрежня будет приблизительно параллельна продольному направлению, а на дистальном конце приблизительно параллельна поперечному направлению (направление обозначено по отношению к оси позвоночника). Применение такой специальной конфигурации позволяет получить сравнительно большое сечение стержня, надежно закрепляемого внутри сравнительно малого поперечного размера некоторых ножек дуг позвоночника. Кроме этого, педикулярное крепежное устройство может простираться в поперечном направлении в теле позвонка, обеспечивая повышенную устойчивость к прикладываемому крутящему моменту, вызванному продольными (действующими вверх и вниз) силами на дистальном конце крепления, возникающими при перемещениях тела пациента.

В вариантах осуществления, относящихся ко второй группе, где поперечное сечение стержня не является круглым, возможно применение стержня с небольшой конусностью, чтобы, помимо эффекта крепления, обеспечивался эффект прессовой посадки непосредственно за счет формы конструкции и под действием разжиженного и затем затвердевшего материала.

В вариантах осуществления второй группы, где поперечное сечение стержня является не круглым, а уплощенным, отверстия, выходящие наружу из продольного канала могут, в частности представлять собой отверстия на каждой из двух плоских сторон. Также возможны дополнительные отверстия, по крайней мере, на одной из меньших сторон и на дистальном конце. Наличие дополнительного осевого отверстия на дистальном конце обеспечивает преимущество при проведении хирургической операции, позволяя направлять крепежный элемент при его введении с помощью спицы Киршнера или подобного устройства. Такое осевое отверстие располагают по центру (по отношению к оси) или со смещением от центра. В зависимости от параметров «диаметр отверстия» и «глубина отверстия» (а также в зависимости от соответствующих параметров других отверстий по периферии), разжиженный материал выдавливают через отверстие в ткань или, он, попадая в отверстие, застывает в отверстии до того, как выйдет из отверстия, в этом случае образуется пробка из разжиженного, а затем застывшего материала.

В соответствии с вариантом осуществления, корпус крепежного устройства образует дистальную торцевую поверхность канала, в которую может упираться разжижаемый элемент при подаче энергии.

В соответствии с вариантом осуществления, устройство содержит дополнительное дистальное отверстие, проходящее в осевом направлении от продольного канала к дистальному концу, при этом диаметр дистального отверстия меньше диаметра продольного канала.

В соответствии с вариантом осуществления, дистальная торцевая поверхность имеет угловое структурирование, для направления различных порций разжижаемого материала в различные отверстия.

Изобретение относится также к способу имплантации педикулярного крепежного устройства. Способ согласно второму аспекту изобретения включает хотя бы одну операцию, описанную со ссылками на чертежи. В частности, способ крепления педикулярного крепежного устройства включает в себя следующие этапы: введение корпуса педикулярного крепежного устройства описанного типа в позвонок, сжатие разжижаемого элемента в продольном отверстии в дистальном направлении, при воздействии на разжижаемый элемент энергии, разжижения порций разжижаемого элемента и выдавливание их через, по меньшей мере, одно из отверстий в костную ткань, и осуществление отверждения разжиженных порций материала для обеспечения дополнительного крепления.

Если внешняя форма педикулярного крепежного устройства отлична от идеального цилиндра, но при этом оно обладает внешними средствами фиксации, например, резьбой или имеет спиральное закручивание, то педикулярное крепежное устройство фиксируют с использованием указанных средств. Если самофиксация не является достаточной, для крепления такого типа необходима дополнительная защита от поворота и возможна дополнительная защита, осуществляемая естественным образом с помощью стержня стабилизации позвоночника или подобного устройства. В зависимости от конкретной ситуации хирург имеет возможность использовать разжижаемый элемент для обеспечения дополнительной прочности крепления или обходится без разжижаемого материала, если считает, что прочность крепления достаточна.

В предпочтительных вариантах осуществления педикулярное крепежное устройство выполняют согласно первому аспекту изобретения.

Крепежные устройства, относящиеся к рассмотренному выше типу, с некруглым стержневым элементом, выступающим от проксимального конца, и, по меньшей мере, с одним отверстием, выходящим из продольного канала в направлении наружу (и, если необходимо, то с головным участком, расположенным с проксимальной стороны от стержневого элемента) могут использоваться не только в качестве педикулярных винтов, а имеют и другие области применения. Стержень таких устройств дополнительно закручивают по спирали, например, на 90°, как в описанном выше педикулярном крепежном устройстве.

В частности, указанное крепежное устройство применяют для лечения переломов, в особенности переломов, имеющихся вблизи суставов, где ткань кости иногда является сравнительно слабой, и где крепление с помощью обычных хирургических винтов затруднительно.

Для исследования преимуществ крепления титанового имплантата с применением термопластичного материала в сравнительно слабой костной ткани были проведены эксперименты и выполнены расчеты. Расчеты выполнялись методом конечных элементов для крепежных элементов, состоящих из титанового стержня с прямоугольным сечением и термопластичного материала, разжижаемого с помощью механической энергии и выдавливаемого в структуру окружающей ткани, с формированием крепления после отверждения этого материала. Эти расчеты, выполненные, например, для случая крепления педикулярного винта, показали существенное уменьшение механических напряжений. Было показано, что напряжение по Мизесу уменьшается до 74,5% при использовании креплений с круговым сечением и до 87% в случае креплений с Н-образным сечением (М. Rollinghoff and S. Saladin, диссертация на соискание степени магистра Швейцарской высшей технической школы Цюриха). Указанный результат был подтвержден экспериментально путем биомеханических исследований на пяточной кости человека. С этой целью было проведено сравнение винта Шанца с титановым крепежным элементом в виде стержня (диаметром 4 мм), покрытого поли-L/DL-лактидом (PLDLA) 70/30 толщиной 0,5 мм и закрепленного путем инициирования механических вибраций, вызвавших по меньшей мере частичное разжижение PLDLA и выдавливание его внутрь структуры губчатой кости с формированием крепления в ней. Усилие выдергивания измеряли (с использованием 2-мм индентора) в зависимости от твердости (сопротивления вдавливанию) губчатой кости. Усилие выдергивания для титанового крепления с покрытием значительно (в 2-4 раза) превосходило соответствующее усилие выдергивания для винта Шанца, причем в случае слабой костной ткани указанная разница была больше.

Помимо этого, была выполнена проверка отказов при выдергивании педикулярного винта типа, показанного на фигурах 3-5, из позвоночника трупа человека, подверженного остеопении, и для сравнения те же исследования проводились с педикулярным винтом той же формы, но без применения термопластичного материала, выдавливаемого из радиальных отверстий. Усилие выдергивания, при котором наблюдался отказ (для постоянного смещения), возрастало, как показали измерения, в среднем на 124%. Другим важным результатом было значительно меньшее ослабление крепления педикулярного винта при использовании термопластичного материала, которое наблюдалось в виде отклонений в упругой работе.

В вариантах осуществления, относящихся к первой или второй группам, в материал разжижаемого элемента возможно введение добавок, например, для стимуляции заживления или регенерации или для улучшения качества изображения на рентгеновских снимках. Например, в качестве добавок вводят фактор роста, антибиотики, противовоспалительные средства или буферы. Более конкретно, в качестве добавки используют лекарство, стимулирующее заживление, в частности, рост, дифференциацию и/или регенерацию тканей, например, белковое лекарство, относящееся к факторам роста и/или дифференциации, например, из семейства костных морфогенетических протеинов (Bone Morphogenic Protein - BMP) (в особенности BMP 2, 6, 7, а в определенных случаях также BMP 12, 13), инсулиновый фактор роста (Insulin Growth Factor - IGF) (например, IGF 1), тромбоцитарный фактор роста (Platelet Derived Growth Factor - PDGF), фактор роста и дифференциации (Growth and Differentiation Factor - GDF) (например, GDF 5) и подобные факторы, а также их комбинации и сочетания с другими лекарствами, включая небелковые лекарства, содержащие малые молекулы (например, бифосфонаты), возможно в сочетании с белковым лекарством и подобными веществами.

В вариантах осуществления, относящихся к первой или второй группам, в качестве разжижаемого элемента возможно применение гидравлического цемента (например, полимерного или другого гидравлического цемента), обладающего тиксотропными свойствами. В таких вариантах осуществления возможно использование разжижаемого материала с добавкой, например, с фактором роста. Конкретным примером крепежного устройства является устройство для лечения переломов шейки бедра, позволяющее заменить гвоздь, выполненный в соответствии с известным уровнем техники и проникающий в тело бедренной кости через сломанную шейку, устанавливаемый и ориентированный, как раскрыто в патенте США 3,025,853.

В общем, такое крепежное устройство используют в качестве стабилизирующего винта в тех ситуациях, когда крепление в кости человека или животного затруднено и/или если геометрические ограничения и механические нагрузки, действующие на соединение, делают предпочтительным использование некруглого сечения и даже, например, закрученного стержня.

В вариантах осуществления корпус крепежного устройства имеет ряд отверстий, выходящих из продольного канала наружу, и крепежное устройство содержит направляющую конструкцию с угловым структурированием относительно оси продольного канала для направления различных частей разжижаемого материала в различные отверстия. Выражение «угловое структурирование» или «азимутальное структурирование» означает, что структура конструкции не одинакова по всей окружности, а изменяется как функция от азимутального угла. Здесь направляющая конструкция - это конструкция внутри поперечного сечения продольного канала, т.е., если, например, продольный канал имеет круглое поперечное сечение, то радиальное положение направляющей конструкции таково, что она по меньшей мере частично находится в пределах радиуса отверстия.

При этом направляющая конструкция образована упорной поверхностью, к которой прижимается дистальный конец разжижаемого элемента при разжижении. Дистальная упорная поверхность разжижаемого элемента, позволяет, например, блокировать продольный канал с дистальной стороны, или, по крайней мере, существенно уменьшить (например, по меньшей мере на 50%) поперечное сечение продольного канала дистальной части по сравнению с проксимальной. Как вариант, оставшееся сечение дистальной части продольного канала, простирающегося в дистальном направлении от направляющей конструкции, служит, например, в качестве центральной направляющей или в качестве дистального отверстия, через которое происходит выдавливание частей разжижаемого материала в дополнение к тому, что выходит из отверстий в стенках охватывающего элемента. Упорная поверхность может быть образована корпусом крепежного устройства. Альтернативно, направляющая конструкция является направляющей конструкцией вставляемого элемента, устанавливаемого в ходе хирургической операции.

В соответствии со следующим, вторым аспектом изобретения, предложен способ наращивания твердой ткани и/или заменяющего твердую ткань материала для установки имплантата и способ имплантации, включающий такой способ наращивания. Имплантат имеет эноссальную часть, которая после имплантации остается закрепленной в твердой ткани и/или в заменяющем твердую ткань материале. Профилированный элемент, используемый согласно четвертому аспекту изобретения, имеет участок, профиль внешней поверхности которого по существу соответствует профилю внешней поверхности по меньшей мере участка эноссальной части имплантата.

В частности, имплантат может иметь внешнюю резьбу, при этом профилированный элемент также имеет внешнюю резьбу с теми же параметрами (например с тем же шагом резьбы или другими параметрами) и с теми же размерами, за исключением длины, которая может быть меньше, но желательно лишь немного меньше соответствующей длины имплантата. Также у имплантата и профилированного элемента могут быть практически одинаковые внутренние диаметры резьбы, а внешний диаметр резьбы у профилированного элемента меньше, чем у имплантата.

Профилированный элемент, кроме того, имеет продольный канал, проходящий в дистальном направлении от проксимального конца элемента. В стенке, охватывающей продольный канал, выполнено по меньшей мере одно отверстие. Разжижаемый элемент вводят в продольный канал или он уже установлен в нем. Профилированный элемент включает в себя упорную поверхность для разжижаемого элемента, к которой прижимается его дистальный конец. Профилированный элемент является, таким образом, охватывающим элементом описанного выше типа. Дополнительно, но необязательно, его выполняют в соответствии с вариантами осуществления согласно первому аспекту изобретения. В зависимости от обстоятельств в дополнение к профилированному элементу возможна установка вставного элемента.

Способ согласно второму аспекту изобретения включает в себя следующие этапы:

вводят профилированный элемент в отверстие или зазор в твердой ткани и/или в заменяющем твердую ткань материале;

прижимают разжижаемый элемент к дистальной упорной поверхности под воздействием на него энергии, вызывая разжижение материала разжижаемого элемента и его выдавливание через по меньшей мере одно отверстие в костную ткань или в другую твердую ткань или в заменяющий твердую ткань материал, где требуется крепление имплантата, для формирования зоны наращивания заданной формы;

удаляют профилированный элемент; и

вводят имплантат так, чтобы обеспечить взаимодействие контура предварительно сформированной зоны наращивания с внешним профилем имплантата для предотвращения нежелательных перемещений имплантата.

До выполнения операции удаления профилированного элемента выполняют дополнительные операции. Например, профилированный элемент заменяют пробным имплантатом и выполняют проверку положения и/или иных условий с помощью рентгена (или иным способом). За счет сочетания возможностей профилированного элемента для наращивания и пробного имплантата процесс наращивания согласно аспектам данного изобретения включает в себя лишь несколько дополнительных операций по сравнению с известными способами, в которых не используется наращивание.

Вообще говоря, та особенность профилированного элемента, в соответствии с которой профиль участка внешней поверхности элемента фактически соответствует внешнему профилю по крайней мере участка эноссальной части имплантата, не подразумевает, что все размеры указанных участков равны. Напротив, возможно отличие размеров профилированного элемента, в частности, они могут быть меньше. Эта особенность означает, однако, что форма имплантата приблизительно соответствует форме области, сформированной при помощи профилированного элемента, так что для каждой особенности профиля имплантата (например, выступ из выпуклого основного корпуса, имеющего в основном цилиндрическую форму) имеется соответствующая особенность профилированного элемента, и особенности профилированного элемента и имплантата соответствуют друг другу. В случае, если имплантат имеет внешнюю резьбу, то и профилированный корпус также имеет внешнюю резьбу с тем же шагом (это не исключает наличия на имплантате и, соответственно, на профилированном корпусе нескольких резьбовых соединений). В случае, если на имплантате имеется, например, ряд осевых язычков под определенными азимутальными углами, профилированный элемент должен иметь соответствующее число осевых язычков под теми же азимутальными углами.

Если профилированный элемент меньше имплантата, то предпочтительно, чтобы различие в размерах было небольшим. Например, если имплантат снабжен резьбой, то внутренний диаметр резьбы профилированного элемента должен быть, например, на 5% меньше, а предпочтительно, равен внутреннему диаметру резьбы на имплантате. Желательно, чтобы глубина резьбы профилированного элемента составляла, по меньшей мере, 50% от глубины резьбы имплантата.

Часто имплантаты, выполненные в соответствии с известным уровнем техники, например, костные винты обладают недостатком, связанным с тем, что костная губчатая ткань не обеспечивает достаточной прочности крепления. Это обусловлено хрупкостью костной губчатой ткани, и только несколько трабекул могут противодействовать отрывающим усилиям. Если ткань наращивают путем, например, заполнения структуры трабекул ткани термопластичным материалом, то эту проблему можно частично решить. Однако, если термопластичный материал является достаточно пластичным и вязким, то для завинчивания самонарезающего винта или для нарезания резьбы в нарощенной ткани требуются большие усилия. Часто возникает опасность, связанная с тем, что объем нарощенного материала и несколько трабекул, входящих в нарощенный материал, отваливаются от губчатой ткани кости и проворачиваются в ткани как одно целое.

Подход согласно второму аспекту изобретения, напротив, обеспечивает возможность установки имплантатов даже с явно выраженными особенностями, таких, как винты с достаточно большой глубиной резьбы, в нарощенную ткань/материал, который является очень прочным и устойчивым к нагрузкам, при этом такая установка имплантатов не потребует приложения слишком больших усилий.

Варианты осуществления способа согласно второму аспекту изобретения можно рассматривать как отливку наращиваемой области в твердой ткани и/или в заменяющем твердую ткань материале в желаемой форме для имплантата, вводимого на следующем этапе.

Последующие операции формирования включают удаление и/или изменение формы материала, и поэтому, не являются необходимыми (хотя второй аспект изобретения не исключает дополнительной операции формирования). Подход согласно второму аспекту изобретения обеспечивает легкий, но эффективный процесс наращивания.

В вариантах осуществления профилированный элемент выбран так, чтобы в стенке, окружающей продольный канал, имелось от трех до пяти отверстий, причем отверстия размещают в приблизительно одинаковых осевых положениях. Например, профилированный элемент может иметь четыре отверстия в стенке, окружающей продольный канал, причем эти отверстия находятся в одинаковых положениях относительно оси.

В вариантах осуществления профилированный элемент имеет направляющую конструкцию с угловым структурированием в дистальном направлении продольного канала для направления различных частей разжижаемого/разжиженного материала в одно из отверстий.

В вариантах осуществления профилированный элемент имеет профиль, по существу соответствующий по меньшей мере участку эноссальной части педикулярного винта. Способ включает в себя введение профилированного элемента фактически с дорсального направления в позвонок и конкретно в ножку позвонка. Имплантат, имплантируемый после наращивания, является в этом случае педикулярным винтом.

Набор элементов для выполнения имплантации согласно второму аспекту изобретения включает в себя профилированный элемент и имплантат (например, педикулярный винт). Он может также включать в себя разжижаемый элемент.

В соответствии с третьим аспектом изобретения предусмотрено крепежное устройство, например, хирургический винт, имеющий продольный канал, проходящий от проксимального конца устройства, а также отверстие или ряд отверстий, отходящих от продольного канала в направлении наружу, например, расположенных по радиусу. Крепежное устройство, кроме того, включает в себя материал, переходящий из текучего в не текучее состояние, в качестве которого используют, например, термопластик или гидравлический цемент, обладающий тиксотропными свойствами или не имеющий таких свойств. Если материал является термопластиком, то перевод его из текучего в не текучее состояние осуществляется просто путем охлаждения ранее (частично или полностью) расплавленного материала. Если в качестве материала используют цемент, то переход из текучего в не текучее состояние заключается в затвердевании цемента. Если материал является тиксотропным, то его перевод из текучего в не текучее состояние может означать остановку источника напряжения сдвига и увеличение вязкости.

В соответствии с этим аспектом, материал, кроме того, содержит добавку, являющуюся лекарственным препаратом, стимулирующим заживление, в частности, рост, дифференциацию и/или регенерацию, например, содержащим белок, как фактор роста или дифференциации, относящийся к семейству костных морфогенетических протеинов (Bone Morphogenic Protein - BMP) (в особенности BMP 2, 6, 7, 12, 13)/семейству трансформирующих бета факторов роста, инсулиновый фактор роста (Insulin Growth Factor - IGF) (например, IGF 1), тромбоцитарный фактор роста (Platelet Derived Growth Factor - PDGF), фактор роста и дифференциации (Growth and Differentiation Factor - GDF) (например, GDF 5) и другие подобные факторы, а также сочетания и комбинации указанных факторов и других лекарств, включая небелковые лекарства, содержащие малые молекулы (например, бифосфонаты), возможно в сочетании с белковым лекарством.

Корпус крепежного устройства выполняют из материала, не разжижающегося в условиях имплантации. Его изготавливают из металла, керамики, (возможно усиленного) пластика, не разжижаемого в условиях имплантации, или из подходящего биосовместимого материала. Кроме того, желательно, чтобы корпус крепежного устройства имел средства для крепления, в основном, в качестве такого средства выступает резьба. В частности, в качестве крепежного устройства используют хирургический винт, в особенности, педикулярный винт.

Возможно сочетание третьего и первого аспектов изобретения (особенно в первой группе вариантов осуществления изобретения).

Таким образом, задачей третьего аспекта изобретения является обеспечение хирургического винта (или подобного крепежного устройства), содержащего материал, включающий в себя лекарство, стимулирующее заживление, указанный материал выдавливают из отверстия (отверстий), отходящих от продольного канала в направлении наружу, в окружающую ткань, главным образом, в губчатую костную ткань. Таким образом, согласно данному способу/устройству в соответствии с третьим аспектом изобретения получают простую возможность сочетать функцию хирургического винта с подачей в костную ткань стимулирующего заживление лекарства. Материал, выдавливаемый из отверстия (отверстий), позволяет получить дополнительный результат, заключающийся в обеспечении крепления и существенно противодействовать ослаблению крепления.

К особому классу (матриксных) материалов, которые могут содержать добавки, относятся гидравлические цементы, обладающие способностью к рассасыванию и/или к остеопроводимости. Особый класс цементов составляют цементы на основе фосфата кальция, например, на базе порошков Са4(PO4)2O и CaHPO4, смешанных с водой. Такие вещества затвердевают в физиологических условиях. Цементы на основе фосфатов кальция затвердевают путем ионного обмена в теле человека, они характеризуются определенной стабильностью в не затвердевшей фазе при комнатной температуре, но быстро затвердевают при температуре тела.

Конкретными примерами подходящих цементов на основе фосфатов кальция являются ChronOS и Norian, выпускаемые компанией Synthes.

Другим примером не рассасываемых цементов являются цементы типа полиметилметакрилата (РММА).

В дополнение к лекарству, стимулирующему заживление, материал может содержать полимер и/или гидрогель.

Если указанный (матриксный) материал представляет собой гидравлический цемент, то механическая энергия, например, энергия механических вибраций, поступает в материал при его выдавливании через отверстие (отверстия). В частности, эффект тиксотропии помогает снизить вязкость, поэтому выдавливание из отверстий будет возможно при приложении меньшей силы с проксимальной стороны.

К другому классу (матриксных) материалов, содержащих добавки, относятся рассасываемые термопластичные полимеры, такие, как рассасываемые полимеры, рассмотренные ниже. Дальнейшими примерами подходящих смесей являются любые комбинации из:

одного или нескольких гидравлических цементов;

одного или нескольких, например, рассасываемых полимеров;

одного или нескольких гидрогелей.

В соответствии с известным уровнем техники лечение поврежденной части костной ткани осуществляется путем заполнения отверстия или подобного дефекта костным цементом (дополненного факторами роста). Напротив, для достижения данной цели описанный здесь способ согласно шестому аспекту изобретения позволяет осуществить существенно более направленное лечение, когда лекарство, выдавливаемое через отверстие (отверстия) подают непосредственно внутрь костной ткани, при этом обеспечивается более плотный контакт с костью, причем на другие ткани лекарство воздействует в меньшей степени или вовсе не действует.

Дальнейшее использование факторов роста костей (или других добавок, обладающих клиническим эффектом, в особенности, описанных выше видов) подразумевает следующее:

на первом этапе гидравлический цемент, содержащий фактор роста кости (или другую добавку), выдавливают из продольного канала в корпусе устройства, описанного типа, имеющего продольный канал с одним или несколькими отходящими от него в направлении наружу отверстиями;

на следующем, втором этапе термопластичный элемент, по меньшей мере, частично разжижают под действием механической энергии и разжиженные порции выдавливают через отверстия, через которые выдавливался гидравлический цемент.

Эта последовательность этапов способа может применяться в любом аспекте изобретения, в котором используется термопластичный материал для наращивания или крепления, и она применима в любом аспекте изобретения, в котором в качестве (матриксного) материала, содержащего лекарство, стимулирующее заживление используется гидравлический цемент. В качестве альтернативы эта последовательность этапов применима независимо от других аспектов, описанных здесь. В результате этой последовательности этапов:

ускоряется процесс лечения, увеличивается плотности кости;

достигается немедленная стабилизация, предотвращение раннего ослабления крепления, которое, в противном случае, являлось бы механическим препятствием для объединения имплантата с костью, то есть остеоинтеграции.

Поскольку происходит охлаждение полимера и поскольку теплоемкость и теплопроводность полимера значительно ниже, чем у водянистого окружения, при выполнении данной процедуры не происходит тепловых повреждений активного компонента цемента.

Наряду с вышеописанными аспектами, изобретение отличается следующими дополнительными аспектами.

Использование элемента с продольным проходящим от проксимального конца каналом и имеющим отверстие или ряд отверстий, отходящих от этого канала в н