Способы обеспечения отчетов о запасе по мощности, скомпонованных в порядке индексов компонентных несущих, и связанные беспроводные терминалы и базовые станции

Иллюстрации

Показать все

Изобретение относится к области связи. Техническим результатом является повышение эффективности путем улучшенного представления отчета о запасе по мощности. Отчеты могут быть переданы от беспроводного терминала на базовую станцию, при этом первичная компонентная несущая и по меньшей мере одна вторичная компонентная несущая обеспечены для передач восходящей линии связи от беспроводного терминала на базовую станцию и соответствующий индекс компонентной несущей назначен на каждую из по меньшей мере одной вторичных компонентных несущих, обеспеченных для беспроводного терминала. Соответствующие отчеты могут быть сгенерированы для первичной компонентной несущей и для каждой из по меньшей мере одной вторичных компонентных несущих и может быть сгенерирован элемент управления MAC, включающий в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих. Более подробно, отчеты для каждой из по меньшей мере одной вторичных компонентных несущих могут быть скомпонованы в порядке индексов компонентной несущей для соответствующих вторичных компонентных несущих. Элемент управления MAC может быть передан от беспроводного терминала на базовую станцию по одной из компонентных несущих. 4 н. и 16 з.п. ф-лы, 14 ил.

Реферат

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к связи и, более конкретно, к сетям радиосвязи и терминалам.

[0002] В обычной системе сотовой радиосвязи беспроводные терминалы (также известные как мобильные станции и/или блоки пользовательских оборудований (оборудований UE)) связываются с помощью сети радио доступа (RAN) и одной или более базовых сетей. Блоки пользовательских оборудований могут включать в себя мобильные телефоны ("сотовые" телефоны) и/или другие устройства обработки с возможностью беспроводной связи, такие как, например, портативные, карманные, переносные ноутбуки, которые передают голос и/или данные посредством RAN.

[0003] RAN охватывает географическую область, которая разделена на области ячеек, где каждая область ячейки обслуживается базовой станцией, например, базовой радиостанцией (RBS), которая в некоторых сетях также называется "NodeB" или усовершенствованным NodeB (eNodeB), который может быть указан аббревиатурой "eNB". Область ячейки является географической областью, где радио охват обеспечен оборудованием базовой радиостанции на стороне базовой станции. Базовые станции связываются по воздушному интерфейсу, работающему на радиочастотах, с оборудованиями UE в пределах диапазона базовых станций.

[0004] В некоторых версиях сети радио доступа несколько базовых станций обычно соединены (например, посредством наземных линий связи или микроволн) с контроллером радиосети (RNC). Контроллер радиосети, также иногда называемый контроллером базовой станции (BSC), контролирует и координирует различные действия множественных базовых станций, соединенных с ним. Контроллеры радиосети обычно соединены с одной или более базовыми сетями.

[0005] Универсальная система мобильной связи (UMTS) является системой мобильной связи третьего поколения, которая развилась из глобальной системы мобильной связи (GSM) и предназначена, чтобы обеспечить усовершенствованные услуги мобильной связи на основании технологии доступа широкополосного множественного доступа с кодовым разделением каналов (WCDMA). UTRAN, краткое название для универсальной сети наземного радио доступа UMTS, является собирательным термином для Узлов B и контроллеров радиосети, которые составляют сеть радио доступа UMTS. Таким образом, UTRAN по существу является сетью радио доступа, использующей широкополосный множественный доступ с кодовым разделением каналов для блоков пользовательских оборудований.

[0006] Проект партнерства третьего поколения (3GPP) обязался дальше развивать технологии сети радио доступа на основе UTRAN и GSM. В этом отношении, спецификации для усовершенствованной универсальной сети наземного радио доступа (E-UTRAN) продолжают развиваться в рамках 3GPP. Усовершенствованная универсальная сеть наземного радио доступа (E-UTRAN) содержит проект долгосрочного развития (LTE) и развитие архитектуры системы (SAE).

[0007] Фиг. 1 является упрощенной блок-схемой RAN 100 проекта долгосрочного развития (LTE). RAN 100 LTE является вариантом RAN 3GPP, где узлы радио базовой станции (узлы eNodeB) непосредственно соединены с базовой сетью 130, а не с узлами контроллера радиосети (RNC). В целом, в LTE функции узла контроллера радиосети (RNC) выполняются узлами базовой радио станции. Каждый из узлов 122-1, 122-2.... 122-М базовой радио станции (узлов eNodeB) осуществляют связь с оборудованиями UE (например, UE 110-1, 110-2. 110-3.... 110-L), которые находятся в пределах своих соответствующих ячеек обслуживания связи. Узлы базовой радио станции (узлы eNodeB) могут связываться друг с другом через интерфейс X2 и с базовой сетью 130 через интерфейсы S1, как хорошо известно специалистам в данной области техники.

[0008] Стандарт LTE основан на схемах радио доступа, основанных на множественных несущих, таких как ортогональное мультиплексирование с частотным разделением каналов (OFDM) по нисходящей линии связи и OFDM, расширенное по спектру дискретным преобразованием Фурье (DFT), по восходящей линии связи. Способы OFDM распределяют данные по большому количеству несущих, которые разнесены друг от друга на точные частоты. Это разнесение обеспечивает "ортогональность" в этом способе, который избегает того, что демодуляторы видят частоты, кроме своих собственных. Преимуществом OFDM является высокая спектральная эффективность, устойчивость к РЧ помехам и более низкое искажение за счет многолучевого распространения.

[0009] Фиг. 2 иллюстрирует сетку ресурсов для элементов частотных и временных ресурсов (элементов RE), где каждый элемент ресурсов соответствует одной поднесущей OFDM во время одного интервала символа OFDM. Во временной области передачи нисходящей линии связи LTE могут быть организованы в радио кадры по 10 мс, и каждый радио кадр может состоять из десяти одинаково разделенных по размерам подкадров длины Tsubframe=1 мс, как иллюстрировано на фиг. 3.

[0010] Один или более планировщиков ресурсов в RAN 100 LTE распределяют ресурсы для восходящей линии связи и нисходящей линии связи на блоки ресурсов, где блок ресурсов соответствует одному слоту (0,5 мс) во временной области и 12 поднесущим в частотной области. Блоки ресурсов пронумерованы в частотной области, начиная с 0 от одного конца полосы пропускания системы.

[0011] Передачи нисходящей линии связи планируются динамически. Более подробно, в каждом подкадре базовая станция передает информацию управления, указывающую, на какие терминалы и на каких блоках ресурсов передаются данные во время текущего подкадра нисходящей линии связи. Эта сигнализация управления обычно передается в первых 1, 2, 3 или 4 символах OFDM в каждом подкадре. Фиг. 4 иллюстрирует сетку ресурсов для подкадра нисходящей линии связи, включая 3 символа OFDM по каждой поднесущей в качестве области управления.

[0012] Стандарт LTE использует гибридный ARQ (гибридный автоматический запрос на повторную передачу данных), в котором после приема данных нисходящей линии связи в подкадре беспроводной терминал пытается декодировать данные нисходящей линии связи, и беспроводной терминал представляет отчет базовой станции, было ли декодирование успешным (АСК или подтверждение) или нет (NAK или отрицательное подтверждение). В случае неудачной попытки декодирования (то есть, базовая станция принимает отчет (сообщение) NAK от беспроводного терминала), базовая станция может повторно передать ошибочные данные.

[0013] Сигнализация управления восходящей линии связи, переданная от беспроводного терминала на базовую станцию, может включать в себя: (1) подтверждения гибридного ARQ для принятых данных нисходящей линии связи; (2) отчеты терминала, связанные с условиями канала нисходящей линии связи, используемые как помощь для планирования нисходящей линии связи (также известные как индикатор качества канала (CQI)); и (3) запросы планирования, указывающие, что мобильному терминалу необходимы ресурсы восходящей линии связи для передач данных восходящей линии связи. Если мобильному терминалу не был назначен ресурс восходящей линии связи для передачи данных, информация управления L1/L2 (Уровень 1 и/или Уровень 2) (например, включающая в себя отчеты о статусе канала, подтверждения гибридного ARQ и/или запросы планирования) передается в ресурсах восходящей линии связи (блоках ресурсов), специально назначенных для информации управления восходящей линии связи L1/L2 по физическому каналу управления восходящей линии связи (PUCCH). Различные форматы PUCCH используются для различной информации. Например, форматы 1a/1b PUCCH используются, чтобы представить отчет обратной связи гибридного ARQ, форматы 2/2a/2b PUCCH используются, чтобы представить отчет об условиях канала, и формат 1 PUCCH используется для запросов планирования.

[0014] Для беспроводного терминала, чтобы передать данные по восходящей линии связи на базовую станцию, базовая станция должна назначить ресурс восходящей линии связи на беспроводной терминал по физическому совместно используемому каналу восходящей линии связи (PUSCH), и назначение ресурса PUSCH иллюстрировано на фиг. 5. Как показано, опорный сигнал может быть передан в среднем SC-символе в каждом слоте. Если беспроводному терминалу был назначен ресурс восходящей линии связи для передачи данных, и в то же самое время устройство имеет информацию управления для передачи, беспроводной терминал передаст информацию управления вместе с данными по PUSCH.

[0015] Стандарт LTE Rel-8 был недавно стандартизирован, поддерживая полосы пропускания вплоть до 20 МГц. 3GPP начал работу над LTE Rel-10 для поддержания полос пропускания более чем 20 МГц и поддержания других требований, определенных в соответствии с требованиями расширенной IMT. Другое требование для LTE Rel-10 должно обеспечить обратную совместимость с LTE Rel-8, включая спектральную совместимость. Это требование может вынудить несущую LTE Rel-10 появиться в качестве ряда несущих LTE для терминала LTE Rel-8. Каждая такая несущая может называться компонентной несущей (CC) или ячейкой. Для развертываний раннего LTE Rel-10 можно ожидать, что будет меньше терминалов с возможностью LTE Rel-10 по сравнению со многими унаследованными терминалами LTE. Поэтому, может быть важно обеспечить эффективное использование широкой несущей посредством унаследованных терминалов, например, позволяя унаследованным терминалам планироваться во всех частях широкополосной несущей LTE Rel-10. Один способ для получения этого может быть посредством агрегации несущих. Агрегация несущих относится к терминалу LTE Rel-10, сконфигурированному для приема множественных несущих CC, где каждая CC имеет, или по меньшей мере имеет возможность иметь, ту же структуру, что несущая Rel-8. Та же структура, что Rel-8, подразумевает, что все сигналы Rel-8, например, (первичный и вторичный) сигналы синхронизации, опорные сигналы, системная информация и т.д., передаются по каждой несущей. Фиг. 6 графически иллюстрирует примерную 100 МГц - агрегацию несущих пяти несущих CC 20 МГц.

[0016] Ссылаясь на фиг. 6, количество агрегированных несущих CC, а также полоса частот индивидуальной CC могут отличаться для восходящей линии связи и нисходящей линии связи. Симметрическая конфигурация относится к случаю, когда количество несущих CC по нисходящей линии связи и восходящей линии связи является одним и тем же, тогда как асимметричная конфигурация относится к случаю, когда количество несущих CC по нисходящей линии связи и восходящей линии связи отличается. Важно отметить, что количество несущих CC, предлагаемых сетью, может отличаться от количества несущих CC, видимых терминалом. Например, терминал может поддерживать больше несущих CC нисходящей линии связи, чем несущих CC восходящей линии связи, даже при том, что сеть предлагает одно и то же количество несущих CC восходящей линии связи и нисходящей линии связи.

[0017] Управление мощностью восходящей линии связи используется как по PUSCH, так и по PUCCH. Цель заключается в обеспечении того, чтобы мобильный терминал передавал с достаточно высокой мощностью, но не слишком высокой мощностью, так как последнее может усилить помехи для других пользователей в сети. В обоих случаях может быть использован параметризованный механизм открытого контура, объединенный с механизмом закрытого контура. Грубо говоря, часть открытого контура может быть использована, чтобы установить точку операции, вокруг которой может работать компонент замкнутого контура. Могут быть использованы различные параметры (цели и ʺфакторы частичной компенсацииʺ) для пользователя и плоскости управления. Для дополнительного описания управления мощностью PUSCH и PUCCH, см. секции 5.1.1.1 3GPP 36.213, Physical Layer Procedures.

[0018] Чтобы управлять мощностью UL (восходящей линии связи) UE (пользовательского оборудования), базовая станция eNB (усовершенствованного узла B) может использовать команды TPC (управления мощностью передачи), которые будут давать команду UE (пользовательскому оборудованию) изменить свою мощность передачи или аккумулированным или абсолютным способом. В LTE Rel-10 управление мощностью UL регулируется для каждой компонентной несущей. Как в Rel-8/9, управление мощностью PUSCH и PUCCH является отдельным. В LTE Rel-10 управление мощностью PUCCH будет применяться только к первичной компонентной несущей (PCC), так как она является единственной CC UL, сконфигурированной для того, чтобы переносить PUCCH.

[0019] Так как UE не обеспечивает ответы ACK/NACK на команды TPC от базовой станции eNB, базовая станция eNB не может убедиться, что команды TPC приняты посредством UE. Так как UE может ложно декодировать PDCCH как включающий в себя команду TPC, подсчитанные используемые команды TPC не могут быть использованы, чтобы точно оценить текущую выходную мощность от UE. В дополнение, UE может также компенсировать свой уровень мощности автономно (на основании оценок потери на тракте), и эти автономные регуляторы могут быть неизвестны базовой станции eNB. По этим причинам базовой станции eNB необходимо регулярно принимать отчеты PHR (отчет о запасе по мощности), чтобы принять компетентные решения планирования и управлять мощностью UL UE.

[0020] Соответственно, UE может быть обязано вычислять отчеты о запасе по мощности для каждой компонентной несущей, используемой для передач восходящей линии связи от UE на eNB. Несмотря на известные способы представления отчета о запасе по мощности, продолжает существовать потребность в улучшенном представлении отчета о запасе по мощности, обеспечивая повышенную эффективность.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0021] Согласно некоторым вариантам осуществления отчеты о запасе по мощности могут быть переданы от беспроводного терминала на базовую станцию, при этом первичная компонентная несущая и по меньшей мере одна вторичная компонентная несущая обеспечены для передач восходящей линии связи от беспроводного терминала на базовую станцию, и при этом соответствующий индекс компонентной несущей назначен на каждую из по меньшей мере одной вторичных компонентных несущих, обеспеченных для беспроводного терминала. Соответствующие отчеты о запасе по мощности могут быть сгенерированы для первичной компонентной несущей и для каждой из по меньшей мере одной вторичных компонентных несущих, и может быть сгенерирован элемент управления MAC, включающий в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих. Кроме того, отчеты о запасе по мощности для каждой из по меньшей мере одной вторичных компонентных несущих могут быть скомпонованы в порядке индексов компонентной несущей для соответствующих вторичных компонентных несущих. Элемент управления MAC, включающий в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих, может быть передан от беспроводного терминала на базовую станцию по одной из компонентных несущих.

[0022] Посредством передачи отчетов о запасе по мощности для различных компонентных несущих в единственном элементе управления MAC по одной из компонентных несущих могут быть сокращены ресурсы связи, требуемые для передачи отчетов о запасе по мощности. Например, единственный элемент управления MAC может требовать только единственное поле заголовка/адреса при передаче всех отчетов о запасе по мощности, в то время как могут требоваться отдельные элементы управления MAC с соответствующими отдельными полями заголовка/адреса, если отчеты о запасе по мощности для различных компонентных несущих переданы отдельно. Кроме того, посредством передачи всех отчетов о запасе по мощности в одном элементе управления MAC предоставление отчета о запасе по мощности может быть обеспечено по любому доступному ресурсу по любой доступной компонентной несущей без ожидания доступного ресурса по конкретной компонентной несущей, чтобы передать отчет о запасе по мощности для этой компонентной несущей. В дополнение, отдельные идентификации отчетов о запасе по мощности могут быть опущены из элемента управления MAC PHR посредством использования индексов компонентной несущей, известных как беспроводному терминалу, так и базовой станции, чтобы упорядочить отчеты о запасе по мощности в элементе управления MAC, который передан от беспроводного терминала на базовую станцию. Соответственно, могут быть дополнительно сокращены ресурсы связи, требуемые для представления отчета о запасе по мощности.

[0023] Согласно некоторым другим вариантам осуществления, отчеты о запасе по мощности могут быть приняты в базовой станции от беспроводного терминала. Первичная компонентная несущая и по меньшей мере одна вторичная компонентная несущая могут быть обеспечены для связи восходящей линии связи от беспроводного терминала к базовой станции, и соответствующий индекс компонентной несущей может быть назначен на каждую из по меньшей мере одной вторичных компонентных несущих, обеспеченных для беспроводного терминала. Элемент управления MAC, включающий в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих, может быть принят от беспроводного терминала по одной из компонентных несущих. Каждый из отчетов о запасе по мощности элемента управления MAC может быть ассоциирован с соответствующей одной из первичной и/или вторичных компонентных несущих на основании порядка, в котором отчеты о запасе по мощности скомпонованы в элементе управления MAC, и на основании индексов компонентной несущей, назначенных на каждую из по меньшей мере одной вторичных компонентных несущих.

[0024] Согласно еще другим вариантам осуществления, беспроводной терминал может включать в себя процессор и приемопередатчик, подсоединенный к процессору. Процессор может быть сконфигурирован для генерирования информации для передач восходящей линии связи, обеспеченных по первичной компонентной несущей и по меньшей мере одной вторичной компонентной несущей от беспроводного терминала на базовую станцию, и соответствующий индекс компонентной несущей может быть назначен на каждую из по меньшей мере одной вторичных компонентных несущих, обеспеченных для беспроводного терминала. Процессор может быть дополнительно сконфигурирован для генерирования соответствующих отчетов о запасе по мощности для первичной и вторичных компонентных несущих и генерирования элемента управления MAC, включающего в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих, с отчетами о запасе по мощности для каждой из по меньшей мере одной вторичных компонентных несущих, скомпонованных в порядке соответствующих индексов компонентной несущей. Приемопередатчик может быть сконфигурирован для передачи элемента управления MAC, включающего в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих, от беспроводного терминала на базовую станцию по одной из компонентных несущих.

[0025] Согласно еще другим вариантам осуществления, базовая станция может включать в себя процессор назначения и схему РЧ (RF), подсоединенную к процессору назначения. Процессор назначения может быть сконфигурирован для обеспечения первичной компонентной несущей и по меньшей мере одной вторичной компонентной несущей для связи восходящей линии связи от беспроводного терминала к базовой станции, и соответствующий индекс компонентной несущей может быть назначен на каждую из по меньшей мере одной вторичный компонентных несущих, обеспеченных для беспроводного терминала. Схема РЧ может быть сконфигурирована для приема элемента управления MAC, включающего в себя отчеты о запасе по мощности для первичной и вторичных компонентных несущих, от беспроводного терминала (110-1) по одной из компонентных несущих. Процессор (732) назначения может быть дополнительно сконфигурирован для того, чтобы ассоциировать каждый из отчетов о запасе по мощности элемента управления MAC с соответствующей одной из первичной и/или вторичных компонентных несущих на основании порядка, в котором отчеты о запасе по мощности скомпонованы в элементе управления MAC, и на основании индексов компонентной несущей, назначенных на вторичные компонентные несущие.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0026] Приложенные чертежи, которые включены для обеспечения дополнительного понимания изобретения, и включены в и составляют часть настоящей заявки, иллюстрируют некоторый вариант(ы) осуществления изобретения. На чертежах:

[0027] Фиг. 1 является блок-схемой RAN LTE;

[0028] Фиг. 2 иллюстрирует обычную сетку ресурсов элементов частотных временных ресурсов, которые могут быть запланированы для использования связи между узлом сети и оборудованиями UE;

[0029] Фиг. 3 иллюстрирует пример радио кадра нисходящей линии связи LTE, который разделен на подкадры;

[0030] Фиг. 4 иллюстрирует пример сетки ресурсов для подкадра нисходящей линии связи, включающего в себя 3 символа OFDM по каждой поднесущей как области управления;

[0031] Фиг. 5 иллюстрирует пример назначения ресурса PUSCH;

[0032] Фиг. 6 иллюстрирует пример агрегации несущих компонентных несущих;

[0033] Фиг. 7 является блок-схемой части RAN и множества оборудований UE, которые сконфигурированы согласно некоторым вариантам осуществления;

[0034] Фиг. 8 и 9 являются диаграммами, иллюстрирующими упорядочивания отчетов о запасе по мощности элемента управления PHR согласно некоторым вариантам осуществления;

[0035] Фиг. 10A и 10B являются диаграммами, иллюстрирующими упорядочивания отчетов о запасе по мощности расширенных элементов управления PHR согласно некоторым вариантам осуществления;

[0036] Фиг. 11 и 12 являются блок-схемами, иллюстрирующими операции узлов сети базовой станции согласно некоторым вариантам осуществления; и

[0037] Фиг. 13 является блок-схемой, иллюстрирующей операции беспроводных терминалов согласно некоторым вариантам осуществления.

ПОДРОБНОЕ ОПИСАНИЕ

[0038] Теперь настоящее изобретение будет описано более подробно ниже со ссылками на прилагаемые чертежи, на которых показаны варианты осуществления изобретения. Однако, настоящее изобретение может осуществляться во многих различных формах и не должно быть рассмотрено как ограниченное вариантами осуществления, сформулированными в настоящем описании; вместо этого эти варианты осуществления обеспечены таким образом, чтобы настоящее раскрытие было подробным и полным и полностью передавало область изобретения специалистам в данной области техники.

[0039] Только в целях иллюстрации и объяснения различные варианты осуществления настоящего изобретения описаны в настоящем описании в контексте работы в RAN LTE, например, RAN 100 согласно фиг. 1. Однако должно быть понятно, что настоящее изобретение не ограничено такими вариантами осуществления и в целом может осуществляться в любом типе RAN, которая сконфигурирована для передачи и/или приема согласно одной или более технологиям RAT (технологиям радио доступа).

[0040] В Rel-8 LTE базовая станция eNB может конфигурировать UE для посылки отчетов о запасе по мощности периодически или когда изменение в потерях на тракте превышает некоторый конфигурируемый порог. Отчеты о запасе по мощности указывают, сколько мощности передачи UE затратило для подкадра I (то есть, разность между номинальной максимальной мощностью передачи UE и предполагаемой требуемой мощностью). Согласно некоторым вариантам осуществления, представленное в отчете значение может находиться в диапазоне от 40 до -23 децибел, где отрицательное значение показывает, что UE не имело достаточной мощности для проведения передачи. Согласно некоторым вариантам осуществления, отчет о запасе по мощности может включать в себя 6 битов, определяющих одно из 64 различных значений, соответствующих 64 различным значениям между и включающих в себя 40 децибел и -23 децибела.

[0041] Базовая станция eNB использует отчеты PHR как вводимые данные в свой планировщик ресурсов. На основании доступного запаса по мощности для компонентной несущей (CC) восходящей линии связи (UL) планировщик ресурсов будет выбирать ряд блоков PRB (блоков физических ресурсов), MCS (схему модуляции и кодирования) и подходящую команду регулирования мощности передачи (TPC) для этой компонентной несущей (CC) восходящей линии связи (UL). При агрегации несущих базовая станция eNB будет делать эти оценки для каждой CC (компонентной несущей) UL (восходящей линии связи), так как мощность управляется для каждой CC согласно решениям RAN1. Другими словами, планировщик ресурсов базовой станции eNB может выбрать количество блоков PRB, схем MCS и/или команд TPC отдельно для каждой CC, сконфигурированной/активированной для UE на основании отчета(ов) о запасе по мощности для этой CC и/или на основании отчета(ов) о запасе по мощности для этой CC и одной или более других несущих CC, сконфигурированных/активированных для UE.

[0042] Так как управление мощностью UL обеспечивается отдельно для каждой CC и отдельно для PUSCH и PUCCH, может требоваться отдельное представление отчета PHR для каждой CC (например, для каждой первичной и вторичной компонентной несущей), и может требоваться отдельное представление отчета PHR для PUSCH и PUCCH для первичной компонентной несущей PCC. Для Rel-10 будет два типа отчетов PHR:

Отчеты о запасе по мощности типа 1, вычисленные как:

Pcmax,c минус мощность PUSCH, или

(Pcmax,c-PPUSCH);

Отчеты о запасе по мощности типа 2, вычисленные как:

Pcmax,c минус мощность PUCCH минус мощность PUSCH, или

(Pcmax,c-PPUCCH-PPUSCH);

В этих уравнениях Pcmax,c является сконфигурированной выходной мощностью для соответствующей компонентной несущей, для которой вычисляется уровень запаса по мощности. Подробные формулы для вычислений запаса по мощности определены в 3GPP TS 36.213, V10.1.0, Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Layer Procedures, Выпуск 10, март, 2011.

[0043] Вторичные компонентные несущие (SCC) могут представлять отчет PHR типа 1, не представляя отчет PHR типа 2, так как несущие SCC не сконфигурированы для PUCCH. Однако первичная компонентная несущая (PCC) может представлять отчеты PHR как типа 1, так и типа 2. Отчеты PHR типа 1 и типа 2 могут быть представлены в одном и том же подкадре, так как оба отчета могут быть необходимы, чтобы обеспечить понимание всего запаса по мощности несущих PCC UL (восходящей линии связи). В альтернативе, отчеты PHR типа 1 и типа 2 для PCC могут быть представлены в разных подкадрах.

[0044] Применяя структуру Rel-8 для представления отчета о запасе по мощности (PHR) для агрегации несущих (CA), PHR для конкретной компонентной несущей может быть послан по компонентной несущей, для которой представляется отчет. Однако PHR может быть передан только по компонентной несущей, если терминал имеет ресурсы PUSCH, предоставленные на этой компонентной несущей.

[0045] В Rel-10 PHR для одной компонентной несущей может быть передан по другой компонентной несущей. Это может позволить быстрое представление отчета об изменениях в потери на тракте по одной компонентной несущей, как только терминал будет иметь ресурсы PUSCH, предоставленные по любой сконфигурированной компонентной несущей UL. Более конкретно, изменение в потерях на тракте более чем на dl-PathlossChange dB (децибел) по любой компонентной несущей может инициировать передачу PHR по любой компонентной несущей (одной и той же или другой), для которой терминал имеет предоставленные ресурсы PUSCH.

[0046] В Rel-8 LTE все элементы CE (элементы управления) MAC (управления доступом к среде) относятся к конкретной несущей, на которой работает UE. С введением агрегации несущих в Rel-10 может быть полезно ассоциировать информацию, содержащуюся в CE MAC, с конкретной компонентной несущей.

[0047] Если PHR передан по CC, отличной от несущей, для которой представляется отчет (как может иметь место в Rel-10), базовая станция eNB может быть неспособна различить, о/для какой CC этот отчет PHR представляется. Соответственно, для базовой станции eNB может быть трудно использовать PHR, чтобы вычислить потери на тракте UE для конкретной CC. Соответственно, eNB может потребовать идентифицировать CC, с которой ассоциирован отчет о запасе по мощности, когда отчет о запасе по мощности передан по CC, отличной от CC, для которой представляется отчет.

[0048] Фиг. 7 является блок-схемой части узла 700 сети и оборудований UE 110-1-110-L, которые сконфигурированы согласно некоторым вариантам осуществления настоящего изобретения. Узел 700 сети может быть обеспечен как один или более узлов радио базовых станций (узлы eNodeB) согласно фиг. 1. Другими словами, узел 700 сети может быть узлом сети базовой станции. Ссылаясь на фиг. 7, узел 700 сети включает в себя планировщика 730 ресурсов, который может включать в себя процессор 732 назначения элемента ресурсов и базу данных 734. Процессор 732 назначения может включать в себя одну или более схем обработки данных и хранения, такие как процессор общего назначения и/или процессор специального назначения (например, микропроцессор и/или цифровой сигнальный процессор) с запоминающим устройством «на борту» и/или отдельным запоминающим устройством. Процессор 732 назначения сконфигурирован для выполнения компьютерных программных команд из запоминающего устройства, описанного ниже в качестве считываемого компьютером носителя, чтобы конфигурировать/деконфигурировать/активировать/деактивировать компонентные несущие (включающие в себя первичную и/или вторичные компонентные несущие или несущие CC) для оборудований UE 110-1 - 110-L и передать эти назначения на них.

[0049] Узел 700 сети включает в себя РЧ-схему 720, имеющую множество приемопередатчиков (TX/RX) 722-1 - 722-x, которые связываются, используя различные частотные поднесущие, через антенны 724a-n, чтобы обеспечить примерную часть множественных несущих сетки ресурсов, показанной на фиг. 2. Хотя показано примерное отображение один-в-один приемопередатчиков в антенны, должно быть понятно, что любое количество антенн и/или приемопередатчиков может быть использовано в зависимости от конфигурации антенны и ограничений структуры.

[0050] Узел 700 сети может также включать в себя множество буферов 710-1 - 710-М протокола управления радио линией (RLC), где данные нисходящей линии связи, которые приняты от базовой 130 сети с помощью интерфейса (I/F) 740, буферизуются, ожидая передачи на заданные оборудования UE. Процессор 732 назначения может использовать информацию буфера RLC, чтобы идентифицировать, какие оборудования UE требуют назначения элементов ресурсов, и определить, сколько элементов ресурсов назначить на эти оборудования UE.

[0051] Каждое из оборудований UE 110-1 - 110-L может включать в себя приемопередатчик (TX/RX) 711, процессор 712 и базу данных 714. Приемопередатчик 711 может связываться с узлом 700 сети через схему 720 РЧ, используя различные компонентные несущие частоты, чтобы поддержать примерную часть множественных несущих сетки ресурсов, показанной на фиг. 2. Процессор 712 может включать в себя одну или более схем обработки данных и хранения, например, процессор общего назначения и/или процессор специального назначения (например, микропроцессор и/или цифровой сигнальный процессор) с запоминающим устройством «на борту» и/или отдельным запоминающим устройством. Процессор 712 может быть сконфигурирован для выполнения компьютерных программных команд из запоминающего устройства, описанного ниже как считываемый компьютером носитель, для генерирования и передачи отчетов о запасе по мощности, как рассмотрено более подробно ниже. База данных 714 может содержать список вторичных компонентных несущих, которые были сконфигурированы/активированы для UE процессором 732 назначения, и соответствующих индексов компонентной несущей, используемых для идентификации вторичных компонентных несущих, которые были сконфигурированы/активированы.

[0052] Процессор 732 назначения узла 700 сети может конфигурировать и/или активировать первичную и/или вторичные компонентные несущие для передач восходящей линии связи от UE 110-1 на узел 700 сети, и каждой из сконфигурированных и/или активированных компонентных несущих для UE 110-1 может быть назначен уникальный индекс компонентной несущей, известный как процессору 732 назначения, так и UE 110-1. Например, процессор 732 назначения может назначить индекс компонентной несущей каждый раз, когда первичная или вторичная компонентная несущая сконфигурирована и/или активирована для UE 110-1, и индекс компонентной несущей может быть передан на UE 110-1, когда соответствующая компонентная несущая сконфигурирована и/или активирована для UE 110-1. Таким образом, база данных 734 может поддерживать список сконфигурированных/активированных первичной и/или вторичных компонентных несущих для каждого UE вместе с индексом компонентной несущей, назначенным на компонентные несущие для каждого UE.

[0053] Согласно некоторым другим вариантам осуществления, индекс компонентной несущей для каждой сконфигурированной/активированной первичной и/или вторичной компонентной несущей для UE 110-1 может быть определен в соответствии с порядком, в котором сконфигурированные/активированные компонентные несущие были сконфигурированы/активированы для UE 110-1. Процессор 732 назначения и процессор 712 UE могут, таким образом, независимо определить одни и те же индексы компонентной несущей для каждой из сконфигурированных/активированных компонентных несущих, не требуя передачи индексов компонентной несущей между узлом 700 сети и UE 110-1.

[0054] Независимо от того, как индексы компонентной несущей определены/назначены для UE 110-1, база данных 714 UE 110-1 и база данных 734 планировщика 730 ресурсов в состоянии идентифицировать все сконфигурированные/активированные компонентные несущие для UE 110-1, используя соответствующие индексы компонентной несущей. Так как вторичная компонентная несущая может быть сконфигурирована/активирована процессором 732 назначения для множественных оборудований UE в одно и то же время, различные индексы компонентной несущей могут быть использованы для идентификации одной и той же вторичной компонентной несущей для различных оборудований UE в одно и то же время.

[0055] Согласно некоторым вариантам осуществления, процессор 732 назначения может конфигурировать/активировать первичную компонентную несущую (PCC) и множество вторичных компонентных несущих (несущих SCC) для связи по восходящей линии связи от UE 110-1 к узлу 700 сети, и отчеты о запасе по мощности (отчеты PHR) для всех сконфигурированных/активированных первичной и вторичных компонентных несущих могут быть переданы в одном и том же элементе управления (CE) управления доступом к среде (MAC) на одной из сконфигурированных активированных компонентных несущих. Посредством обеспечения индексов компонентной несущей для каждой первичной и/или вторичной компонентной несущей, которая сконфигурирована/активирована для UE 110-1, отчеты о запасе по мощности для первичной и/или вторичных компонентных несущих могут быть упорядочены в пределах CE MAC согласно соответствующим индексам компонентной несущей для компонентных несущих, ассоциированных с отчетами о запасе по мощности. Соответственно, отчеты о запасе по мощности могут быть предоставлены в одном элементе управления MAC, не требуя, чтобы отдельные идентификации для компонентных несущих были переданы вместе с ним. Кроме того, процессор 732 назначения может ассоциировать отчеты о запасе по мощности с соответствующими компонентными несущими, используя порядок на основании известных индексов.

[0056] Индексация (также называемая упорядочиванием) несущих CC на основании индексов CC (также называемых индексами ячейки), которые известны как UE 110-1, так и узлу 700 сети базовой станции eNB, может быть использована для идентификации отчетов о запасе по мощности вместо того, чтобы требовать конкретные идентификаторы для каждого из отчетов о запасе по мощности в элементе управления MAC (CE), используемом для отправки отчетов PHR. Индексация/упорядочивание несущих CC для каждого UE может быть использована для управления CC. Пронумерованные несущие CC UL могут или содержать все сконфигурированные несущие CC UL, или все сконфигурированные/активированные несущие CC UL, или даже все несущие CC UL, предлагаемые в одном и том же частотном диапазоне или узле 700 сети базовой станции eNB до тех пор, пока уникальный индекс CC назначен для каждой CC, которая сконфигурирована для конкретного UE.

[0057] Посредством идентификации PHR на основании индекса CC, известного как UE 110-1, так и узлу 700 сети базовой станции eNB, PHR типа 1 может быть сгенерирован и передан для каждой CC UL (например, для PCC и для каждой SCC), и, в дополнение, PHR типа 2 может быть сгенерирован и передан для PCC UL. Отчеты PHR всех несущих CC UL (например, для PCC UL и для каждой SCC UL) могут быть собраны (в пределах одного и того же CE MAC) в порядке индексов, начиная с PHR типа 2 от PCC UL и затем добавляя все отчеты PHR типа 1 в порядке на основании порядка значения индекса CC UL. Могут быть также предположены ал