Восприимчивые к стимулирующему фактору носители для вмч-регулируемой доставки лекарственного средства

Иллюстрации

Показать все

Группа изобретений относится к композиции, содержащей полость-образующую оболочечную структуру, и предназначена для регулируемой доставки лекарственного средства. Оболочечная структура указанной композиции включает лекарственное средство и способна высвобождать свое содержимое во внешнее пространство под действием внешнего стимула. Указанная композиция связана по меньшей мере с одним контрастным веществом, которое содержит магнитные частицы, состоящие из Fe, Co, Ni, Zn или Mn или из их сплавов или оксидов любых из указанных металлов или сплавов, детектируемые методом визуализации магнитных частиц (ВМЧ). По меньшей мере более чем 5% (масс./масс.) магнитных частиц обладают магнитным моментом, равным по меньшей мере 10-18 м2·А, и более чем 5 масс.% указанных магнитных частиц имеют время перемагничивания менее чем 10 миллисекунд на частицу. Указанная композиция применяется в качестве носителя для регулируемой доставки лекарственного средства. Использование группы изобретений позволяет повысить эффективность и надежность контролирования доставки лекарственных средств, что обеспечивает предоставление количественной информации о процессе лечения в целом. 3 н. и 11 з.п. ф-лы, 13 ил., 1 табл., 3 пр.

Реферат

Область, к которой относится изобретение

Настоящее изобретение относится к композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура включает лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом и где указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешнего стимула, а указанное контрастное вещество содержит магнитные частицы, которые могут быть детектированы методом визуализации магнитных частиц (ВМЧ), где по меньшей мере более чем 5% (масс./масс.) указанных магнитных частиц, содержащихся в указанном контрастном веществе, обладают магнитным моментом, равным по меньшей мере 10-18 м2·А, и где указанные магнитные частицы, предпочтительно, состоят из Fe, Co, Ni, Zn или Mn или их сплавов или оксидов любых из указанных металлов. Кроме того, настоящее изобретение относится к применению указанной композиции или композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура включает лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом, где указанное контрастное вещество детектируется методом ВМЧ, а указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешнего стимула, в качестве носителя для регулируемой доставки лекарственного средства, а также к способу сбора данных о процессе регуляции доставки лекарственного средства, где указанный способ включает детектирование или определение локализации таких композиций методом ВМЧ. В еще одном своем аспекте, настоящее изобретение относится к указанным композициям, применяемым для лечения патологического состояния, где указанное лечение включает высвобождение лекарственного средства под действием стимула.

Предшествующий уровень техники

Доставка лекарственного средства представляет собой введение фармацевтически, терапевтически или диагностически эффективного соединения различными методами в целях достижения клинического эффекта у человека или животного. Технология доставки лекарственных средств позволяет модифицировать профили высвобождения, абсорбции, распределения и/или элиминации лекарственных средств в целях повышения эффективности и безопасности данного продукта, а также для облегчения приема лекарственного средства и соблюдения режима курса лечения пациентом. Классический способ доставки лекарственного средства может включать, inter alia, неинвазивное пероральное введение, местное введение, введение через слизистую и введение путем ингаляции. Типичные стратегии доставки лекарственного средства основаны на системном введении лекарственного средства, которое часто приводит к возникновению серьезных побочных эффектов у пациента, обусловленных нежелательным биологическим распределением и токсичностью этого лекарственного средства. Основной недостаток такого системного введения заключается в том, что, с одной стороны, терапевтическая эффективность зависит от минимальной концентрации требуемого лекарственного средства в пораженной ткани-мишени или в пораженном органе-мишени, а с другой стороны, от токсического действия лекарственного средства на органы организма, не являющиеся мишенями.

Для решения этой проблемы, специалистами в области доставки лекарственных средств был разработан новый способ локальной и стимулированной доставки лекарственного средства с использованием носителей, например липосомных или полимерных мицеллярных носителей. По сравнению с классическими протоколами лечения заболевания, проводимыми путем системного введения лекарственного средства, этот способ имеет значительные преимущества, поскольку он позволяет увеличивать локальную концентрацию лекарственного препарата и в то же самое время избежать возникновения серьезных системных побочных эффектов. Таким образом, для многих заболеваний или патологических состояний может быть выбрана локальная доставка лекарственного средства, в частности, в тех случаях, когда другие терапевтические методы, такие как хирургическая операция, являются нецелесообразными или слишком рискованными.

Опосредуемую носителем доставку лекарственного средства обычно осуществляют сначала путем загрузки носителя нужным лекарственным средством или веществом, а затем высвобождения указанного вещества или лекарственного средства из этого носителя после воздействия на него внешним стимулом, например путем создания на этом участке соответствующих температур или давления (Torchilin, 2005, Nature Reviews Drug Discovery, 4, 145-160).

Способы опосредуемой носителем доставки лекарственного средства были с успехом осуществлены в комбинации с применением контрастных веществ. Так, например, чувствительные к действию стимула липосомы были связаны с контрастными веществами, используемыми для магнитно-резонансной томографии (МРТ), путем инкапсуляции контрастного вещества в полость липосом (McDannold et al., 2004, Radiology, 230, 743-752). МРТ представляет собой ценный диагностический метод, который широко применяется в клиниках в диагностических целях и позволяет осуществлять неинвазивную визуализацию мягких тканей с высоким пространственным разрешением. Такой способ основан на визуализации объемных молекул воды, которые присутствуют в очень высокой концентрации во всех тканях организма. В качестве контрастных веществ используются комплексы ионов гадолиния или марганца, которые снижают время продольной (T1) и поперечной релаксации (T2) протонов молекул воды. Было показано, что благодаря такой их способности МРТ позволяет проводить мониторинг доставки определенных веществ, например лекарственных средств, включенных в структуры носителей.

Однако в таком способе исходная концентрация контрастного вещества в носителе является настолько высокой, что концентрацию этих носителей достаточно трудно определить в начале процедуры лечения, что обусловлено значительным сокращением T2 и снижением степени диффузии. И только после нагревания контрастные вещества с T1 высвобождаются и их концентрация снижается до достижения положительного контраста в МРТ. Аналогичные выводы применимы и к комбинациям носителей для доставки лекарственного средства и контрастных веществ, включающих контрастные вещества с T2, используемые в магнитном резонансе (МР), или 19F-метки. Эти альтернативные подходы создают проблемы, связанные с визуализацией до высвобождения лекарственного средства или после его высвобождения, и в основном, не позволяют проводить количественную оценку интенсивности сигнала. Таким образом, ни один из существующих и используемых в клиниках методов визуализации не может быть использован для количественной оценки данных во время всего курса лечения, проводимого путем доставки лекарственных средств с помощью носителя.

Поэтому необходимо разработать эффективный и надежный способ доставки лекарственного средства, регулируемой посредством визуализации, которая позволяет получить количественную информацию во время всего курса лечения, а также средства для осуществления такого способа.

Краткое описание задач и сущности изобретения

Настоящее изобретение позволяет решить указанную выше задачу и относится к средствам и способам доставки лекарственного средства, контролируемой методом визуализации магнитных частиц (ВМЧ) с использованием носителей, чувствительных к действию стимула. Вышеуказанной целью изобретения является, в частности, получение композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура включает лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом и где указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешнего стимула, а указанное контрастное вещество содержит магнитные частицы, которые могут быть детектированы методом визуализации магнитных частиц (ВМЧ), где по меньшей мере более чем 5% (масс./масс.) магнитных частиц, содержащихся в указанном контрастном веществе, обладают магнитным моментом, равным по меньшей мере 10-18 м2·А, и где указанные магнитные частицы, предпочтительно, состоят из Fe, Co, Ni, Zn или Mn или их сплавов или оксидов любых из указанных металлов, а более предпочтительно, из Fe2O3 или Fe3O4.

Такие композиции сочетают в себе преимущественные свойства чувствительных к стимулам носителей, то есть способность высвобождать вещества, в частности, лекарственные средства в предварительно определенных участках после подачи подходящего сигнала или действием стимула, и преимущественные свойства технологии визуализации магнитных частиц (ВМЧ), которая позволяет осуществлять прямое детектирование пространственного распределения магнитных наночастиц с помощью нелинейного анализа путем перемагничивания для достижения высокой чувствительности и высокого разрешения. В частности, было показано, что включение указанного контрастного вещества в указанные композицию или носитель не оказывает влияния на ВМЧ-визуализируемый сигнал, генерируемый контрастным веществом, который может детектироваться методом ВМЧ. Кроме того, было показано, что этот сигнал остается неизмененным после высвобождения контрастного вещества из носителя. Таким образом, в отличие от методов, основанных на МРТ, метод с использованием указанных композиций позволяет количественно детектировать такие композиции путем визуализации магнитных частиц до высвобождения лекарственного средства, а после высвобождения лекарственного средства может быть также проведен мониторинг распределения содержимого таких композиций.

В предпочтительном варианте настоящего изобретения, по меньшей мере более чем 5 масс.% магнитных частиц имеют время перемагничивания менее чем 10 миллисекунд на частицу.

В еще более предпочтительном варианте настоящего изобретения, указанное контрастное вещество связано с внешними или с внутренними частями оболочечной структуры или с лекарственным средством, либо оно инкапсулировано в полость оболочечной структуры.

В другом предпочтительном варианте настоящего изобретения, указанная оболочечная структура входит в состав липосомы, полимерсомы, нанокапсулы или любых их смесей. В особенно предпочтительном варианте настоящего изобретения, указанная оболочка содержит термочувствительный материал или материал, чувствительный к повышению давления.

В другом предпочтительном варианте настоящего изобретения, вышеупомянутый внешний стимул способен вызывать образование пор и/или разложение оболочечной структуры.

В другом предпочтительном варианте настоящего изобретения, вышеупомянутым внешним стимулом является повышение температуры, снижение температуры, повышение давления и/или снижение давления.

В другом своем аспекте настоящее изобретение относится к применению (i) композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура содержит лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом, где указанное контрастное вещество может быть детектировано методом визуализации магнитных частиц (ВМЧ), а указанная оболочечная структура обладает способностью высвобождать содержимое во внешнее пространство под воздействием внешнего стимула; или (ii) композиции, определенной выше как носитель для регулируемой доставки лекарственного средства.

В другом предпочтительном варианте настоящего изобретения, регулируемая доставка лекарственного средства включает детектирование или определение локализации методом ВМЧ. В другом альтернативном варианте настоящего изобретения, указанная регулируемая доставка лекарственного средства включает детектирование или определение локализации методом ВМЧ или методом магнитно-резонансной томографии (МРТ).

В другом своем предпочтительном варианте, настоящее изобретение относится к применению (i) композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура содержит лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом и где указанное контрастное вещество может быть детектировано методом визуализации магнитных частиц (ВМЧ), а указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешнего стимула; или (ii) композиции, определенной выше как носитель для вышеописанной регулируемой доставки лекарственного средства, где указанное регулируемое высвобождение также включает высвобождение содержимого оболочечной структуры под действием внешнего стимула. В особенно предпочтительном варианте настоящего изобретения, вышеупомянутым внешним стимулом является повышение температуры, снижение температуры, повышение давления и/или снижение давления.

В другом своем аспекте настоящее изобретение относится к способу сбора информации о процессе регуляции доставки лекарственного средства, где указанный способ включает детектирование или определение локализации методом ВМЧ (i) композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура содержит лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом и где указанное контрастное вещество может быть детектировано методом визуализации магнитных частиц (ВМЧ), а указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешнего стимула; или (ii) определенной выше композиции до, во время или после воздействия внешнего стимула, индуцирующего высвобождение содержимого указанной оболочечной структуры.

В другом предпочтительном варианте настоящего изобретения, способ сбора информации о регуляции доставки лекарственного средства включает детектирование или определение локализации методом ВМЧ, а также методом МРТ. В другом варианте настоящего изобретения указанный способ сбора информации о регуляции доставки лекарственного средства включает детектирование или определение локализации методом ВМЧ, а также методом МРТ.

В другом предпочтительном варианте настоящего изобретения, вышеописанный способ сбора информации о регуляции доставки лекарственного средства включает как дополнительную стадию высвобождение содержимого указанной оболочечной структуры под действием внешнего стимула. В особенно предпочтительном варианте настоящего изобретения, указанным внешним стимулом является повышение температуры, снижение температуры, повышение давления и/или снижение давления.

В другом своем аспекте настоящее изобретение относится к композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура содержит лекарственное средство, а указанная композиция связана по меньшей мере с одним контрастным веществом и где указанное контрастное вещество может быть детектировано методом визуализации магнитных частиц (ВМЧ), а указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешнего стимула, или к определенной выше композиции, которая может быть использована для лечения патологического состояния.

В предпочтительном варианте настоящего изобретения, указанное лекарственное средство вводят под действием стимула, где указанный стимул подается с помощью системы локального нагревания, с помощью электрического поля, магнитного поля, сфокусированного ультразвукового излучения и/или радиочастотного излучения, приводящего к высвобождению лекарственного средства из оболочечной структуры во внешнее пространство.

В другом предпочтительном варианте настоящего изобретения, детектирование указанной композиции или определение ее локализации может быть осуществлено методом ВМЧ. В другом варианте настоящего изобретения детектирование указанной композиции или определение ее локализации может быть осуществлено методом ВМЧ и МРТ.

Краткое описание графического материала

Фиг. 1. Схематическое представление относительной интенсивности сигнала для различных способов визуализации в процессе высвобождения лекарственного средства из носителя, в котором инкапсулировано соответствующее вещество.

Фиг. 2. Схематическое представление метода микроинкапсуляции в везикулу (MCV), применяемого для получения липосом.

Фиг. 3. Диаграмма, представляющая поглощение в УФ и видимом диапазоне света (косые линии) и число импульсов динамического рассеяния света (перекрещивающиеся линии) в зависимости от объема элюирования.

Фиг. 4. Фотография, иллюстрирующая результаты электрофореза в агарозном геле (3% агарозный гель, окрашивание этидийбромидом) для фракций, собранных после проведения гель-проникающей хроматографии ДНК-нагруженного раствора. Левая дорожка (A) соответствует эталонному раствору ДНК. Другие дорожки помечены в соответствии с объемом элюирования, выраженном в миллилитрах.

Фиг. 5. Фотография, иллюстрирующая результаты электрофореза в агарозном геле (3% агарозный гель, окрашивание этидийбромидом) для раствора ДНК-нагруженной липосомы перед нагреванием (A) и после нагревания в течение 30 минут при 50°C (B).

Фиг. 6. Термограмма для раствора ДНК/Resovist-нагруженной липосомы, подвергаемого циклу нагревания/охлаждения при температуре от 20°C до 60°C при скорости нагревания и охлаждения 15°C/минуту.

Фиг. 7. Фотография, иллюстрирующая результаты электрофореза в агарозном геле (3% агарозный гель, окрашивание этидийбромидом) для раствора ДНК/Resovist-нагруженной липосомы, подвергаемого нагреванию при 50°C в различные периоды времени нагревания. Дорожка А соответствует эталонному образцу ДНК-леддера, дорожка В соответствует эталонному раствору ДНК спермы сельди, дорожка, помеченная 0-30, соответствует различным периодам времени нагревания (в минутах) образца липосомы, нагруженной ДНК/Resovist.

Фиг. 8. Иллюстрация 31P-ЯМР-спектров для ДНК-нагруженных липосом до (нижний спектр) и после (верхний спектр) нагревания до 55°C.

Фиг. 9. Диаграмма, иллюстрирующая зависимость R1 ДНК/Resovist-нагруженных липосом от температуры, как было измерено при проведении хроматографии в положительном градиенте температуры (точки), в отрицательном градиенте температуры (перевернутые треугольники), в другом положительном градиенте температуры (обычные треугольники) и в другом отрицательном градиенте температуры (крестики).

Фиг. 10. Cryo-TEM-изображения ДНК/Resovist-нагруженных термочувствительных липосом, полученных методом MCV перед нагреванием (A), после нагревания в течение 1 минуты при 50°C (B) и после нагревания в течение 30 минут при 50°C (C). Черные пятна представляют собой частицы Resovist. Масштабная шкала означает 200 нм.

Фиг. 11. Диаграмма, иллюстрирующая СМЧ-сигнал (в зависимости от частоты) ДНК/Resovist-нагруженных термочувствительных липосом до нагревания и после нагревания в течение 1 минуты, 4 минут и 30 минут при 50°C.

Подробное описание вариантов осуществления изобретения

Настоящее изобретение относится к средствам и способам доставки лекарственного средства, регулируемой методом визуализации магнитных частиц (ВМЧ) с использованием композиций или носителей, восприимчивых к стимулам.

Хотя настоящее изобретение описано на конкретных вариантах его осуществления, однако это описание не должно рассматриваться как ограничение изобретения.

Перед подробным описанием репрезентативных вариантов настоящего изобретения приводятся определения, имеющие важное значение для понимания сущности настоящего изобретения.

Используемые в настоящем описании и в прилагаемой формуле изобретения формулы единственного числа относятся к существительным как в единственном числе, так и во множественном числе, если это не очевидно из контекста описания изобретения.

В контексте описания настоящего изобретения, термины «примерно» и «приблизительно» означают интервал достоверности значений, которые будут интерпретироваться специалистом как значения, обеспечивающие рассматриваемый технический эффект настоящего изобретения. Этот термин обычно указывает на отклонение от указанного численного значения на ±20%, предпочтительно, на ±15%, более предпочтительно, на ±10%, а еще более предпочтительно, на ±5%.

Совершенно очевидно, что глагол «включать» имеет неограничивающий смысл. В описании настоящего изобретения, словосочетание «состоять из» рассматривается как предпочтительная грамматическая форма словосочетания «входить в состав». Если группа элементов определяется далее как группа, включающая по меньшей мере определенное число элементов, то это также означает, что она охватывает группу, которая, предпочтительно, состоит только из этих элементов.

Кроме того, термины «первый», «второй», «третий» или «(а)», «(b)», «(c)», «(d)» и т.п., употребляемые в описании и в формуле изобретения, используются для определения различий между подобными элементами и необязательно должны указывать на порядок их расположения или на хронологический порядок. Совершенно очевидно, что в соответствующих случаях указанные термины являются взаимозаменяемыми, и в описанных здесь вариантах настоящего изобретения эти определения могут быть использованы в другой последовательности, то есть в последовательности, отличающейся от описанной или проиллюстрированной выше.

В случае если термины «первый», «второй», «третий» или «(а)», «(b)», «(c)», «(d)» и т.п. относятся к стадиям осуществления способа или применения этого способа, то это указывает, что данные стадии не связаны друг с другом по времени, либо они могут быть осуществлены через определенный интервал времени, то есть одновременно или через определенные промежутки времени, например через секунды, минуты, дни, недели, месяцы или даже годы, если это не оговорено особо в приведенном выше или ниже описании изобретения.

Следует отметить, что настоящее изобретение не ограничивается какими-либо конкретными описанными здесь методами, протоколами, реагентами и т.п., то есть это означает, что они могут варьировать. Следует также отметить, что используемая здесь терминология приводится лишь в целях описания конкретных вариантов изобретения, и не должна рассматриваться как ограничение объема изобретения, который определен лишь в прилагаемой формуле изобретения. Если это не оговорено особо, то все используемые здесь технические и научные термины имеют, в основном, значения, хорошо понятные среднему специалисту в данной области.

Как указывалось выше, в одном из своих аспектов настоящее изобретение относится к композиции, содержащей полость-образующую оболочечную структуру, где указанная оболочечная структура включает лекарственное средство, а указанная композиция ассоциируется по меньшей мере с одним контрастным веществом и где указанная оболочечная структура способна высвобождать свое содержимое в окружающее пространство под действием внешних стимулов, а указанное контрастное вещество содержит магнитные частицы, которые могут быть детектированы методом визуализации магнитных частиц (ВМЧ), где по меньшей мере более чем 5% (масс./масс.) магнитных частиц, содержащихся в указанном контрастном веществе, обладают магнитным моментом, равным по меньшей мере 10-18 м2·А, и где указанные магнитные частицы, предпочтительно, состоят из Fe, Co, Ni, Zn или Mn или их сплавов или оксидов любых из указанных металлов, а более предпочтительно, из Fe2O3 или Fe3O4.

Используемый здесь термин «оболочечная структура» означает структуру, напоминающую оболочку, которая обычно состоит из небольших элементов или молекул, имеющих идентичные или аналогичные химические, физические и/или биологические свойства. Кроме того, такая напоминающая оболочку структура образует полость, которая не включает внешнее пространство, то есть эта структура отделяет внешнее пространство от внутреннего, а поэтому она служит пограничным слоем между внешним и внутренним пространством, внешней и внутренней средой и т.п. Оболочечные структуры согласно изобретению, предпочтительно, состоят из гидрофобного слоя. Таким слоем может быть монослой или бислой. Стороны бислойной структуры могут обладать различными свойствами и/или могут состоять из различных элементов, образующих оболочку. Обе стороны, предпочтительно, содержат гидрофобные «хвостовые» структуры, направленные вовнутрь оболочечной структуры или мембраны. Оболочечная структура может иметь многослойную или однослойную форму, составляющую, например, небольшую или крупную многослойную везикулу, небольшую однослойную везикулу или крупную однослойную везикулу. Оболочечная структура может иметь любую подходящую форму или подходящий размер, например, такая оболочечная структура может иметь форму сферы или эллипса, либо она может иметь круглую или грушевидную форму, а также форму, напоминающую гантели, уплощенную форму, форму пирамиды и т.п. Такая оболочечная структура, предпочтительно, обладает способностью к самосборке.

В типичном варианте настоящего изобретения элементы, образующие оболочку, могут состоять из гидрофобного «хвоста» и гидрофильной «головы». Внутренняя часть или полость оболочечной структуры, предпочтительно, составляет гидрофильную среду, например водный раствор. Альтернативно, полость оболочечной структуры может состоять из гидрофильной среды. Среда в полости, образованной оболочечной структурой, может иметь такие же свойства, как и внешняя окружающая среда, или другие свойства. Используемый здесь термин «условия окружающей среды» означает pH, концентрацию органических или неорганических ионов, присутствие одной или нескольких солей, наличие осмотического давления и т.п. Так, например, в полости оболочечной структуры pH может быть ниже, равен или выше рН внешней среды, при этом эта полость может иметь осмотическое давление, то есть находиться в осмотическом равновесии, и т.п.

Помимо элементов, образующих оболочку, такая оболочка может содержать и другие элементы, имеющие дополнительные функции. Примерами таких дополнительных элементов являются нацеливающие молекулы, которые могут взаимодействовать с совместимыми элементами, или со стабилизирующими или дестабилизирующими элементами оболочечной структуры, и/или распознавать эти элементы оболочечной структуры, где указанные элементы могут модифицировать химические, физические и/или биологические свойства оболочечной структуры. Эти элементы обычно присутствуют снаружи или на внешней поверхности оболочечной структуры и могут внедряться, а могут и не внедряться во внутреннее пространство оболочечной структуры и/или полости оболочечной структуры. Особенно предпочтительными являются элементы, обеспечивающие нацеливание оболочечной структуры на конкретные ткани, органы, клетки или их типы, или на конкретные участки организма, а в частности, организма животного или человека. Так, например, присутствие нацеливающих молекул может обеспечивать нацеливание оболочечных структур, а следовательно, всей композиции на органы, такие как печень, почки, легкие, сердце, поджелудочная железа, желчный пузырь, селезенка, лимфатические структуры, кожа, головной мозг, мышцы и т.п. Альтернативно, присутствие нацеливающих молекул может обеспечивать нацеливание на клетки конкретных типов, например раковые клетки, экспрессирующие на своей поверхности взаимодействующие или распознаваемые белки. В предпочтительном варианте изобретения оболочечная структура может содержать белки или пептиды или их фрагменты, которые составляют поверхность взаимодействия с внешней и/или с внутренней стороны оболочечной структуры. Примерами таких белковых или пептидных элементов являются лиганды, обладающие способностью связываться с молекулами рецепторов; молекулы рецепторов, обладающие способностью взаимодействовать с лигандами или с другими рецепторами, антитела или их фрагменты или производные, обладающие способностью взаимодействовать с их антигенами, или авидин, стрептавидин, нейтравидин или лектины. В настоящем изобретении также рассматривается присутствие связывающих и способных к взаимодействию веществ, таких как биотин, которые могут, например, присутствовать в виде биотинилированных соединений, таких как белки или пептиды, или элементы оболочечной структуры и т.п., либо они могут присутствовать в самой оболочечной структуры или за ее пределами. Оболочечная структура может также содержать витамины или антигены, обладающие способностью взаимодействовать с совместимыми интегрирующими агентами, например, витамин-связывающими белками или антителами и т.п., которые могут присутствовать на поверхности оболочечной структуры и/или проникать в оболочечную структуру и/или в полость оболочечной структуры.

Оболочечная структура может также иметь покрытие, состоящее из дополнительных соединений, а предпочтительно, соединений, повышающих ее стабильность и/или время пребывания в кровотоке; соединений, влияющих на ее биораспределение; соединений, модифицирующих ее иммунологические свойства и т.п. Примерами таких покрытий является покрытие, содержащее углеводные молекулы и, предпочтительно, обеспечивающее определенный характер гликозилирования, а более предпочтительно, биологически релевантный характер гликозилирования, типичный для тканей или клеток данного типа и известный специалистам, или покрытие, содержащее молекулы ПЭГ (полиэтиленгликоля) и присутствующее на внешнем слое или на внешней поверхности оболочечной структуры. Особенно предпочтительно использовать полиэтиленгликоль 2000. Еще более предпочтительно использовать олигоглицериновые (ОГ) группы. Пример применения ОГ-модифицированных термочувствительных липосом описан Lindner et al. 2008, Journal of Controlled Release, 125, 112-120.

Оболочечные структуры обычно имеют размер примерно от 30 нм до 1000 нм. Предпочтительными являются размеры примерно от 50 нм до 400 нм.

Используемый здесь термин «оболочечная структура, содержащая лекарственное средство» означает, что лекарственное средство может присутствовать в полости оболочечной структуры, на поверхности оболочечной структуры, в образующей оболочку пограничной области, расположенной между внешним и внутренним пространством, например, на самой границе моно- или бислоев, или одновременно, в одном или нескольких из этих компартментов, простирающихся, например, от внешнего или пограничного отдела в полость оболочечной структуры, или от пограничного отдела в полость оболочечной структуры, или от пограничного отдела во внешнее пространство. Лекарственное средство может быть дополнительно модифицировано одним или несколькими вышеупомянутыми методами модификации, например путем гликозилирования, биотинилирования, нанесения ПЭГ-покрытия и т.п. Альтернативно, лекарственное средство может быть химически или биологически модифицировано так, чтобы оно могло присутствовать на поверхности, в пограничной области или в полости оболочечной структуры. Лекарственное средство может представлять собой мономер, олигомер или полимер. Такие модификации могут быть скорректированы в зависимости от осмотических параметров, заряда оболочечной структуры или любых других подходящих параметров, известных специалистам. Помимо лекарственного средства, в оболочечной структуре могут присутствовать любые другие подходящие вспомогательные молекулы, известные специалистам, например стабилизирующая молекула, адъювант, ингибитор гидролизующих ферментов, стабилизатор заряда, стабилизатор структуры, соль, буфер, антиоксидант, хелатообразующий агент, краситель, например флуоресцентный краситель, визуализирующее соединение и т.п.

Используемый здесь термин «лекарственное средство» означает любое физическое, химическое или биологическое вещество, которое может быть использовано для лечения, терапии, профилактики, предупреждения или диагностики патологического состояния, например заболевания или расстройства, или для дополнительного улучшения физического или психического состояния или повышения умственной активности. Этот термин также относится к веществам, которые применяются в качестве косметических средств; к продуктам питания или к любым их комбинациям. В предпочтительном варианте изобретения указанный термин означает биологически активные вещества. Используемый здесь термин «биологически активное вещество» означает биологически активные вещества, включая терапевтически лекарственные средства, эндогенные молекулы и фармакологически активные вещества, например антитела; питательные вещества; косметические средства; диагностические вещества; и дополнительные контрастные вещества для визуализации. Этот термин также охватывает активные вещества, включая фармакологически приемлемые соли активных веществ.

Примерами лекарственных средств являются нуклеиновые кислоты, такие как полинуклеотиды, антисмысловые нуклеотиды (средства для генотерапии), молекулы РНК, молекулы ДНК, молекулы киРНК, миРНК и т.п., углеводы, белки или пептиды, небольшие молекулы, липиды, липополисахариды, непептидные или небелковые лекарственные средства. В объем настоящего изобретения могут входить лекарственные средства, имеющие полимерную природу, а также лекарственные средства с относительно небольшой молекулярной массой, составляющей менее чем 1500 г/моль, или даже менее чем 500 г/моль.

В соответствии с этим, биологически активными веществами, рассматриваемыми в контексте настоящего изобретения, являются любые соединения, обладающие терапевтическим или профилактическим действием. Такими соединениями могут быть соединения, влияющие на рост ткани, рост клеток и дифференцировку клеток или участвующие в таком росте или дифференцировке; соединения, обладающие способностью индуцировать биологическое действие, такое как иммунный ответ, или соединения, которые могут играть какую-либо другую роль в одном или в нескольких биологических процессах. Неограничивающий список примеров таких соединений включает антимикробные средства (включая антибактериальные, противовирусные и противогрибковые средства), противовирусные средства, противоопухолевые средства, ингибиторы тромбина, антитромботические средства, тромболитические средства, фибринолитические средства, ингибиторы спазмов сосудов, блокаторы кальциевых каналов, вазодилататоры, гипотензивные средства, антимикробные средства, антибиотики, ингибитор рецепторов поверхностного гликопротеина, антитромбоцитарные средства, антимитотические средства, ингибиторы образования микротрубочек, антисекреторные агенты, ингибиторы актина, ингибиторы ремоделирования ткани, антиметаболиты, антипролиферативные средства (включая антиангиогенные средства), противораковые химиотерапевтические средства, стероидные или нестероидные противовоспалительные средства, иммунодепрессанты, антагонисты гормона роста, стимулы роста, агонисты допамина, средства, применяемые в лучевой терапии, компоненты внеклеточного матрикса, ингибиторы ангиотензин-конвертирующего фермента (АСЕ), акцепторы свободных радикалов, хелатообразующие вещества, антиоксиданты и полимеразы, а также средства для фотодинамической терапии.

Относительно небольшие пептиды могут называться по числу аминокислот (например, ди-, три- и тетрапептиды). Пептид с относительно небольшим числом амидных связей может также называться олигопептидом (содержащим до 50 аминокислот), а пептид с относительно большим числом аминокислот (более чем 50 аминокислот) может называться полипептидом или белком. Помимо полимера, состоящего из аминокислотных остатков, некоторые белки могут также характеризоваться так называемой четвертичной структурой, то есть конгломератом из ряда полипептидов, которые необязательно должны быть химически связаны амидными связями, но которые связаны под действием сил, в основном, известных специалист