Топливная композиция

Иллюстрации

Показать все

Изобретение относится к композиции дизельного топлива, которая содержит в качестве присадки четвертичную аммониевую соль, образованную путем взаимодействия соединения формулы (А) и соединения, образованного путем взаимодействия гидрокарбилзамещенного ацилирующего агента и амина формулы (В1) или (В2), где R представляет собой возможно замещенную алкильную, алкенильную, арильную или алкиларильную группу; R1 представляет собой C1-C22 алкильную, арильную или алкиларильную группу; R2 и R3 представляют собой одинаковые или разные алкильные группы, имеющие от 1 до 22 атомов углерода; X представляет собой алкиленовую группу, имеющую от 1 до 20 атомов углерода; n равно от 0 до 20; m равно от 1 до 5; R4 представляет собой водород или C1-C22 алкильную группу. Также описывается пакет присадок для композиции дизельного топлива и применение присадки четвертичной аммониевой соли в композиции дизельного топлива для улучшения эксплуатационных характеристик топлива. Технический результат заключается в предотвращении или уменьшении отложений в дизельном двигателе, в частности в форсунках, что, в свою очередь, приводит к увеличению мощности и/или увеличению экономии топлива 4 н. и 13 з.п. ф-лы, 10 ил., 5 табл., 24 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к топливным композициям и присадкам к ним. В частности, изобретение относится к присадкам для дизельных топливных композиций, особенно к присадкам, подходящим для применения в современных дизельных двигателях с топливными системами высокого давления.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Благодаря потребительскому спросу и законодательству дизельные двигатели в последние годы стали намного более энергоэкономичными, демонстрируют улучшенные характеристики и имеют сниженные выбросы.

Эти улучшения характеристик и выбросов были обусловлены улучшениями в процессе сгорания. Для достижения распыления топлива, необходимого для этого улучшенного сгорания, было разработано оборудование для впрыска топлива, в котором используются более высокие давления впрыска и уменьшенные диаметры отверстий топливных форсунок. Давление топлива в сопле форсунки в настоящее время часто превышает 1500 бар (1,5·108 Па). Для достижения этих давлений работа, которая должна быть сделана на топливе, также увеличивает температуру топлива. Эти высокие давления и температуры могут вызывать разложение топлива.

Дизельные двигатели, имеющие топливные системы высокого давления, могут включать в себя, но не ограничиваются этим, дизельные двигатели для тяжелого режима работы и дизельные двигатели для небольших легковых автомобилей. Дизельные двигатели для тяжелого режима работы могут включать в себя очень мощные двигатели, такие как дизель MTU серия 4000, имеющий варианты с 20 цилиндрами, предназначенные главным образом для судов и генерирования энергии с выходной мощностью вплоть до 4300 кВт, или двигатели, такие как Renault dXi 7, имеющие 6 цилиндров и выходную мощность около 240 кВт. Характерным дизельным двигателем легкового автомобиля является Peugeot DW10, имеющим 4 цилиндра и выходную мощность 100 кВт или меньше в зависимости от варианта.

Во всех дизельных двигателях, относящихся к данному изобретению, общим признаком является топливная система высокого давления. Обычно используются давления, превышающие 1350 бар (1,35·108 Па), но часто могут существовать давления вплоть до 2000 бар (2·108 Па) или больше.

Двумя неограничивающими примерами таких топливных систем высокого давления являются: система прямого впрыска топлива (Common Rail Injection System), в которой топливо сжимается с использованием насоса высокого давления, который подает его в клапаны системы впрыска топлива через общий трудопровод; и система насосов-форсунок, которая объединяет насос высокого давления и клапан впрыска топлива в одном блоке, причем достигаются наивысшие возможные давления впрыска, превышающие 2000 бар (2·108 Па). В обеих системах при сжатии топлива оно становится горячим, часто до температур около 100°С или выше.

В системах прямого впрыска топливо хранится при высоком давлении в центральном накопительном канале или раздельных накопителях, после чего доставляется в форсунки. Часто некоторое количество нагретого топлива возвращается в часть топливной системы низкого давления или возвращается в топливный бак. В системах насосов-форсунок топливо сжимается внутри форсунки с целью получения больших давлений впрыска. Это, в свою очередь, увеличивает температуру топлива.

В обеих системах топливо присутствует в корпусе форсунки перед впрыском, где оно дополнительно нагревается благодаря теплу из камеры сгорания. Температура топлива на наконечнике форсунки может достигать 250-350°С.

Таким образом, перед впрыском топливо сжимается при давлениях от 1350 бар (1,35·108 Па) до более чем 2000 бар (2·108 Па) и температурах от примерно 100°С до 350°С, иногда возвращаясь обратно в топливную систему, таким образом увеличивая время, в течение которого топливо находится в таких условиях.

Общей проблемой дизельных двигателей является засорение форсунки, особенно корпуса форсунки и сопла форсунки. Засорение также может происходить в топливном фильтре. Засорение сопла форсунки происходит, когда сопло блокируется отложениями из дизельного топлива. Засорение топливных фильтров может быть связано с возвращением топлива обратно в топливный бак. Количество отложений увеличивается при разложении топлива. Отложения могут принимать вид углеродистых коксообразных остатков или липких или смолистых остатков. Дизельные топлива становятся все более и более нестабильными по мере их нагревания, в особенности, если нагревание осуществляется под давлением. Таким образом, дизельные двигатели, имеющие топливные системы высокого давления, могут вызывать повышенное разложение топлива.

Проблема засорения форсунок может возникнуть при использовании любого типа дизельного топлива. Однако некоторые топлива могут быть особенно склонны к тому, чтобы вызывать засорение, или при использовании этих топлив засорение может возникать быстрее. Например, было обнаружено, что топлива, содержащие биодизельное топливо, более легко вызывают засорение форсунок. Дизельные топлива, содержащие соединения металлов, также могут приводить к повышенным отложениям. Соединения металлов могут быть специально добавлены к топливу в композициях присадок или могут присутствовать в виде соединений-загрязнителей. Загрязнение происходит, если соединения металлов из систем подачи топлива, систем распределения транспортного средства, топливных систем транспортного средства, других металлических компонентов и смазывающих масел растворяются или диспергируются в топливе.

В частности, повышенные отложения образуют переходные металлы, особенно соединения меди и цинка. В характерных случаях они могут присутствовать в количествах от нескольких млрд-1 (частей на миллиард) вплоть до 50 млн-1, но полагают, что количества, вероятно вызывающие проблемы, составляют от 0,1 до 50 млн-1, например, от 0,1 до 10 млн-1.

Когда форсунки блокируются или частично блокируются, доставка топлива становится менее эффективной, и происходит плохое смешивание топлива с воздухом. Со временем это приводит к потере мощности двигателя, повышенным выбросам отработавших газов и плохой экономии топлива.

С уменьшением отверстия сопла форсунки относительное влияние образования отложений становится более значительным. При простом арифметическом подсчете слой отложений толщиной 5 мкм в отверстии диаметром 500 мкм уменьшает поперечное сечение потока на 4%, а тот же слой отложений толщиной 5 мкм в отверстии диаметром 200 мкм уменьшает поперечное сечение потока на 9,8%.

В настоящее время для уменьшения коксования в дизельное топливо могут быть добавлены азотсодержащие детергенты. Характерными азотсодержащими детергентами являются детергенты, полученные в результате взаимодействия полиизобутилензамещенного производного янтарной кислоты с полиалкиленполиамином. Однако более новые двигатели, включающие более узкие сопла форсунок, являются более чувствительными, и современные дизельные топлива могут не подходить для использования с новыми двигателями, включающими эти более узкие отверстия форсунок.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Авторами изобретения были разработаны композиции дизельного топлива, которые при использовании в дизельных двигателях, имеющих топливные системы высокого давления, обеспечивают улучшенные характеристики по сравнению с композициями дизельного топлива из предшествующего уровня техники.

Предпочтительно предложена композиция дизельного топлива, которая предотвращает или уменьшает возникновение отложений в дизельном двигателе. Можно считать, что такие топливные композиции осуществляют функцию "поддержания чистоты" ("keep clean"), т.е. они предотвращают или подавляют засорение.

Однако также было бы желательно предложить композицию дизельного топлива, которая могла бы помочь удалить отложения, которые уже образовались в двигателе, в частности отложения, которые образовались на форсунках. Такая топливная композиция, которая при сгорании в дизельном двигателе удаляет из него отложения, осуществляет таким образом "очистку" ("clean-up") уже загрязненного двигателя.

Как и в случае свойств "поддержания чистоты", "очистка" загрязненного двигателя может обеспечивать значительные преимущества. Например, высококачественная очистка может приводить к увеличению мощности и/или увеличению экономии топлива. Кроме того, удаление отложений из двигателя, в частности из форсунок, может приводить к увеличению интервала времени до того, как потребуется техническое обслуживание или замена форсунок, таким образом снижая затраты на техническое обслуживание.

Хотя по причинам, упомянутым выше, отложения на форсунках являются специфической проблемой, возникающей в современных дизельных двигателях с топливными системами высокого давления, желательно предложить композицию дизельного топлива, которая также обеспечивает эффективное моющее действие в старых традиционных дизельных двигателях, так чтобы одно топливо, подаваемое с топливно-раздаточных колонок, могло быть использовано в двигателях всех типов.

Также желательно, чтобы топливные композиции уменьшали засорение топливных фильтров транспортного средства. Было бы полезно предложить композиции, которые предотвращают или ингибируют возникновение отложений в топливных фильтрах, т.е. обеспечивают функцию "поддержания чистоты". Было бы полезно предложить композиции, которые удаляют существующие отложения из топливных фильтров, т.е. осуществляют функцию "очистки" ("clean up"). Композиции, способные обеспечивать обе эти функции, были бы особенно полезными.

Согласно первому аспекту изобретения предложена композиция дизельного топлива, содержащая в качестве присадки четвертичную аммониевую соль, образованную путем взаимодействия соединения формулы (А):

и соединения, образованного путем взаимодействия гидрокарбилзамещенного ацилирующего агента и амина формулы (В1) или (В2):

где R представляет собой возможно замещенную алкильную, алкенильную, арильную или алкиларильную группу; R1 представляет собой С122 алкильную, арильную или алкиларильную группу; R2 и R3 представляют собой одинаковые или разные алкильные группы, имеющие от 1 до 22 атомов углерода; X представляет собой алкиленовую группу, имеющую от 1 до 20 атомов углерода; n равно 0 до 20; m равно от 1 до 5; R4 представляет собой водород или С122 алкильную группу.

В данном описании эти соединения-присадки могут быть названы "присадками, представляющими собой четвертичные аммониевые соли".

Соединение формулы (А) представляет собой сложный эфир карбоновой кислоты, способной взаимодействовать с третичным амином с образованием четвертичной аммониевой соли.

Подходящие соединения формулы (А) включают в себя сложные эфиры карбоновых кислот, имеющих рКа 3,5 или меньше.

Соединение формулы (А) представляет собой предпочтительно сложный эфир карбоновой кислоты, выбранной из замещенной ароматической карбоновой кислоты, α-гидроксикарбоновой кислоты и поликарбоновой кислоты.

В некоторых предпочтительных примерах осуществления соединение формулы (А) представляет собой сложный эфир замещенной ароматической карбоновой кислоты и, таким образом, R представляет собой замещенную арильную группу.

Предпочтительно R представляет собой замещенную арильную группу, имеющую от 6 до 10 атомов углерода, предпочтительно фенильную или нафтильную группу, наиболее предпочтительно фенильную группу. R соответственно замещен одной или более группами, выбранными из карбоалкокси, нитро, циано, гидрокси, SR5 или NR5R6. Каждый из R5 и R6 может представлять собой водород или возможно замещенные алкильные, алкенильные, арильные или карбоалкоксигруппы. Предпочтительно каждый из R5 и R6 представляет собой водород или возможно замещенную С122 алкильную группу, предпочтительно водород или C1-C16 алкильную группу, предпочтительно водород или С110 алкильную группу, более предпочтительно водород или С14 алкильную группу. Предпочтительно R5 представляет собой водород, и R6 представляет собой водород или С14 алкильную группу. Наиболее предпочтительно оба R5 и R6 представляют собой водород. Предпочтительно R представляет собой арильную группу, замещенную одной или более группами, выбранными из гидрокси, карбоалкокси, нитро, циано и NH2. R может представлять собой полизамещенную арильную группу, например, тригидроксифенил. Предпочтительно R представляет собой монозамещенную арильную группу. Предпочтительно R представляет собой ортозамещенную арильную группу. Предпочтительно R может быть замещен группой, выбранной из ОН, NH2, NO2 или COOMe. Предпочтительно R замещен группой ОН или NH2. Предпочтительно R может представлять собой гидроксизамещенную арильную группу. Наиболее предпочтительно R представляет собой 2-гидроксифенильную группу.

Предпочтительно R1 представляет собой алкильную или алкиларильную группу. R1 может представлять собой C1-C16 алкильную группу, предпочтительно C1-C10 алкильную группу, предпочтительно C1-C8 алкильную группу. R1 может представлять собой C1-C16 алкиларильную группу, предпочтительно C1-C10 алкильную группу, предпочтительно C1-C8 алкиларильную группу. R1 может представлять собой метил, этил, пропил, бутил, пентил, бензил или его изомер. Предпочтительно R1 представляет собой бензил или метил. Наиболее предпочтительно R1 представляет собой метил.

Особенно предпочтительным соединением формулы (А) является метилсалицилат.

В некоторых примерах осуществления соединение формулы (А) представляет собой сложный эфир α-гидроксикарбоновой кислоты. В таких примерах осуществления соединение формулы (А) имеет структуру:

,

где R7 и R8 являются одинаковыми или разными, и каждый выбран из водорода, алкила, алкенила, аралкила или арила. Соединения этого типа, подходящие для применения в данной работе, описаны в ЕР 1254889.

Примеры соединений формулы (А), в которых RCOO представляет собой остаток α-гидроксикарбоновой кислоты, включают в себя метил-, этил-, пропил-, бутил-, пентил-, гексил-, бензил-, фенил- и аллильные сложные эфиры 2-гидроксиизомасляной кислоты; метил-, этил-, пропил-, бутил-, пентил-, гексил-, бензил-, фенил- и аллильные сложные эфиры 2-гидрокси-2-метилмасляной кислоты; метил-, этил-, пропил-, бутил-, пентил-, гексил-, бензил-, фенил- и аллильные сложные эфиры 2-гидрокси-2-этилмасляной кислоты; метил-, этил-, пропил-, бутил-, пентил-, гексил-, бензил-, фенил- и аллильные сложные эфиры молочной кислоты; и метил-, этил-, пропил-, бутил-, пентил-, гексил-, аллил-, бензил- и фенильные сложные эфиры гликолевой кислоты. Из вышеуказанных предпочтительным соединением является метил-2-гидроксиизобутират.

В некоторых примерах осуществления соединение формулы (А) представляет собой сложный эфир поликарбоновой кислоты. Предполагается, что это определение включает дикарбоновые кислоты и карбоновые кислоты, имеющие более 2 кислотных группировок. В таких примерах осуществления RCOO предпочтительно присутствует в форме сложного эфира, где одна или более кислотных групп, присутствующих в группе R, находятся в этерифицированной форме. Предпочтительными сложными эфирами являются C1-C4 алкильные сложные эфиры.

Соединение (А) может быть выбрано из сложного диэфира щавелевой кислоты, сложного диэфира фталевой кислоты, сложного диэфира малеиновой кислоты, сложного диэфира малоновой кислоты или сложного диэфира лимонной кислоты. Одним из особенно предпочтительных соединений формулы (А) является диметилоксалат.

В предпочтительных примерах осуществления соединение формулы (А) представляет собой сложный эфир карбоновой кислоты, имеющей рКа менее 3,5. В таких примерах осуществления, в которых соединение включает более чем одну кислотную группу, подразумевают первую константу диссоциации.

Соединение (А) может быть выбрано из сложного эфира карбоновой кислоты, выбранной из одной или более из щавелевой кислоты, фталевой кислоты, салициловой кислоты, малеиновой кислоты, малоновой кислоты, лимонной кислоты, нитробензойной кислоты, аминобензойной кислоты и 2,4,6-тригидроксибензойной кислоты.

Предпочтительные соединения формулы (А) включают в себя диметилоксалат, метил-2-нитробензоат и метилсалицилат.

Для образования присадок четвертичных аммониевых солей по изобретению соединение формулы (А) подвергают взаимодействию с соединением, образованным в результате взаимодействия гидрокарбилзамещенного ацилирующего агента и амина формулы (В1) или (В2).

Когда используют соединение формулы (В1), R4 представляет собой предпочтительно водород или С116 алкильную группу, предпочтительно C1-C10 алкильную группу, более предпочтительно C1-C6 алкильную группу. Более предпочтительно R4 выбран из водорода, метила, этила, пропила, бутила и их изомеров. Наиболее предпочтительно R4 представляет собой водород.

Когда используют соединение формулы (В2), m предпочтительно равно 2 или 3, наиболее предпочтительно 2; n предпочтительно равно от 0 до 15, предпочтительно от 0 до 10, более предпочтительно от 0 до 5. Наиболее предпочтительно n равно 0, и соединение формулы (В2) представляет собой спирт.

Предпочтительно гидрокарбилзамещенный ацилирующий агент подвергают взаимодействию с диаминным соединением формулы (В1).

Каждый из R2 и R3 может представлять собой независимо C1-C16 алкильную группу, предпочтительно С110 алкильную группу. R2 и R3 могут представлять собой независимо метил, этил, пропил, бутил, пентил, гексил, гептил, октил или изомер любого из них. Предпочтительно каждый из R2 и R3 представляет собой независимо C1-C4 алкил. Предпочтительно, R2 представляет собой метил. Предпочтительно R3 представляет собой метил.

X представляет собой предпочтительно алкиленовую группу, имеющую от 1 до 16 атомов углерода, предпочтительно от 1 до 12 атомов углерода, более предпочтительно от 1 до 8 атомов углерода, например от 2 до 6 атомов углерода или от 2 до 5 атомов углерода. Наиболее предпочтительно X представляет собой этиленовую, пропиленовую или бутиленовую группу, особенно пропиленовую группу.

Особенно предпочтительным соединением формулы (В1) является диметиламинопропиламин.

Амин формулы (В1) или (В2) подвергают взаимодействию с гидрокарбилзамещенным ацилирующим агентом. Гидрокарбилзамещенный ацилирующий агент может быть основан на гидрокарбилзамещенной моно-, ди- или поликарбоновой кислоте или ее реакционноспособном эквиваленте. Предпочтительно гидрокарбилзамещенный ацилирующий агент представляет собой соединение гидрокарбилзамещенной янтарной кислоты, такое как янтарная кислота или янтарный ангидрид.

Гидрокарбильный заместитель предпочтительно содержит по меньшей мере 10, более предпочтительно по меньшей мере 12, например 30 или 50 атомов углерода. Он может содержать вплоть до примерно 200 атомов углерода. Предпочтительно гидрокарбильный заместитель имеет среднечисленную молекулярную массу (Mn) от 170 до 2800, например от 250 до 1500, предпочтительно от 500 до 1500, и более предпочтительно от 500 до 1100. Особенно предпочтительной является Mn от 700 до 1300.

Гидрокарбильные заместители могут быть получены из гомо- или интерполимеров (например, сополимеров, терполимеров) моно- и диолефинов, имеющих от 2 до 10 атомов углерода, например, этилена, пропилена, бутена-1, изобутена, бутадиена, изопрена, 1-гексена, 1-октена и т.д. Предпочтительно эти олефины представляют собой 1-моноолефины. Гидрокарбильный заместитель также может быть получен из галогенированных (например, хлорированных или бромированных) аналогов таких гомо- или интерполимеров. Альтернативно, заместитель может быть получен из других источников, например мономерных высокомолекулярных алкенов (например, 1-тетраконтена) и их хлорированных и гидрохлорированных аналогов, алифатических петролейных фракций, например парафиновых восков и их подвергнутых крекингу и хлорированных и гидрохлорированных аналогов, белых масел, синтетических алкенов, например алкенов, полученных по методу Циглера-Натта (например, поли(этилен)овые смазки) и из других источников, известных специалистам в данной области. При желании любая ненасыщенность в заместителе может быть уменьшена или элиминирована посредством гидрирования согласно процедурам, известным в данной области.

Термин "гидрокарбильный", как использовано в данной работе, обозначает группу, имеющую атом углерода, непосредственно присоединенный к остатку молекулы и имеющий преимущественно алифатический углеводородный характер. Подходящие гидрокарбильные группы могут содержать неуглеводородные группировки. Например, они могут содержать вплоть до одной негидрокарбильной группы на каждые десять атомов углерода, при условии, что эта негидрокарбильная группа существенно не изменяет преимущественно углеводородный характер группы. Специалисты в данной области имеют представление о таких группах, которые включают, например, гидроксил, кислород, галогено (особенно хлоро и фторо), алкоксил, алкилмеркапто, алкилсульфокси и т.д. Предпочтительные гидрокарбильные заместители являются чисто алифатическими углеводородами по характеру и не содержат такие группы.

Гидрокарбильные заместители предпочтительно являются преимущественно насыщенными, т.е. они содержат не более чем одну ненасыщенную углерод-углеродную связь на каждые десять присутствующих одинарных углерод-углеродных связей. Наиболее предпочтительно они содержат не более чем одну ненасыщенную углерод-углеродную связь на каждые 50 присутствующих углерод-углеродных связей.

Предпочтительными гидрокарбильными заместителями являются полиизобутилены, известные в данной области. Таким образом, в особенно предпочтительных примерах осуществления гидрокарбилзамещенный ацилирующий агент представляет собой полиизобутенилзамещенный янтарный ангидрид.

Получение полиизобутенилзамещенных янтарных ангидридов (английское обозначение - polyisobutenyl substituted succinic anhydrides, соответствующее сокращение - PIBSA) известно в данной области техники. Подходящие способы включают в себя термическое взаимодействие полиизобутенов с малеиновым ангидридом (см, например, US 3361673 А и US 3018250 А) и взаимодействие галогенированного, в частности хлорированного, полиизобутена (английское обозначение - polyisobutene, соответствующее сокращение - PIB) с малеиновым ангидридом (см., например, US 3172892 А). Альтернативно, полиизобутенил-янтарный ангидрид может быть получен путем смешивания полиолефина с малеиновым ангидридом и пропускания хлора через эту смесь (см., например, GB 949981 А).

Традиционные полиизобутены и так называемые "высоко реакционноспособные" полиизобутены являются подходящими для применения в изобретении. Высоко реакционноспособные полиизобутены в этом контексте определены как полиизобутены, где по меньшей мере 50%, предпочтительно 70% или более концевых олефиновых двойных связей принадлежат к винилиденовому типу, как описано в ЕР 0565285. Особенно предпочтительными полиизобутенами являются полиизобутены, имеющие более чем 80 мол.% и вплоть до 100% концевых винилиденовых групп, таких как описанные в ЕР 1344785.

Другие предпочтительные гидрокарбильные группы включают в себя группы, имеющие внутренний олефин, например, как описано в опубликованной заявке заявителей WO 2007/015080.

Термин «внутренний олефин», как использовано в данной работе, означает любой олефин, содержащий преимущественно не-альфа двойную связь, т.е. бета- или высший олефин. Предпочтительно такие вещества, по существу, являются полностью бета- и высшими олефинами, например, содержат менее 10% по массе альфа-олефина, более предпочтительно менее 5% по массе или менее 2% по массе. Характерные внутренние олефины включают в себя Neodene 1518IO, поставляемый фирмой Shell.

Внутренние олефины иногда называют изомеризованными олефинами, и они могут быть получены из альфа-олефинов способом изомеризации, известным в данной области, или доступны из других источников. Тот факт, что они также известны как внутренние олефины, отражает то, что они не обязательно должны быть получены путем изомеризации.

В особенно предпочтительных примерах осуществления присадки четвертичные аммониевые соли по изобретению представляют собой соли третичных аминов, полученные из диметиламинопропиламина и полиизобутилензамещенного янтарного ангидрида. Средняя молекулярная масса полиизобутиленового заместителя предпочтительно составляет от 700 до 1300.

Присадки четвертичные аммониевые соли по изобретению могут быть получены любым подходящим способом. Такие способы известны специалисту в данной области и проиллюстрированы в данной работе. В характерных случаях присадки четвертичные аммониевые соли получены путем нагревания соединения формулы (А) и соединения формулы (В1) или (В2) в приблизительном молярном соотношении 1:1, возможно в присутствии растворителя. Полученная неочищенная реакционная смесь может быть добавлена непосредственно в дизельные топливо, возможно после удаления растворителя. Как было обнаружено, любые побочные продукты или остаточные исходные вещества, все еще присутствующие в смеси, не вызывают какого-либо ухудшения эффективности присадки. Таким образом, согласно настоящему изобретению может быть получена композиция дизельного топлива, содержащая реакционный продукт соединения формулы (А) и соединения формулы (В1) или (В2).

В некоторых примерах осуществления композиция по изобретению может содержать дополнительную присадку, где эта дополнительная присадка является продуктом реакции Манниха между:

(а) альдегидом;

(б) полиамином; и

(в) возможно замещенным фенолом (т.е фенолом, который может быть замещенным).

Здесь и далее эти соединения могут быть названы "присадками Манниха". Таким образом, в некоторых предпочтительных примерах осуществления в изобретении предложена композиция дизельного топлива, содержащая присадку, представляющую собой четвертичные аммониевые соли, и присадку Манниха.

Любой альдегид может быть использован в качестве альдегидного компонента (а) присадки Манниха. Предпочтительно альдегидный компонент (а) представляет собой алифатический альдегид. Предпочтительно альдегид имеет от 1 до 10 атомов углерода, предпочтительно от 1 до 6 атомов углерода, более предпочтительно от 1 до 3 атомов углерода. Наиболее предпочтительно альдегид представляет собой формальдегид.

Полиаминный компонент (б) присадки Манниха может быть выбран из любого соединения, включающего две или более аминных групп.Предпочтительно полиамин представляет собой полиалкиленполиамин. Предпочтительно полиамин представляет собой полиалкиленполиамин, в котором алкиленовый компонент имеет от 1 до 6, предпочтительно от 1 до 4, наиболее предпочтительно от 2 до 3 атомов углерода. Наиболее предпочтительно полиамин представляет собой полиэтиленполиамин.

Предпочтительно полиамин имеет от 2 до 15 атомов азота, предпочтительно от 2 до 10 атомов азота, более предпочтительно от 2 до 8 атомов азота.

Предпочтительно полиаминный компонент (б) включает группировку R1R2NCHR3CHR4NR5R6, где каждый из R1, R2 R3, R4, R5 и R6 независимо выбран из водорода, и возможно замещенного алкильного, алкенильного, алкинильного, арильного, алкиларильного или арилалкильного заместителя.

Таким образом, полиаминные реагенты, используемые для получения продуктов реакции Манниха по изобретению, предпочтительно включают возможно замещенный этилендиаминный остаток.

Предпочтительно по меньшей мере один из R1 и R2 представляет собой водород. Предпочтительно оба R1 и R2 представляют собой водород.

Предпочтительно по меньшей мере два из R1, R2, R5 и R6 представляют собой водород.

Предпочтительно по меньшей мере один из R3 и R4 представляет собой водород. В некоторых предпочтительных примерах осуществления каждый из R3 и R4 представляет собой водород. В некоторых примерах осуществления R3 представляет собой водород, и R4 представляет собой алкил, например C1-C4 алкил, особенно метил.

Предпочтительно по меньшей мере один из R5 и R6 представляет собой возможно замещенный алкильный, алкенильный, алкинильный, арильный, алкиларильный или арилалкильный заместитель.

В примерах осуществления, в которых по меньшей мере один из R1, R2, R3, R4, R5 и R6 не является водородом, каждый из них независимо выбран из возможно замещенной алкильной, алкенильной, алкинильной, арильной, алкиларильной или арилалкильной группировки. Предпочтительно каждый из них независимо выбран из водорода и возможно замещенной C1-6 алкильной группировки.

В особенно предпочтительных соединениях каждый из R1, R2, R3, R4 и R5 представляет собой водород, и R6 представляет собой возможно замещенный алкильный, алкенильный, алкинильный, арильный, алкиларильный или арилалкильный заместитель. Предпочтительно R6 представляет собой возможно замещенную алкильную группировку.

Такая алкильная группировка может быть замещена одной или более группами, выбранными из гидроксила, амино (особенно незамещенного амино; -NH-, -NH2), сульфо, сульфокси, C1-4 алкокси, нитро, галогено (особенно хлоро или фторо) и меркапто.

В алкильную цепь могут быть включены один или более гетероатомов, например, О, N или S, с получением простого эфира, амина или простого тиоэфира.

Особенно предпочтительными заместителями R1, R2, R3, R4, R5 или R6 являются гидрокси-С1-4 алкил и амино-С1-4 алкил, особенно НО-СН2-СН2- и H2N-CH2-СН2-.

Предпочтительно полиамин включает только аминную функциональную группу, или аминную и спиртовую функциональные группы.

Например, полиамин может быть выбран из этилендиамина, диэтилентриамина, триэтилентетрамина, тетраэтиленпентамина, пентаэтиленгексамина, гексаэтиленгептамина, гептаэтиленоктмина, пропан-1,2-диамина, 2-(2-амино-этиламино)этанола, и N',N'-бис(2-аминоэтил)этилендиамина (N(CH2CH2NH2)3). Наиболее предпочтительно полиамин включает тетраэтиленпентамин или этилендиамин.

Коммерчески доступные источники полиаминов обычно содержат смеси изомеров и/или олигомеров, и продукты, полученные из этих коммерчески доступных смесей, подпадают под объем изобретения.

Полиамины, используемые для получения присадок Манниха по изобретению, могут быть прямоцепочечными или разветвленными и могут включать циклические структуры.

В предпочтительных примерах осуществления присадки Манниха по изобретению имеют относительно низкую молекулярную массу.

Предпочтительно молекулы продукта присадки Манниха имеют среднечисленную молекулярную массу менее 10000, предпочтительно менее 7500, предпочтительно менее 2000, более предпочтительно менее 1500.

Возможно замещенный фенольный компонент (в) может быть замещен группами в количестве от 0 до 4 на ароматическом кольце (в дополнение к фенольной ОН группе). Например, он может представлять собой три- или дизамещенный фенол. Наиболее предпочтительно, компонент (в) представляет собой монозамещенный фенол. Замещение может быть осуществлено в орто- и/или мета- и/или пара-положении (положениях).

Каждая фенольная группировка может быть орто-, мета- или паразамещена альдегидным/аминным остатком. Обычно образуются соединения, в которых альдегидный остаток является орто- или паразамещенным. Могут образовываться смеси соединений. В предпочтительных примерах осуществления исходный фенол является паразамещенным, и, таким образом, получается ортозамещенный продукт.

Фенол может быть замещен любой общей группой, например, одной или более чем одной алкильной группой, алкенильной группой, алкинильной группой, нитрильной группой, карбоновой кислотой, сложным эфиром, простым эфиром, группой алкокси, группой галогено, дополнительной гидроксильной группой, группой меркапто, группой алкилмеркапто, группой алкилсульфокси, группой сульфокси, арильной группой, арилалкильной группой, замещенной или незамещенной аминной группой или нитрогруппой.

Предпочтительно фенол несет один или более возможно замещенных алкильных заместителей. Алкильный заместитель возможно может быть замещен, например, гидроксилом, галогено (особенно хлоро и фторо), алкокси, алкилом, меркапто, алкилсульфокси, арильными или амино-остатками. Предпочтительно алкильная группа, по существу, состоит из атомов углерода и водорода. Замещенный фенол может включать алкенильный или алкинильный остаток, включающий одну или более двойных и/или тройных связей. Наиболее предпочтительно компонент (в) представляет собой алкилзамещенную фенольную группу, в которой алкильная цепь является насыщенной. Алкильная цепь может быть линейной или разветвленной.

Предпочтительно компонент (в) представляет собой моноалкилфенол, особенно паразамещенный моноалкилфенол.

Предпочтительно компонент (в) включает алкилзамещенный фенол, в котором фенол несет одну или более алкильных цепей, имеющих в общем менее 28 атомов углерода, предпочтительно менее 24 атомов углерода, более предпочтительно менее 20 атомов углерода, предпочтительно менее 18 атомов углерода, предпочтительно менее 16 атомов углерода и наиболее предпочтительно менее 14 атомов углерода.

Предпочтительно алкильный заместитель компонента (в) или каждый из них имеет от 4 до 20 атомов углерода, предпочтительно от 6 до 18, более предпочтительно от 8 до 16, особенно от 10 до 14 атомов углерода. В особенно предпочтительном примере осуществления компонент (в) представляет собой фенол, имеющий С12 алкильный заместитель.

Предпочтительно заместитель фенольного компонента (в) или каждый из них имеет молекулярную массу менее 400, предпочтительно менее 350, предпочтительно менее 300, более предпочтительно менее 250 и наиболее предпочтительно менее 200. Или каждый заместитель фенольного компонента (в) соответственно может иметь молекулярную массу от 100 до 250, например от 150 до 200.

Молекулы компонента (в) предпочтительно имеют молекулярную массу в среднем менее 1800, предпочтительно менее 800, предпочтительно менее 500, более предпочтительно менее 450, предпочтительно менее 400, предпочтительно менее 350, более предпочтительно менее 325, предпочтительно менее 300 и наиболее предпочтительно менее 275.

Каждый из компонентов (а), (б) и (в) может содержать смесь соединений и/или смесь изомеров.

Присадка Манниха представляет собой предпочтительно реакционный продукт, полученный путем взаимодействия компонентов (а), (б) и (в) в молярном соотношении от 5:1:5 до 0,1:1:0,1, более предпочтительно от 3:1:3 до 0,5:1:0,5.

Для образования присадки Манниха по изобретению компоненты (а) и (б) предпочтительно подвергают взаимодействию в молярном соотношении от 6:1 до 1:4 (альдегид: полиамин), предпочтительно от 4:1 до 1:2, более предпочтительно от 3:1 до 1:1.

Для образования предпочтительной присадки Манниха по изобретению молярное соотношение компонента (а) к компоненту (в) (альдегид: фенол) в реакционной смеси предпочтительно составляет от 5:1 до 1:4, предпочтительно от 3:1 до 1:2, например от 1,5:1 до 1:1,1.

Некоторые предпочтительные соединения, используемые в изобретении, обычно образуются в результате взаимодействия компонентов (а), (б) и (в) в молярном соотношении 2 части (А) к 1 части (б)±0,2 части (б), до 2 частей (в)±0,4 части (в); предпочтительно приблизительно 2:1:2 (а: б: в).

Некоторые предпочтительные соединения, используемые в изобретении, обычно образуются в результате взаимодействия компонентов (а), (б) и (в) в молярном соотношении 2 части (А) к 1 части (б)±0,2 части (б), до 1,5 частей (в)±0,3 части (в); предпочтительно приблизительно 2:1:1,5 (