Системы и способы обеспечения устойчивого экономического развития путем интегрированной выработки возобновляемой энергии полного спектра
Иллюстрации
Показать всеВ одном варианте выполнения изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии, причем первый источник возобновляемой энергии, электролизер или энергоноситель получает дополнительное тепло от первого источника тепла; и первый источник тепла выбран из группы, состоящей из геотермального и солнечного источника тепла. 5 н. и 36 з.п. ф-лы, 26 ил.
Реферат
Перекрестная ссылка на родственные заявки
[0001] Настоящая заявка испрашивает приоритет и преимущества предварительной заявки США № 61/304403 с датой подачи 13 февраля 2010 г., озаглавленной "ЭНЕРГИЯ ПОЛНОГО СПЕКТРА И СЫРЬЕВАЯ НЕЗАВИСИМОСТЬ"; патентной заявки США № 12/707651 с датой подачи 17 февраля 2010 г., озаглавленной "ЭЛЕКТРОЛИТИЧЕСКИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ"; патентной заявки PCT № PCT/US10/24497 с датой подачи 17 февраля 2010 г., озаглавленной "ЭЛЕКТРОЛИТИЧЕСКИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ"; патентной заявки США № 12/707653 с датой подачи 17 февраля 2010 г., озаглавленной "УСТАНОВКА И СПОСОБ УПРАВЛЕНИЯ НУКЛЕАЦИЕЙ В ХОДЕ ЭЛЕКТРОЛИЗА"; патентной заявки PCT № PCT/US10/24498 с датой подачи 17 февраля 2010 г., озаглавленной "УСТАНОВКА И СПОСОБ УПРАВЛЕНИЯ НУКЛЕАЦИЕЙ В ХОДЕ ЭЛЕКТРОЛИЗА"; патентной заявки США № 12/707656 с датой подачи 17 февраля 2010 г., озаглавленной "УСТАНОВКА И СПОСОБ УЛАВЛИВАНИЯ ГАЗА В ХОДЕ ЭЛЕКТРОЛИЗА"; патентной заявки PCT № PCT/ US10/24499 с датой подачи 17 февраля 2010 г., озаглавленной "УСТАНОВКА И СПОСОБ УПРАВЛЕНИЯ НУКЛЕАЦИЕЙ В ХОДЕ ЭЛЕКТРОЛИЗА"; и предварительной патентной заявки США № 61/237476 с датой подачи 27 августа 2009 г., озаглавленной "ЭЛЕКТРОЛИЗЕР И ТЕХНОЛОГИИ ЭНЕРГЕТИЧЕСКОЙ НЕЗАВИСИМОСТИ". Каждая из вышеуказанных заявок в полном объеме включена в настоящую заявку путем ссылки.
Уровень техники
[0002] Возобновляемые источники для выработки электроэнергии зачастую непостоянны. Солнечная энергия доступна только днем, а потенциальная концентрация дневной солнечной энергии варьируется в зависимости от времени года. Энергия ветра также весьма непостоянна. Уровень осадков варьируется в зависимости от времени года и подвержен влиянию продолжительной засухи. Объем биомассы варьируется в зависимости от времени года и подвержен влиянию засухи. У жилых объектов имеются сильно колеблющиеся требования, включая ежедневные, сезонные и нерегулярные темпы потребления энергии. Энергией, которую можно получить при помощи гидроэлектростанций, ветряных электростанций, преобразования биомассы и гелиоколлекторов, во всем мире пренебрегают или тратят ее впустую из-за отсутствия практичного способа сохранения энергии или электричества до тех пор, пока они не потребуются. Энергетический спрос растущего населения планеты вырос настолько, что спрос на нефть и другие ископаемые ресурсы превышает объемы выработки. Население городов страдает от смога и глобальных изменений климата, вызванных сжиганием ископаемого топлива.
[0003] Кроме того, появился растущий спрос на водород, кислород, углерод, и другие продукты, которые могут быть обеспечены при помощи термохимии или электролитической диссоциации исходного сырья, такого как вода, отходы биомассы или органические кислоты, полученные из биологических отходов. Например, объем мирового рынка водорода составляет более 40 миллионов долларов и включает производство аммиака, перерабатывающие станции, химическое производство и обработку пищевых продуктов.
[0004] Электрохимическое производство топлива, металлов, неметаллов и прочих ценных химических соединений ограничено ввиду дороговизны электроэнергии, низкого КПД электролизеров, высоких эксплуатационных расходов и обременительных требований для осуществления энергоемких процессов, таких как компрессионное перекачивание полученных газов до показателей давления, необходимых для их перекачки, хранения и применения. Известные попытки обеспечения технологий, позволяющих облегчить указанные проблемы, отмечены и включены в настоящее описание и описаны в таких публикациях, как "Производство водорода из воды посредством химических циклов", Эдуардо Д. Гландт и Аллан Л. Майерс, Факультет химических и биохимических технологий, Университет Пенсильвании, Филадельфия, PA 19174; Разработка химических процессов для промышленного машиностроения, том 15, № 1, 1976; "Водород как топливо будущего", Д.П. Грегори, Институт технологии газов; и «Наука и технология адсорбции»: Тезисы Второй конференции стран Тихоокеанского бассейна, посвященной науке и технологии адсорбции; Брисбен, Австралия, 14-18 мая 2000 г., Д. До Дуонг, Дуонг Д. До, докладчик Дуонг Д. До, опубликовано журналом World Scientific, 2000 г.; ISBN 9810242638, 9789810242633.
[0005] Электролизеры, позволяющие смешивать водород с кислородом, представляют потенциальную угрозу самовозгорания или взрыва. Решения, включающие электролизеры низкого и высокого давления, в которых используется разделение газообразующих электродов при помощи дорогих полупроницаемых мембран, не позволяют обеспечить экономически эффективное производство водорода, и подвержены разрушению и выходу из строя вследствие отравления примесями. Даже в случаях, когда используется мембранное разделение, существует потенциальная опасность разрыва мембраны и пожара или взрыва вследствие смешения находящегося под высоким давлением кислорода с водородом.
[0006] В некоторых промышленных электролизерах используются дорогие пористые электроды, между которыми расположена электролитическая протонообменная мембрана (PEM), пропускающая только ионы водорода. (см. Proton Energy Company and the Electrolyzer Company of Canada). Такой подход ограничивает КПД электродов из-за потерь при поляризации, аккумуляции газа и снижения доступной площади электрода для диссоциации воды, достигающей межфазовой границы электродов и PEM-электролита. Помимо ограниченного КПД электродов существуют и другие значительные проблемы, включая разрывы мембран вследствие разности давлений между выходами кислорода и водорода, отравление мембраны из-за наличия примесей в подпитывающей воде, необратимое разрушение мембраны из-за наличия загрязнителей или небольшого перегревания мембраны, разрушение или разрыв мембраны в случае, если мембране позволяют высохнуть в состоянии покоя, а также разрушение электродов на границе мембраны вследствие коррозии из-за наличия одной или нескольких причин, таких как формирование концентрационных элементов, гальванические элементы между катализатором и материалом насыпного электрода, а также контур заземления. Расслоение электрода и PEM-материалов приводит к внутреннему застою реагентов или продуктов реакции, что влечет за собой снижение КПД работы. Электрохимические элементы PEM требуют использования дорогого материала для мембраны, сурфактантов и катализаторов. PEM-элементы легко отравить, перегреть, залить или иссушить, и их использование влечет за собой эксплуатационную опасность, связанную с протеканием или разрывом мембраны.
[0007] Помимо неэффективности проблемы в использовании подобных систем включают паразитные потери, дорогостоящие электроды или катализаторы и мембраны, низкий КПД преобразования энергии, дорогое техобслуживание и высокую стоимость эксплуатации. Для нагнетания водорода и кислорода, а также других продуктов электролиза иногда требуются компрессоры или более дорогостоящие мембранные системы. Следствием последней из вышеуказанных проблем являются неприемлемые требования к техобслуживанию и значительные затраты на вывод из эксплуатации.
[0008] Таким образом, задачей некоторых вариантов выполнения настоящего изобретения является создание систем и способов обеспечения устойчивого экономического развития путем интегрированной выработки возобновляемой энергии полного спектра, которые могут включать использование электрохимического или электролитического элемента, и способ его использования, для отдельной выработки газов, включая сжатый водород и кислород, позволяющее допускать наличие примесей и продуктов работы, а также являющееся обратимым, что позволяет решить одну или несколько проблем, связанных с вышеуказанными известными способами.
Краткое описание изобретения
[0009] В одном варианте выполнения настоящего изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии.
[0010] В другом варианте выполнения, предложена система обеспечения по существу непрерывной подачи электроэнергии при помощи возобновляемых энергетических ресурсов, включающая: первый источник возобновляемой энергии; электролизер, соединенный с первым источником возобновляемой энергии для формирования энергоносителя, причем электролизер выполнен с возможностью избирательной реверсивной работы в качестве топливного элемента, используя энергоноситель в качестве топлива; накопитель энергоносителя, соединенный с электролизером для получения энергоносителя от электролизера или подачи энергоносителя на электролизер; и накопитель энергии, соединенный с первым источником возобновляемой энергии и электролизером для выборочного получения энергии от первого источника возобновляемой энергии и электролизера, а также для выборочной подачи энергии от первого источника возобновляемой энергии и электролизера.
[0011] В еще одном варианте выполнения, предложена система обеспечения по существу постоянной подачи электроэнергии при помощи возобновляемых энергетических ресурсов, включающая: первый источник возобновляемой энергии; электролизер, соединенный с первым источником возобновляемой энергии для выработки метана, причем электролизер выполнен с возможностью избирательной реверсивной работы в качестве топливного элемента; накопитель метана, соединенный с электролизером для получения метана от электролизера или подачи метана на электролизер; и накопитель энергии, соединенный с первым источником возобновляемой энергии и электролизером для выборочного получения энергии от первого источника возобновляемой энергии и электролизера, а также для выборочной подачи энергии от первого источника возобновляемой энергии и электролизера.
[0012] Другие особенности и преимущества настоящего изобретения будут очевидны из нижеследующего подробного описания. Однако необходимо понимать, что подробное описание и конкретные примеры, хоть и указывают на предпочтительные варианты выполнения настоящего изобретения, но приведены лишь в качестве примера, а различные изменения и модификации, находящиеся в рамках объема настоящего изобретения, будут очевидны специалисту из указанного подробного описания.
Краткое описание чертежей
[0013] На фиг.1A показана структурная схема, иллюстрирующая систему интегрированного энергетического, агропромышленного и промышленного устойчивого экономического развития в соответствии с аспектами изобретения.
[0014] На фиг.1B показана структурная схема, иллюстрирующая систему интегрированного формирования устойчивого экономического развития в соответствии с аспектами изобретения.
[0015] На фиг.1C показана схема, иллюстрирующая наземную систему интегрированного формирования устойчивого экономического развития в соответствии с аспектами изобретения.
[0016] На фиг.1D показана схематичная диаграмма, иллюстрирующая океаническую систему интегрированного формирования устойчивого экономического развития в соответствии с аспектами изобретения.
[0017] На фиг.1 приведена схематическая иллюстрация определенных компонентов системы, работающей в соответствии с принципами настоящего изобретения.
[0018] На фиг.2 показаны частичные продольные сечения компонентов системы согласно варианту выполнения, работающей в соответствии с принципами настоящего изобретения.
[0019] На фиг.3 показаны частичные продольные сечения компонентов системы согласно варианту выполнения, работающей в соответствии с принципами настоящего изобретения.
[0020] На фиг.4 приведена схематическая иллюстрация интегрированных компонентов системы, работающей в соответствии с принципами настоящего изобретения.
[0021] На фиг.5 показан вид в разрезе варианта выполнения системы, показанной на фиг.4.
[0022] На фиг.6 показан вид в разрезе другого варианта выполнения системы, показанной на фиг.4.
[0023] На фиг.7 приведена схематическая иллюстрация варианта выполнения, работающего в соответствии с принципами настоящего изобретения.
[0024] На фиг.8 показаны детали варианта выполнения, показанного на фиг.7.
[0025] На фиг.9 показаны детали процессов, используемых для решения задач в соответствии с настоящим изобретением.
[0026] На фиг.10 показано выполнение процессов в соответствии с настоящим изобретением.
[0027] На фиг.11 показаны процессы в соответствии с целью настоящего изобретения.
[0028] На фиг.12 схематично показаны варианты выполнения настоящего изобретения.
[0029] На фиг.1B показан электролитический элемент в соответствии с вариантом выполнения настоящего изобретения.
[0030] На фиг.2B показан увеличенный вид части варианта выполнения, показанного на фиг.1.
[0031] На фиг.3B показан вариант выполнения, показанного на фиг.2.
[0032] На фиг.4B показан электролитический элемент в соответствии с вариантом выполнения настоящего изобретения.
[0033] На фиг.5B показан увеличенный вид альтернативного варианта выполнения части электролитического элемента, показанного на фиг.4.
[0034] На фиг.6B показано поперечное сечение спирального электрода, используемого в реверсивном топливном элементе.
[0035] На фиг.7B показана система для преобразования органического сырья, такого как получаемое путем фотосинтеза, в метан, водород и/или углекислый газ.
[0036] На фиг.8B показана система для преобразования органического сырья, такого как получаемое путем фотосинтеза, в метан, водород и/или углекислый газ.
[0037] На фиг.9B показана система для преобразования органического сырья, такого как получаемое путем фотосинтеза, в метан, водород и/или углекислый газ.
[0038] На фиг.10B показан способ изготовления электрода в соответствии с вариантом выполнения изобретения.
Подробное описание изобретения
[0039] Настоящее изобретение полностью включает в себя по ссылке объект предварительной патентной заявки США № 60/626021 с датой подачи 9 ноября 2004 г., озаглавленной "СИСТЕМА ХРАНЕНИЯ, ИЗМЕРЕНИЯ И СЖИГАНИЯ МУЛЬТИТОПЛИВА" (реестр поверенного № 69545-8013US), и предварительной патентной заявки США № 61/153253 с датой подачи 17 февраля 2009 г., озаглавленной "ЭНЕРГИЯ ПОЛНОГО СПЕКТРА" (реестр поверенного № 69545-8001US). Настоящее изобретение также полностью включает в себя по ссылке объект каждой из нижеуказанных патентных заявок США с одинаковой датой подачи 16 августа 2010 г., озаглавленных: "СПОСОБЫ И УСТАНОВКИ ДЛЯ ОПРЕДЕЛЕНИЯ СВОЙСТВ СИСТЕМ ТРАНСПОРТИРОВКИ ЖИДКОСТИ" (реестр поверенного № 69545-8003US); "ПОДРОБНОЕ ЦЕНОВОЕ МОДЕЛИРОВАНИЕ АУТОГЕННЫХ СИСТЕМ И ПРОЦЕССОВ ДЛЯ ВЫРАБОТКИ ЭНЕРГИИ, МАТЕРИАЛЬНЫХ РЕСУРСОВ И РЕЖИМОВ ПИТАНИЯ" (реестр поверенного № 69545-8025US); "ЭЛЕКТРОЛИТИЧЕСКИЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ" (реестр поверенного № 69545-8026US); "УСТОЙЧИВОЕ ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ ПУТЕМ ИНТЕГРИРОВАННОЙ ВЫРАБОТКИ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ, МАТЕРИАЛЬНЫХ РЕСУРСОВ И РЕЖИМОВ ПИТАНИЯ" (реестр поверенного № 69545-8040US); "УСТОЙЧИВОЕ ЭКОНОМИЧЕСКОЕ РАЗВИТИЕ ПУТЕМ ИНТЕГРИРОВАННОЙ ВЫРАБОТКИ ПОЛНОГО СПЕКТРА ВОЗОБНОВЛЯЕМЫХ МАТЕРИАЛЬНЫХ РЕСУРСОВ" (реестр поверенного № 69545-8042US); "СПОСОБ И СИСТЕМА ДЛЯ ПОВЫШЕНИЯ КПД ПРЕОБРАЗОВАНИЯ ДОПОЛНИТЕЛЬНОЙ ТЕПЛОВОЙ ЭНЕРГИИ ОКЕАНА (SOTEC)" (реестр поверенного № 69545-8044US); "СИСТЕМА ПРЕОБРАЗОВАНИЯ ГАЗОГИДРАТА ДЛЯ СБОРА МЕСТОРОЖДЕНИЙ ГИДРАТА УГЛЕВОДОРОДА" (реестр поверенного № 69545-8045US); "УСТАНОВКИ И СПОСОБЫ ХРАНЕНИЯ И/ИЛИ ФИЛЬТРАЦИИ ВЕЩЕСТВА" (реестр поверенного № 69545-8046US); "ЭНЕРГЕТИЧЕСКАЯ СИСТЕМА ДЛЯ ПОДДЕРЖАНИЯ ЖИЛЫХ ОБЪЕКТОВ" (реестр поверенного № 69545-8047US); "УСТАНОВКИ ДЛЯ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ И СОПУТСТВУЮЩИЕ СПОСОБЫ ИСПОЛЬЗОВАНИЯ И ИЗГОТОВЛЕНИЯ" (реестр поверенного № 69545-8048US); и "УКРЕПЛЕННЫЕ ИЗНУТРИ КОНСТРУКЦИОННЫЕ КОМПОЗИТНЫЕ МАТЕРИАЛЫ И СОПУТСТВУЮЩИЕ СПОСОБЫ ИЗГОТОВЛЕНИЯ" (реестр поверенного № 69545-8049US).
[0040] Для полного понимания способов получения вышеописанных элементов, а также достижения иных преимуществ и решения задач изобретения ниже приведено более подробное описание изобретения со ссылкой на конкретные варианты его выполнения.
[0001] На фиг.1A показана интегрированная система 100 выработки полного спектра, состоящая из трех взаимосвязанных систем, которые включают энергетический комплекс 200 полного спектра для выработки возобновляемой энергии и добычи материальных ресурсов, агропромышленную сеть 300 полного спектра для выработки возобновляемых режимов питания (питания человека, животных и растений) и энергетического сырья (биомассы, биологических отходов и биотоплива), и промышленный комплекс 400 полного спектра для устойчивой выработки материальных ресурсов и безотходного производства.
[0002] На фиг.1A показана система 100 в виде единого целого, состоящего из систем 200, 300 и 400, что позволяет осуществлять обмен энергией, материалами и данными между указанными системами. Интеграция системы 100 и в особенности способы, заключенные в системе 200, использует термодинамические свойства нескольких взаимосвязанных тепловых двигателей, термически соединенных друг с другом с формированием единой термодинамической системы, что позволяет осуществлять ее эффективную работу в качестве одного большого теплового двигателя, тем самым позволяя достичь увеличения полезной производительности и КПД. В рамках системы 100 система 200 в особенности призвана обеспечить синергетическую связь между солнечными тепловыми, геотермальными, океаническими тепловыми, и машинными тепловыми источниками с целью повышения общего доступного выхода возобновляемой энергии на данном местоположении и обеспечения систем 300 и 400 энергией и добытыми материальными ресурсами.
[0003] Энергетический комплекс 200 полного спектра термически подсоединен для обеспечения эффективной работы в качестве одного большого теплового двигателя, системы и подсистемы которого взаимосвязаны с целью установления энергетических каскадов при помощи рабочих жидкостей, нагреваемых в ходе двух или более этапов. Общий доступный выход возобновляемой энергии системы 200 повышается путем систематического перемещения рабочих жидкостей между солнечными, геологическими, механическими и другими тепловыми источниками с целью достижения эффекта каскада для оптимизирования термодинамических свойств (таких как температура, давление, беспримесность, фазовый сдвиг и КПД преобразования энергии) рабочей жидкости. Энергетический выход на одном этапе используется в ключевых процессах другого этапа, что позволяет осуществлять самовосстанавливающуюся или аутогенную работу с повышенным КПД и минимизацией рабочих затрат.
[0004] Функции энергетического комплекса полного спектра включают: сбор, преобразование и хранение кинетической, тепловой и лучистой форм энергии из возобновляемых источников энергии, таких как солнечный, ветряной, движущаяся вода, геотермальный, биомасса, а также двигателей внутреннего сгорания, для установления аутогенных или самовосстанавливающихся энергетических каскадов между системами с целью получения объединительных и синергетических преимуществ, которые не могут быть достигнуты путем сбора, преобразования и хранения энергии одного возобновляемого источника. Аутогенные или самовосстанавливающиеся способы сбора энергии используются в системах 200, 300 и 400. Кроме того, система 200 направлена на добычу материальных ресурсов из множества химических соединений для использования в системах 300 и 400. Например, термохимическое самовосстановление используется в качестве средств добычи углерода как сырого материала (добыча может производиться в системах 200, 300 и 400) для последующего промышленного производства товаров длительного пользования в системе 400. В другом примере термохимическое самовосстановление может также использоваться в качестве средств добычи азота и микроэлементов для последующего промышленного производства растительных удобрений для использования в системе 300. Кроме того, система 200 направлена на переработку биологических отходов, биомассы и биотоплива, обычно с целью получения газа биометана и/или водорода, его хранения, транспортировки и использования по мере необходимости в системах 200, 300 и 400 в качестве топлива для двигателей внутреннего сгорания и/или в качестве топливных элементов для выработки и/или передачи электроэнергии.
[0005] Работа с солнечными тепловыми, геотермальными, океаническими тепловыми и механическими тепловыми источниками позволяет обеспечить высокоадаптивную интегрированную платформу для установки систем 100 в различных климатических зонах, а установки могут быть как наземными, так и океаническими. Таким образом, обеспечение повышенной адаптивности к местоположению повышает общую доступность сбора возобновляемой энергии и, тем самым, обеспечивает экономически обоснованное решение, применимое в масштабах местной, региональной, национальной и глобальной экономики.
[0006] Пищевое производство в системе 300 может быть выполнено как на наземных, так и на океанических участках. Растениеводческие и животноводческие хозяйства, скотоводческие фермы, фабрики по промышленному производству свинины и птицы, пресноводные рыболовные хозяйства, океанические рыболовные хозяйства, молочные хозяйства и т.д. могут быть связаны с системой 200 в качестве потребителей энергии, выработанной в системе 200, и, в свою очередь, создают побочные продукты (отходы), направляемые в систему 200 для их переработки в возобновляемую энергию и возобновляемые материальные ресурсы. Кроме того, система 300 направлена на повышенное производство энергетического сырья для растительного биотоплива, такого как водоросли, заменяющие траву и другие растения для повышения целесообразности сбора энергии, получаемой на основе фотосинтеза. Способ и установка для производства, очищения и сохранения воды используются в каждой из производственных систем 200, 300 и 400. Однако указанные компоненты системы 300 важны для выполнения требований наличия большого количества воды в пищевом производстве, а также для решения известной проблемы, связанной с неустойчивостью, вызванной растрачиванием и загрязнением воды при использовании известных методов пищевого производства.
[0007] Системная интеграция повышает способность к "устойчивости", определяемой как увеличенная выработка энергии, материальных ресурсов и режимов питания при помощи возобновляемых способов с целью избежать истощения природных ресурсов и снизить или вовсе устранить разрушительное воздействие на природу, такое как загрязнение и токсичные выхлопы, являющиеся побочным продуктом производства. Устойчивость требует наличия способов выработки энергии, материалов и пищевых продуктов, целесообразных для обеспечения долгосрочного благополучия будущих поколений, а не только лишь для обеспечения краткосрочного удовлетворения существующих потребителей.
[0008] Системная интеграция позволяет обеспечить повышение полезной производительности для "экономического наращивания", определяемого как значительное повышение производства энергии, материалов и пищевых продуктов, достигаемое за счет способности воспроизведения совокупных мест установки, а также повышения количества доступных местоположений благодаря существенно улучшенной адаптивности к разнообразным климатическим зонам (т.е. адаптивного сбора возобновляемой энергии путем приспособления к различным ресурсным характеристикам умеренного, тропического и арктического климата). Такое экономическое наращивание требуется для повышения кормовой продуктивности Земли, необходимой для поддержания продолжающегося роста населения и резко растущих энергетических требований в развивающихся странах. Для успешного использования подобные способы производства и местоположения должны быть пригодны для немедленного использования и должны представлять целесообразную альтернативу существующим средствам выработки энергии, материалов и пищевых продуктов по сравнению с использованием существующих источников ископаемого топлива и/или атомной энергии.
[0009] Системная интеграция также обеспечивает экологически чистый и безотходный способ выработки энергии 200, производства материалов 400 и производства пищевых продуктов 300, причем: органические отходы, выработанные в системе 300, которые бы в другом случае сожгли, захоронили или выбросили на свалки, в коллекторы, в проточную воду, в океан, либо выбросили бы в атмосферу в виде загрязнителей, вместо этого систематически направляют в системы переработки биомассы, биологических отходов и биологического топлива, расположенные в системе 200; добытые в системе 200 энергию и материальные ресурсы передают в систему 400 для производства товаров длительного пользования; добытые в системе 200 энергию и материальные ресурсы также передают в систему 300 для выработки режимов питания для человека, животных и растений как в наземной, так и в океанической среде.
[0010] Системная интеграция создает единый блок экономического производства, намеренно связывающий выработку энергии с производством пищевых продуктов и производством материальных ресурсов так, что указанные процессы протекают взаимозависимо, как единое целое.
[0011] Таким образом, интегрированная система производства полного спектра подходит для размещения в местах и населенных пунктах, где не существует сравнимой с нею энергетической инфраструктуры, или там, где производственные возможности недостаточны и имеется высокий уровень безработицы, или там, где имеется недостаточный объем производства пищевых продуктов и царит бедность и голод. Целью введения указанного объединенного способа экономического производства является обеспечение повышения внутреннего валового продукта (ВВП), сопутствующего повышению ВВП роста уровня жизни, и систематического создания рабочих мест вместе с повышением уровня жизни как следствия значительной занятости.
[0012] Кроме того, системная интеграция создает единый блок экономического производства, намеренно связывающий утилизацию отходов с преобразованием энергии, из-за чего указанные процессы протекают взаимозависимо, как единое целое, устраняя привычные подходы к утилизации отходов, такие как сжигание, захоронение и сваливание мусора, ведущие к загрязнению и упадку окружающей среды.
[0013] Интегрированная система производства полного спектра внедряет использование устойчивой переработки отходов в энергию в качестве интегрированного процесса во всей системе. Целью указанной интегрированной системы является защита окружающей среды, сохранение исчерпаемых природных ресурсов, снижение уровня инфекционных заболеваний и снижение уровня загрязнения земли, воды и воздуха (включая уменьшение количества ведущих к смене климата источников парниковых газов, таких как метан и CO2).
[0014] Интегрированная система 100 выработки полного спектра обеспечивает средства достижения "промышленной экологии", в которой рукотворная среда производства подражает естественным экосистемам: где энергия и материалы переходят из системы в систему, а отходы вовлекаются в новые процессы в замкнутом цикле, но при этом система в целом открыта для получения возобновляемой, устойчивой энергии, обеспечиваемой солнцем (солнечная тепловая), землей (геотермальная), океаном (океаническая тепловая) и системами переработки биомассы (механическая тепловая система).
[0015] На фиг.1B показана структурная схема, иллюстрирующая интегрированную систему 100 выработки полного спектра устойчивого экономического развития, включающую выработку энергии (например, электричества и топлива) с одновременным производством режимов питания (например, продуктов для питания человека, животных и растений) и производством материальных ресурсов (например, водорода и углерода). Система 100 состоит из интегрированных и взаимозависимых подсистем, снабженных адаптивным контролем за автогенными каскадными преобразованиями энергии, улавливающим и заново вносящим в цикл часть или всю совокупность энергии, веществ и/или побочных продуктов каждой подсистемы. Таким образом, непрерывная работа системы 100 поддерживается с внесением в цикл минимума внешней энергии или материальных ресурсов, либо вовсе без подобного внесения. Система 100 представляет собой пример промышленной экологии, облегчающей устойчивое экономическое развитие, например сбор возобновляемой энергии, пищевое производство и производство материальных ресурсов, превышающие уровень выработки энергии, пищевых продуктов и материальных ресурсов, достижимый при помощи известных приемов, что является одним из преимуществ настоящей системы.
[0016] Энергетический комплекс 200 полного спектра координирует способы улавливания энергии из возобновляемых источников 210 (например, солнечного, ветряного, текущей воды, геотермального, отведенного тепла) со способами выработки энергии из возобновляемого сырья 220 (например, биологических отходов 320, биомассы 310) и способами производства материальных ресурсов (например, водорода 230, углерода 240, других материальных ресурсов, таких как микроэлементы 250, чистая вода 260). Энергию хранят, извлекают и транспортируют при помощи способов адаптивного контроля за автогенными каскадными преобразованиями энергии, формирующими мультиплицированный эффект при выработке энергии. В ходе процессов сбора энергии и производства материальные ресурсы (например, водород и кислород) извлекают из сырья биологических отходов и биомассы, используемого при выработке возобновляемой энергии. Энергетический комплекс 200 полного спектра хранит, извлекает, транспортирует, следит и управляет указанной энергией и указанными ресурсами с целью достижения повышения КПД при выработке энергии, материальных ресурсов и режимов питания.
[0017] Часть выработанной энергии 210, 220 направляют в агропромышленную сеть 300 полного спектра. Часть выработанной энергии 210, 220 направляют в промышленный комплекс 400 полного спектра. Часть выработанной энергии 210, 220 заново вводят в цикл энергетического комплекса 200 полного спектра. Часть выработанной энергии 210, 220 направляют внешним получателям и/или направляют в национальную электрическую сеть и/или в национальный газопровод.
[0018] Агропромышленная сеть 300 полного спектра получает возобновляемую энергию, выработанную энергетическим комплексом 200 полного спектра, с целью обеспечения энергией функций таких подсистем, как сельское хозяйство, животноводство и рыболовство. В этот список входят возобновляемое топливо для сельхозтехники, автотранспортных средств, лодок и кораблей, а также электричество для освещения, обогрева, обеспечения работы машинного оборудования и т.д.
[0019] Агропромышленная сеть 300 полного спектра получает материальные ресурсы и побочные продукты, такие как другие материальные ресурсы (например, микроэлементы 250) и чистую воду 260, произведенные энергетическим комплексом 200 полного спектра, для обогащения режимов питания в подсистемах сельского хозяйства, животноводства и рыболовства с целью повысить эффективность выращивания растительного урожая 340 и животного урожая 350.
[0020] Агропромышленная сеть 300 полного спектра осуществляет сбор энергетического сырья и передачу его в энергетический комплекс 200 полного спектра, где оно используется при выработке возобновляемой энергии. Пригодное сырье включает биомассу 310 (например, скошенные растения), биологические отходы 320 (например, сточные воды, сельскохозяйственные сточные воды, отходы мясоконсервной промышленности, сток от рыболовного хозяйства), набор биотоплива 330 (например, водоросли, просо) и т.д.
[0021] Промышленный комплекс 400 полного спектра повторно использует возобновляемую энергию, выработанную энергетическим комплексом 200 полного спектра, с целью обеспечения энергии для устойчивого производства материальных ресурсов и экологически чистой промышленности. В этот список входят возобновляемое топливо для двигателей внутреннего сгорания (например, стационарных двигателей, автотранспортных средств), а также электричество для освещения, обогрева, обеспечения работы машинного оборудования и т.д.
[0022] Промышленный комплекс 400 полного спектра использует материальные ресурсы 230, 240 и побочные продукты 250, полученные от энергетического комплекса 200 полного спектра, для производства дополнительных материальных ресурсов (например, конструкционного углерода 420 и промышленных алмазов 430).
[0023] Промышленный комплекс 400 полного спектра использует материальные ресурсы и побочные продукты, полученные от энергетического комплекса 200 полного спектра, для производства таких товаров, как экологически чистые энергомеханизмы 410 на основе углерода, включая солнечно-тепловые устройства 410, ветряные турбины 410, водные турбины 410, электролизеры 410, двигатели внутреннего сгорания и генераторы 410, запасные части 440 для автомобилей, кораблей и грузовиков, полупроводники 450, нанотехнологии 460, сельскохозяйственное и рыболовное оборудование 470 и т.д.
[0024] Промышленный комплекс 400 полного спектра поставляет часть или все указанные продукты и побочные продукты энергетическому комплексу 200 полного спектра и агропромышленной сети 300 полного спектра.
[0025] Энергетический комплекс 200 полного спектра использует солнечно-тепловые устройства 410, ветряные турбины 410, водные турбины 410, электролизеры 410, двигатели внутреннего сгорания и генераторы 410 и т.д., произведенные и предоставленные промышленным комплексом 400, для выработки возобновляемой энергии.
[0026] Агропромышленная сеть 300 полного спектра использует двигатели внутреннего сгорания и генераторы 410, сельскохозяйственное и рыболовное оборудование 470 и другие устройства, произведенные и предоставленные промышленным комплексом 400, для производства режимов питания.
[0027] Энергия, выработанная интегрированной системой 100 выработки полного спектра, обеспечивает энергией все подсистемы, включая повторный ввод энергии в цикл с целью дальнейшей выработки возобновляемой энергии. Одновременно часть или все продукты и побочные продукты, выработанные в системе 100, используют для обеспечения функций всех подсистем. В то же время отходы, произведенные системой 100, улавливают и используют в качестве сырья для обеспечения функций всех подсистем. Интегрированные и взаимозависимые подсистемы используют адаптивный контроль за аутогенными каскадными преобразованиями энергии и аутогенным самовосстановлением материальных ресурсов. Таким образом, система постоянно заново использует возобновляемую энергию, устойчивые материальные ресурсы и другие побочные продукты в качестве различных источников и в различных процессах подсистем (энергетического комплекса, агропромышленной сети, промышленного комплекса). Благодаря этому система 100 осуществляет сбор большего количества подаваемой энергии и ресурсов из различных источников ресурсов в системе, чем было бы возможно при использовании существующих средств. Подобный промышленный симбиоз умножает объем различных ресурсов и энергии, собранных из возобновляемого сырья и побочных продуктов в системе, обеспечивая, среди прочих преимуществ системы, повышение полезности, снижение затрат и улучшение экологической обстановки.
[0028] На фиг.1C приведена схематичная иллюстрация интегрированной системы выработки полного спектра и показаны различные примерные функциональные зоны в наземной системе; на фиг.1C приведена схематичная иллюстрация интегрированной системы 100 выработки полного спектра и показаны различные примерные функциональные зоны в океанической системе. Показанные системы включают интегрированную систему выработки в наземных и океанических условиях с адаптивным контролем за аутогенными каскадными преобразованиями энергии и аутогенным самовосстановлением материальных ресурсов, а также производством режимов питания. Система включает функциональные зоны, используемые в целях сбора и/или выработки энергии из возобновляемых источников, и сбора материальных ресурсов