Аудиокодер и декодер

Иллюстрации

Показать все

Изобретение относится к средствам кодирования и декодирования. Технический результат заключается в повышении качества кодированного и декодированного сигналов при пониженной скорости передачи данных. Система аудикодирования содержит блок линейного предсказания для фильтрации входного сигнала на основе адаптивного фильтра; блок преобразования для преобразования кадра отфильтрованного входного сигнала в область преобразования; блок квантования для квантования сигнала в области преобразования. На основе характеристик входного сигнала блок квантования принимает решение кодировать сигнал в области преобразования с помощью устройства квантования, основанного на статистической модели, или устройства квантования, не основанного на статистической модели. Предпочтительно решение основывается на размере кадра, примененном блоком преобразования. 5 н. и 13 з.п. ф-лы, 34 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к кодированию аудиосигналов и, в частности, к кодированию любого аудиосигнала, не ограничиваясь речью, музыкой или их комбинацией.

Уровень техники изобретения

В предшествующем уровне техники существуют речевые кодеры, специально предназначенные для кодирования речевых сигналов, основанные на модели источника сигнала, то есть системе человеческого голоса. Эти кодеры не могут обрабатывать произвольные аудиосигналы, такие как музыка или любой другой неречевой сигнал. Кроме того, в предшествующем уровне техники существуют музыкальные кодеры, обычно называемые аудиокодерами, основывающие свое кодирование на предположениях о человеческой слуховой системе, а не на модели источника сигнала. Эти кодеры очень хорошо могут обрабатывать произвольные сигналы, хотя при низких скоростях передачи речевых сигналов специализированный речевой кодер дает превосходное аудиокачество. Следовательно, на сегодня не существует общей структуры кодирования произвольных аудиосигналов, которая одинаково хороша как в качестве речевого кодера для речи, так и в качестве музыкального кодера для музыки, когда работа ведется при низких скоростях передачи данных.

Таким образом, существует потребность в улучшенном аудиокодере и декодере с улучшенным аудиокачеством и/или пониженными скоростями передачи данных.

Сущность изобретения

Настоящее изобретение относится к эффективному кодированию произвольных аудиосигналов при уровне качества, равном или лучшем, чем уровень качества системы, специально приспособленной к конкретному сигналу.

Настоящее изобретение обращено к алгоритмам аудиокодеков, содержащих как кодирование с линейным предсказанием (LPC), так и к части трансформного кодера, работающей с сигналами на основе обработки LPC.

Настоящее изобретение дополнительно относится к стратегии квантования, зависящей от размера преобразованного кадра данных. Дополнительно предлагается устройство квантования, основанное на модели, с ограничением энтропии, использующее арифметическое кодирование. Кроме того, обеспечивается вставка случайных сдвигов в однородное скалярное устройство квантования. Изобретение дополнительно предлагает устройство квантования, основанное на модели, например, устройство квантования с ограничением энтропии (ECQ), использующее арифметическое кодирование.

Настоящее изобретение дополнительно относится к эффективному кодированию масштабных коэффициентов в части трансформного кодирования аудиокодера, используя присутствие данных LPC.

Настоящее изобретение дополнительно относится к эффективному осуществлению использования битового накопителя в аудиокодере с переменным размером кадра.

Настоящее изобретение дополнительно относится к кодеру для кодирования аудиосигналов и создания битового потока передачи данных и к декодеру для декодирования битового потока передачи данных и созданию реконструированного аудиосигнала, перцептуально не отличимого от входного аудиосигнала.

Первый аспект настоящего изобретения относится к квантованию в трансформном кодере, которые применяется, например, при модифицированном дискретном косинусном преобразовании (MDCT). Предложенное устройство квантования предпочтительно квантует линии MDCT. Этот аспект применяется независимо от того, использует ли кодер дополнительно анализ кодирования с линейным предсказанием (LPC) или дополнительное долгосрочное предсказание.

Настоящее изобретение обеспечивает систему кодирования аудиосигнала, содержащую блок линейного предсказания для фильтрации входного сигнала, основанный на адаптивном фильтре; блок преобразования для преобразования кадра отфильтрованного входного сигнала в область преобразования; и блок квантования для квантования сигнала в области преобразования. Блок квантования, основываясь на характеристиках входного сигнала, принимает решение о кодировании сигнала в области преобразования с помощью устройства квантования, основанного на модели, или устройства квантования, не основанного на модели. Предпочтительно решение основывается на размере кадра, применяемом блоком преобразования. Однако предусмотрены также и другие зависимые от входного сигнала критерии для переключения стратегии квантования, находящиеся в пределах объема настоящей заявки.

Другой важный аспект изобретения состоит в том, что устройство квантования может быть адаптивным. В частности, модель в устройстве квантования, основанном на модели, может быть адаптивной, чтобы регулировать входной аудиосигнал. Модель может, например, меняться во времени, например, в зависимости от характеристик входного сигнала. Это позволяет снизить искажение при квантовании и, таким образом, улучшить качество кодирования.

В соответствии с вариантом осуществления предложенная стратегия квантования основывается на размере кадра. Предложено, чтобы модуль квантования, основываясь на размере кадра, применяемом блоком преобразования, мог принимать решение, кодировать ли сигнал в области преобразования с помощью устройства квантования, основанного на модели, или устройства квантования, не основанного на модели. Предпочтительно блок квантования может быть выполнен с возможностью кодирования сигнала в области преобразования для кадра с размером кадра, меньшим, чем пороговое значение, посредством устройства квантования, основанного на модели, с ограничением энтропии. Квантование, основанное на модели, может выполняться на основе различных параметров. Большие кадры могут квантоваться, например, скалярным устройством квантования, например, с помощью энтропийного кодирования по способу Хаффмана, используемого, например, в кодеке AAC.

Система аудиокодирования может дополнительно содержать блок долгосрочного предсказания (LTP) для оценки кадра отфильтрованного входного сигнала, основываясь на реконструкции предыдущего сегмента отфильтрованного входного сигнала и сигнала в области преобразования блока объединения для объединения в области преобразования результата определения долгосрочного предсказания и преобразованного входного сигнала, чтобы создать сигнал в области преобразования, являющийся входным сигналом для блока квантования.

Переключение между различными способами квантования линий MDCT является другим аспектом предпочтительного варианта осуществления изобретения. Используя различные стратегии квантования для различных размеров преобразования, кодек может выполнять все квантование и кодирование в MDCT-области без необходимости иметь специальный речевой кодер временной области, работающий параллельно или последовательно с кодеком, работающим в области преобразования. Настоящее изобретение указывает, что для сигналов, подобных речи, где существует усиление LTP, сигнал предпочтительно кодируется, используя быстрого преобразование и устройство кантования, основанное на модели. Устройство квантования, основанное на модели, в частности, пригодно для быстрого преобразования и обладает, как будет описано позже, преимуществами специального векторного устройства квантования (VQ) речи во временной области, все еще продолжая работать в MDCT-области, и без каких-либо требований, чтобы входной сигнал был речевым сигналом. Другими словами, когда устройство квантования, основанное на модели, используется для сегментов быстрого преобразования в комбинации с LTP, эффективность специализированного кодера VQ речи, работающего во временной области, сохраняется без потери общности и без ухода из MDCT-области.

Кроме того, для более стационарных музыкальных сигналов предпочтительно использовать преобразование относительно большого размера, которое обычно используется в аудиокодеках, и схему квантования, которая может пользоваться преимуществами, даваемыми разреженными спектральными линиями, различаемыми большим преобразованием. Поэтому настоящее изобретение указывает на использование этого вида схемы квантования для длинных преобразований.

Таким образом, переключение стратегии квантования как функция размера кадра позволяет кодеку сохранять как свойства специализированного речевого кодека, так и свойства специализированного аудиокодека, просто посредством выбора размера преобразования. Это позволяет полностью избежать проблем, присущих системам предшествующего уровня техники, которые стремятся обрабатывать речевые и аудиосигналы одинаково хорошо при низких скоростях, так как эти системы неизбежно сталкиваются с проблемами и трудностями эффективного объединения кодирования во временной области (речевой кодер) с кодированием в частотной области (аудиокодер).

В соответствии с другим аспектом изобретения, квантование использует адаптивные размеры шага. Предпочтительно размер(-ы) шага квантования для компонентов сигнала в области преобразования адаптируется/адаптируются, основываясь на параметрах линейного предсказания и/или долговременного предсказания. Размер(-ы) шага квантования может дополнительно быть выполнен с возможностью быть частотнозависимым. В вариантах осуществления изобретения размер шага квантования определяется, основываясь, по меньшей мере, на одном из следующего: полином адаптивного фильтра, параметр управления скоростью кодирования, значение усиления при долгосрочном предсказании и дисперсия входного сигнала.

Предпочтительно блок квантования содержит однородные скалярные устройства квантования для квантования компонент сигнала в области преобразования. Каждое скалярное устройство квантования применяет к линии MDCT однородное квантование, например, основанное на вероятностной модели. Вероятностная модель может лапласовой или гауссовой моделью или любой другой вероятностной моделью, пригодной для характеристик сигнала. Блок квантования может дополнительно вставлять в однородные скалярные устройства кантования случайный сдвиг. Вставка случайного сдвига обеспечивает однородным скалярным устройствам квантования преимущества векторного квантования. В соответствии с вариантом осуществления случайные сдвиги определяются, основываясь на оптимизации искажения при квантовании, предпочтительно в перцепционной области и/или при рассмотрении стоимости с точки зрения числа битов, требующихся для кодирования индексов квантования.

Блок квантования может дополнительно содержать арифметический кодер для кодирования индексов квантования, созданных однородными скалярными устройствами квантования. Это позволяет достигнуть низкой скорости передачи данных, приближающейся к возможному минимуму, который задается энтропией сигнала.

Модуль квантования может дополнительно содержать устройство квантования остатка для квантования остатка сигнала квантования, являющегося результатом работы однородных скалярных устройств квантования, чтобы дополнительно уменьшить общее искажение. Устройство квантования остатка предпочтительно является векторным устройством с фиксированной частотой.

Многочисленные точки реконструкции квантования могут использоваться в блоке деквантования кодера и/или инверсном устройстве квантования в декодере. Например, точка реконструкции с минимальной среднеквадратичной ошибкой (MMSE) и/или центральная точка (средняя точка) реконструкции могут использоваться для реконструкции квантованного значения, основываясь на его индексе квантования. Точка реконструкции квантования может дополнительно основываться на динамической интерполяции между центральной точкой и точкой MMSE, возможно управляемыми характеристиками данных. Это позволяет управлять шумовой вставкой и избегать спектральных провалов из-за назначения линиям MDCT нулевого элемента квантования для низких скоростей передачи данных.

Перцепционное взвешивание в области преобразования предпочтительно применяется при определении искажения за счет квантования, чтобы придать различные веса конкретным частотным компонентам. Перцепционные веса могут эффективно быть получены из параметров линейного предсказания.

Другой независимый аспект изобретения имеет отношение к общей концепции использования сосуществования данных LPC and SCF (ScaleFactor). В трансформном кодере, например применяющем модифицированное дискретное косинусное преобразование (MDCT), масштабные факторы могут использоваться при квантовании, чтобы управлять размером шага квантования. На предшествующем уровне техники эти масштабные коэффициенты определяются из исходного сигнала, чтобы определить кривую маскирования. Теперь предлагается определить второй набор масштабных коэффициентов с помощью перцепционного фильтра или психоакустической модели, которая вычисляется из данных LPC. Это позволяет снизить стоимость передачи/хранения масштабных коэффициентов посредством передачи/хранения только отличия фактически применяемых масштабных коэффициентов от определяемых по LPC масштабных коэффициентов вместо передачи/сохранения реальных масштабных коэффициентов. Таким образом, в системе аудиокодирования, содержащей элементы кодирования речи, такие как, например, LPC, и элементы трансформного кодирования, такие как MDCT, настоящее изобретение уменьшает стоимость передачи информации масштабных коэффициентов, необходимой для трансформной части кодирования кодека, используя данные, предоставленные LPC. Следует отметить, что этот аспект независим от других аспектов предложенной системы аудиокодирования и может быть осуществлен также в другой системе аудиокодирования.

Например, кривая перцепционного маскирования может быть определена, основываясь на параметрах адаптивного фильтра. Линейное предсказание, основанное на втором наборе масштабных коэффициентов, может быть определено, основываясь на определенной кривой перцепционного маскирования. Сохраненная/переданная информация масштабных коэффициентов затем определяется на основе различия между масштабными коэффициентами, фактически используемыми при квантовании, и масштабными коэффициентами, вычисленными по кривой перцепционного маскирования, основанной на LPC. Это удаляет динамику и избыточность из сохраняемой/передаваемой информации, так чтобы было необходимо меньше битов для сохранения/передачи масштабных коэффициентов.

В случае когда LPC и MDCT работают не на одной и той же частоте кадров, то есть имеют различные размеры кадров, масштабные коэффициенты, основанные на линейном предсказании, для кадров сигнала в области преобразования могут быть определены, основываясь на интерполированных параметрах линейного предсказания, чтобы соответствовать временному окну, охватываемому кадром MDCT.

Настоящее изобретение, следовательно, обеспечивает систему аудиокодирования, основанную на трансформном кодере, и содержит основополагающие модули предсказания и формирования из речевого кодера. Обладающая признаками изобретения система содержит блок линейного предсказания для фильтрации входного сигнала, основанный на адаптивном фильтре; блок преобразования для преобразования кадра отфильтрованного входного сигнала в область преобразования; блок квантования для квантования сигнала в области преобразования; блок определения масштабных коэффициентов для создания масштабных коэффициентов, основываясь на пороговой кривой маскирования, для использования в блоке квантования при квантовании сигнала в области преобразования; блок определения масштабных коэффициентов линейного предсказания для определения линейного предсказания, основываясь на масштабных коэффициентах, основанных на параметрах адаптивного фильтра; и кодер масштабных коэффициентов для кодирования разности масштабных коэффициентов, основанных на пороговой кривой маскирования, и масштабных коэффициентов, основанных на линейном предсказании. Кодируя разность между примененными масштабными коэффициентами и масштабными коэффициентами, которые могут быть определены в декодере, основанном на доступной информации линейного предсказания, эффективность кодирования и хранения может быть улучшена и сохранять/передавать потребуется совсем немного битов.

Другой независимый аспект изобретения, касающийся кодера, относится к обработке битового накопителя для кадров переменного размера. В системе аудиокодирования, которая может кодировать кадры переменной длины, битовый накопитель управляется посредством распределения доступные битов между кадрами. Учитывая разумную степень сложности индивидуальных кадров и битовый накопитель определенного размера, определенное отклонение от требуемой постоянной скорости передачи позволяет иметь лучшее общее качество без нарушения требований буфера, которые налагаются размером битового накопителя. Настоящее изобретение распространяет концепцию использования битового накопителя на управление битовым накопителем для общего аудиокодека с переменными размерами кадров. Система аудиокодирования может поэтому содержать блок управления битовым накопителем для определения числа битов, предоставляемых для кодирования кадра отфильтрованного сигнала, основываясь на длительности кадра и мере сложности кадра. Предпочтительно блок управления битовым накопителем имеет разные уравнения управления для различных мер сложности кадров и/или различных размеров кадров. Меры сложности для различных размеров кадров могут быть нормализованы, так чтобы их можно было легче сравнивать. Чтобы управлять распределением бит для кодера с переменной частотой, блок управления битовым накопителем предпочтительно устанавливает в предоставленном алгоритме управления битами пониженный допустимый предел относительно среднего числа битов для наибольшего допустимого размера кадра.

Дополнительный аспект изобретения относится к обработке битового накопителя в кодере, используя основанное на модели устройство квантования, например устройство квантования с ограничением энтропии (ECQ). Предлагается минимизировать изменение размера шага ECQ. Предлагается специальное уравнение управления, связывающее размер шага устройства квантования со скоростью работы ECQ.

Адаптивный фильтр для фильтрации входного сигнала предпочтительно основывается на анализе кодирования с линейным предсказанием (LPC), содержащем фильтр LPC, создающий отбеленный входной сигнал. Параметры LPC для текущего кадра входных данных могут быть определены с помощью известных в технике алгоритмов. Блок определения параметров LPC может вычислить для кадра входных данных любое подходящее представление параметров LPC, такое как полиномы, передаточные функции, коэффициенты отражения, дискретные спектральные частоты и т.д. Конкретный тип представления параметров LPC, который используется для кодирования или другой обработки, зависит от соответствующих требований. Как известно специалистам в данной области техники, некоторые представления более пригодны для определенных операций, чем другие, и поэтому предпочтительны для выполнения этих операций. Блок линейного предсказания может воздействовать на первой длительности кадра, которая устанавливается равной, например, 20 мс. Фильтрация с линейным предсказанием может дополнительно работать на нелинейной частотной оси, чтобы выборочно подчеркивать определенные частотные диапазоны, такие как низкие частоты, по сравнению с другими частотами.

Преобразованием, применяемым к кадру отфильтрованного входного сигнала, предпочтительно является модифицированное дискретное косинусное преобразование (MDCT), работающее с переменной длительностью второго кадра. Система аудиокодирования может содержать блок управления последовательностью окон, определяющий для блока входного сигнала длительности кадров для перекрытия окон MDCT, минимизируя функцию стоимости кодирования, предпочтительно упрощенную перцепционную энтропию, для всего блока входного сигнала, содержащего несколько кадров. Таким образом, получается оптимальная сегментация блока входного сигнала на окна MDCT, имеющие соответствующие длительности вторых кадров. Как следствие, предлагается структура кодирования в области преобразования, содержащая элементы речевого кодера, с кадром MDCT адаптивной длительности как единственным базовым блока для всей обработки, кроме LPC. Поскольку длительности кадров MDCT могут принимать много различных значений, может быть найдена оптимальная последовательность и можно избежать резких изменений размера кадров, как это обычно происходит на предшествующем уровне техники, где применяются только малый размер окна и большой размер окна. Кроме того, нет необходимости в переходных преобразовательных окнах с резкими краями, используемых при некоторых подходах предшествующего уровня техники для перехода между малым и большим размерами окон.

Предпочтительно длительности последовательных окон MDCT изменяются, самое большее, с коэффициентом два (2) и/или длительности окон MDCT являются диадическими значениями. Более конкретно, длительности окон MDCT могут быть диадическими частями блока входного сигнала. Последовательность окон MDCT поэтому ограничивается заданными последовательностями, которые просты для кодирования с помощью небольшого числа битов. Кроме того, последовательность окон имеет плавные переходы размеров кадров, исключая, тем самым, резкие изменения размеров кадров.

Блок управления последовательностью окон может быть дополнительно выполнен с возможностью результатов определения долгосрочного предсказания, созданных блоком долгосрочного предсказания, для кандидатов на продолжительность окон при поиске последовательности длительностей окон MDCT, которая минимизирует функцию стоимости кодирования блока входного сигнала. В этом варианте осуществления цикл долгосрочного предсказания замыкается при определении длительностей окон MDCT, что приводит к улучшенной последовательности окон MDCT, применяемых для кодирования.

Система аудиокодирования может дополнительно содержать кодер LPC для рекурсивного кодирования с переменной частотой дискретных спектральных частот или других соответствующих представлений параметров LPC, создаваемых блоком линейного предсказания для хранения и/или передачи на декодер. В соответствии с вариантом осуществления обеспечивается блок интерполяции линейного предсказания, чтобы интерполировать параметры линейного предсказания, созданные с частотой, соответствующей длительности первого кадра, так чтобы соответствовать переменным длительностям кадров сигнала в области преобразования.

В соответствии с аспектом изобретения система аудиокодирования может содержать блок перцепционного моделирования, изменяющий характеристику адаптивного фильтра посредством линейной частотной модуляции и/или наклона полинома LPC, созданного блоком линейного предсказания для кадра LPC. Перцепционная модель, полученная посредством модификации характеристик адаптивного фильтра, может использоваться для многих целей в системе. Например, она может применяться в качестве функции перцепционного взвешивания при квантовании или долгосрочном предсказании.

Другой аспект изобретения относится к долгосрочному предсказанию (LTP), в частности, к долгосрочному предсказанию в MDCT-области, адаптированному LTP кадра MDCT и поиску LTP со взвешенным MDCT. Эти аспекты применимы независимо от того, присутствует ли анализ LPC в восходящем потоке данных трансформного кодера.

В соответствии с вариантом осуществления система аудиокодирования дополнительно содержит блок инверсного квантования и инверсного преобразования для создания реконструкции во временной области кадра отфильтрованного входного сигнала. Дополнительно может обеспечиваться буфер долгосрочного предсказания для хранения реконструкций во временной области предыдущих кадров отфильтрованного входного сигнала. Эти блоки могут быть организованы в цикл с обратной связью от блока квантования к блоку извлечения долгосрочного предсказания, который ищет в буфере долгосрочного предсказания реконструированный сегмент, наилучшим образом совпадающий с текущим кадром отфильтрованного входного сигнала. Кроме того, может быть обеспечен блок определения усиления долгосрочного предсказания, который регулирует усиление сегмента, выбранного из буфера долгосрочного предсказания, так чтобы он наилучшим образом совпадал с текущим кадром. Предпочтительно результат определения долгосрочного предсказания вычитается из преобразованного входного сигнала в области преобразования. Поэтому может обеспечиваться второй блок преобразования для преобразования выбранного сегмента в область преобразования. Цикл долгосрочного предсказания может дополнительно содержать добавление результата определения долгосрочного предсказания в области преобразования к сигналу обратной связи после инверсного квантования и перед инверсным преобразованием во временную область. Таким образом, может использоваться схема обратного адаптивного долгосрочного предсказания, которая предсказывает в области преобразования текущий кадр отфильтрованного входного сигнала, основываясь на предыдущих кадрах. Для большей эффективности, схема долгосрочного предсказания может дополнительно быть адаптирована различными способами, как изложено ниже для некоторых примеров.

В соответствии с вариантом осуществления блок долгосрочного предсказания содержит устройство выделения долгосрочного предсказания для определения значения задержки, указывающее реконструированный сегмент отфильтрованного сигнала, наилучшим образом соответствующий текущему кадру отфильтрованного сигнала. Устройство определения усиления при долгосрочном предсказании может определить значение усиления, применяемого к сигналу выбранного сегмента отфильтрованного сигнала. Предпочтительно значение задержки и значение усиления определяются так, чтобы минимизировать критерий искажения, относящийся к разности в перцепционной области между оценкой долгосрочного предсказания и преобразованным входным сигналом. Модифицированный полином линейного предсказания может применяться в качестве кривой усиления выравнивания в MDCT-области при минимизации критерия искажения.

Блок долгосрочного предсказания может содержать блок преобразования для преобразования реконструированных сегментов из буфера LTP в область преобразования. Для эффективного осуществления MDCT-преобразования такое преобразование предпочтительно должно быть дискретным косинусным преобразованием типа-IV.

Другой аспект изобретения относится к аудиодекодеру для декодирования битового потока, созданного с помощью вариантов осуществления упомянутого выше кодера. Декодер, соответствующий варианту осуществления, содержит блок деквантования для деквантования кадра входного битового потока, основываясь на масштабных коэффициентах; блок инверсного преобразования для инверсного преобразования сигнал в области преобразования; блок линейного предсказания для фильтрации инверсно преобразованного сигнала в области преобразования; и блок декодирования масштабных коэффициентов для создания масштабных коэффициентов, используемых при деквантовании, основываясь на полученной дельта-информации масштабных коэффициентов, которая кодирует разность между масштабными коэффициентами, применяемыми в кодере, и масштабными коэффициентами, созданными, основываясь на параметрах адаптивного фильтра. Декодер может дополнительно содержать блок определения масштабных коэффициентов для создания масштабных коэффициентов, основываясь на пороговой кривой маскирования, получаемой из параметров линейного предсказания для текущего кадра. Блок декодирования масштабных коэффициентов может объединить полученную дельта-информацию масштабных коэффициентов с созданным линейным предсказанием, основываясь на масштабных коэффициентах, чтобы создать масштабные коэффициенты для ввода в блок деквантования.

Декодер, соответствующий другому варианту осуществления, содержит блок деквантования, основанный на модели, для деквантования кадра входного битового потока; блок инверсного преобразования для инверсного преобразования сигнала в области преобразования; и блок линейного предсказания для фильтрации инверсно преобразованного сигнала в области преобразования. Блок деквантования может содержать устройство деквантования, основанное на модели, и устройство деквантования, не основанное на модели.

Предпочтительно блок деквантования содержит, по меньшей мере, одну адаптивную вероятностную модель. Блок деквантования может быть выполнен с возможностью адаптации деквантования как функции характеристик переданного сигнала.

Блок деквантования может дополнительно принимать решение по стратегии деквантования, основываясь на данных управления для декодированного кадра. Предпочтительно данные управления деквантованием принимаются вместе с битовым потоком или получаются из принятых данных. Например, блок деквантования принимает решение по стратегии деквантования, основываясь на размере преобразования кадра.

В соответствии с другим аспектом, блок деквантования содержит точки адаптивной реконструкции. Блок деквантования может содержать однородные скалярные устройства деквантования, выполненные с возможностью использования двух точек реконструкции деквантования на интервале квантования, в частности, средней точки и точки реконструкции с MMSE.

В соответствии с вариантом осуществления блок деквантования использует устройство квантования, основанное на модели, в комбинации с арифметическим кодированием.

Кроме того, декодер может содержать многие из аспектов, раскрытых выше для кодера. В целом, декодер будет отражать операции кодера, хотя некоторые операции выполняются только в кодере и не будут иметь никаких соответствующих компонентов в декодере. Таким образом, то, что описано для кодера, должно считаться применимым также и для декодера, если не указывается иначе.

Упомянутые выше аспекты изобретения могут быть осуществлены как устройство, совокупность устройств, способ или компьютерная программа, работающая на программируемом устройстве. Аспекты изобретения могут дополнительно быть осуществлены в сигналах, структурах данных и битовых потоках.

Таким образом, заявка дополнительно раскрывает способ аудиокодирования и способ аудиодекодирования. Пример способа аудиокодирования содержит этапы, на которых: фильтруют входной сигнал на основе адаптивного фильтра; преобразуют кадр отфильтрованного входного сигнала в область преобразования; квантуют сигнал в области преобразования; создают масштабные коэффициенты, основываясь на пороговой кривой маскирования, для использования в блоке квантования при квантовании сигнала в области преобразования; определяют основанные на линейном предсказании масштабные коэффициенты, используя для этого параметры адаптивного фильтра; и кодируют разность между масштабными коэффициентами, основанными на пороговой кривой маскирования, и масштабными коэффициентами, основанными на линейном предсказании.

Другой способ аудиокодирования содержит этапы, на которых: фильтруют входной сигнал, основываясь на адаптивном фильтре; преобразуют кадр отфильтрованного входного сигнала в область преобразования; и квантуют сигнал в области преобразования; в котором блок квантования, основываясь на характеристиках входного сигнала, принимает решение кодировать сигнал в области преобразования с помощью устройства квантования, основанного на модели, или устройства квантования, не основанного на модели.

Пример способа аудиодекодирования содержит этапы, на которых: деквантуют кадр входного битового потока, основываясь на масштабных коэффициентах; инверсно преобразуют сигнал в области преобразования; фильтруют с линейным предсказанием инверсно преобразованный сигнал в области преобразования; определяют вторые масштабные коэффициенты, основываясь на параметрах адаптивного фильтра; и создают масштабные коэффициенты, используемые при деквантовании, основываясь на полученной информации о разности масштабных коэффициентов и определенных вторых масштабных коэффициентах.

Другой способ аудиокодирования содержит этапы, на которых: деквантуют кадр входного битового потока; инверсно преобразуют сигнал в области преобразования; и фильтруют с линейным предсказанием инверсно преобразованный сигнал в области преобразования; в котором деквантование использует устройство квантования, основанное на модели, и устройство квантования, не основанное на модели.

Приведенное выше является лишь примерами предпочтительных способов аудиокодирования/декодирования и компьютерных программ, которые предлагаются настоящей заявкой и которые специалист в данной области техники может получить из последующего описания примеров вариантов осуществления.

Краткое описание чертежей

Настоящее изобретение будет теперь описано посредством иллюстративных примеров, не ограничивающих объем или сущность изобретения, со ссылкой на сопроводительные чертежи, на которых:

Фиг. 1 - предпочтительный вариант осуществления кодера и декодера в соответствии с настоящим изобретением;

Фиг. 2 - более подробное представление кодера и декодера в соответствии с настоящим изобретением;

Фиг. 3 - другой вариант осуществления кодера, соответствующего настоящему изобретению;

Фиг. 4 - предпочтительный вариант осуществления кодера, соответствующего настоящему изобретению;

Фиг. 5 - предпочтительный вариант осуществления декодера, соответствующего настоящему изобретению;

Фиг. 6 - предпочтительный вариант осуществления кодирования и декодирования линий MDCT в соответствии с настоящим изобретением;

Фиг. 7 - предпочтительный вариант осуществления кодера и декодера и примеры соответствующих данных управления, передаваемых от одного к другому в соответствии с настоящим изобретением;

Фиг. 7a - другой пример аспектов кодера в соответствии с вариантом осуществления изобретения;

Фиг. 8 - пример последовательности окон и отношения между данными LPC и данными MDCT в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 9 - объединение данных масштабных коэффициентов и данных LPC в соответствии с настоящим изобретением;

Фиг. 9a - другой вариант осуществления объединения данных масштабных коэффициентов и данных LPC в соответствии с настоящим изобретением;

Фиг. 9b - другая упрощенная блок-схема кодера и декодера в соответствии с настоящим изобретением;

Фиг. 10 - предпочтительный вариант осуществления перевода полиномов LPC в кривую усиления MDCT в соответствии с настоящим изобретением;

Фиг. 11 - предпочтительный вариант осуществления отображения параметров LPC с постоянной частотой обновления в данные последовательности окон с адаптивным MDCT в соответствии с настоящим изобретением;

Фиг. 12 - предпочтительный вариант осуществления вычисления адаптации перцепционного взвешивающего фильтра, основываясь на размере преобразования и типе устройства квантования в соответствии с настоящим изобретением;

Фиг. 13 - предпочтительный вариант осуществления адаптации устройства квантования в зависимости от размера кадра в соответствии с настоящим изобретением;

Фиг. 14 - предпочтительный вариант осуществления адаптации устройства квантования в зависимости от размера кадра в соответствии с настоящим изобретением;

Фиг. 15 - предпочтительный вариант осуществления адаптации размера шага квантования как функции LPC и данных LTP в соответствии с настоящим изобретением;

Фиг. 15a - вывод дельта-кривой из параметров LPC и LTP с помощью блока дельта-адаптации;

Фиг. 16 - предпочтительный вариант осуществления устройства квантования, основанного на модели, использующего случайные сдвиги, соответствующего настоящему изобретению;

Фиг. 17 - предпочтительный вариант осуществления устройства квантования, основанного на модели, в соответствии с настоящим изобретением;

Фиг. 17a - другой предпочтительный вариант осуществления устр