Устройство съемки изображений, способ управления им и программа
Иллюстрации
Показать всеИзобретение относится к устройству автоматической фокусировки и способу управления им на основании преобразованного фотоэлектрическим способом сигнала. Устройство одновременно реализует фазоразностную и контрастную автофокусировку и определяет дальность на основании отношения соответствия между каждым пикселем элемента съемки изображения, который ограничивается средством деления зрачка, предусматривающим ограничение излучения от оптического изображения объекта, поступающего на каждый пиксель элемента съемки изображения, излучением от конкретного участка выходного зрачка фотографического объектива, и конкретным участком выходного зрачка фотографического объектива, и определяет оцениваемое значение фокуса объекта в соответствии с определенным диапазоном по контрастному положению фокуса или корреляционному положению фокуса. Технический результат - повышение скорости и точности фокусировки. 5 н. и 12 з.п. ф-лы, 19 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к устройству съемки изображений, содержащему элемент съемки изображения для фотоэлектрического преобразования изображения объекта, к способу управления таким устройством и, в частности, к устройству автоматической фокусировки (называемой далее АФ) и способу управления ей на основании преобразованного фотоэлектрическим способом сигнала, который выдается с элемента съемки изображения.
УРОВЕНЬ ТЕХНИКИ
В уровне техники в качестве управления автоматической фокусировкой для регулировки резкости, например, в цифровом фотоаппарате и т.п., главным образом применялось фазоразностное управление АФ, которое используется в однообъективном зеркальном фотоаппарате, и контрастное управление АФ, которое используется в компактном фотоаппарате и т.п. Особенность этих способов управления АФ состоит в том, что, например, при фазоразностной АФ может быть достигнута высокоскоростная регулировка резкости, а при контрастной АФ быть достигнута точная регулировка резкости.
Например, в PTL 1 описан способ проведения оценки контраста на основании датчика фазоразностной АФ. В PTL 2 описан способ, в котором используется элемент съемки изображения, который может индивидуально принимать излучение, проходящее сквозь различные участки зрачка, при этом формируется изображение, подвергающееся регулировке резкости с помощью сигнала съемки изображения, который выдается с элемента съемки изображения (то есть после обработки съемки изображения).
СПИСОК ЦИТИРОВАННЫХ ИСТОЧНИКОВ
ПАТЕНТНАЯ ЛИТЕРАТУРА
PTL 1: публикация заявки на патент Японии № HO7-199052.
PTL 2: публикация заявки на патент Японии № 2007-4471.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ПРОБЛЕМА
Однако в соответствии с уровнем техники, описанным в вышеуказанной патентной литературе, возможен случай, в котором не обеспечивается достаточная точность фокусировки, а лишь формируется изображение, на котором предполагаемый объект не сфокусирован. То есть в соответствии с PTL 1 ввиду того, что датчик для выполнения вычисления контраста и датчик для выполнения съемки изображения различны, возможен случай, в котором точность фокусировки не всегда может быть улучшена. В соответствии с PTL 2 несмотря на то, что может быть получено изображение, на котором точка фокусировки изменилась после того, как могла быть выполнена съемка изображения, существует ограничение по диапазону, в котором фокус может быть изменен с высокой степенью точности, и когда такой диапазон превышает данное ограничение, сложно нормальным образом получить изображение.
РЕШЕНИЕ ПРОБЛЕМЫ
Настоящее изобретение сделано с учетом вышерассмотренной ситуации, и задача изобретения состоит в создании устройства съемки изображений, которое может выполнять АФ с высокой скоростью и высокой точностью фокусировки путем одновременной реализации фазоразностной АФ и контрастной АФ на основании информации об излучении, которое поступило на элемент съемки изображения и прошло через различные участки зрачка. В соответствии с настоящим изобретением устройство съемки изображений, включающее в себя фотографическую оптическую систему, которая включает в себя фотографический объектив и элемент съемки изображения для фотоэлектрического преобразования оптического изображения объекта, которое проходит через фотографический объектив, и выдачи сигнала изображения, содержит: средство деления зрачка для ограничения излучения от оптического изображения объекта, которое поступает на каждый пиксель элемента съемки изображения, излучением от конкретного участка выходного зрачка фотографического объектива; средство смещения изображения для определения величины смещения сигнала изображения, соответствующего заданному оцениваемому положению фокуса для каждого участка выходного зрачка, на основании отношения соответствия между каждым пикселем элемента съемки изображения и конкретным участком выходного зрачка фотографического объектива, которое ограничивается средством деления зрачка; средство формирования изображения для формирования изображения, соответствующего оцениваемому положению фокуса, путем выполнения обработки арифметической операции на основании величины смещения, определяемой средством смещения изображения, над сигналом изображения; средство оценки контраста для вычисления оцениваемого значения контраста изображения, формируемого средством формирования изображения, и определения контрастного положения фокуса на основании оцениваемого значения контраста; средство вычисления корреляции для вычисления оцениваемого значения корреляции между изображениями, соответствующими различным участкам выходного зрачка в сформированном изображении, и определения корреляционного положения фокуса на основании оцениваемого значения корреляции; средство определения оцениваемого диапазона фокусировки для определения диапазона оцениваемого положения фокуса, в котором средство смещения изображений может определять величину смещения, на основании конструкции элемента съемки изображения и средства деления зрачка; и средство оценки фокуса для сравнения абсолютного значения диапазона, определенного средством определения оцениваемого диапазона фокусировки, и абсолютного значения корреляционного положения фокуса, определенного средством вычисления корреляции, и определения оцениваемой величины фокуса объекта на основании определенного корреляционного положения фокуса и определенного контрастного положения фокуса, определенного в соответствии с результатом сравнения.
ПОЛЕЗНЫЕ ЭФФЕКТЫ ИЗОБРЕТЕНИЯ
В соответствии с настоящим изобретением ввиду того, что фазоразностная АФ и контрастная АФ избирательно используются в соответствии с положением съемки изображений, которое определяется в соответствии с конструкцией устройства съемки изображений, может быть создано устройство съемки изображений, способное выполнять АФ с высокой скоростью и высокой точностью.
Другие признаки настоящего изобретения будут ясны из нижеследующего описания примеров осуществления со ссылкой на прилагаемые чертежи.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 представляет собой блок-схему, иллюстрирующую построение системы устройства съемки изображений в соответствии с некоторым вариантом осуществления изобретения.
Фиг. 2А, 2В и 2С представляют собой схематические изображения, на которых показаны блок-схемы операции съемки изображения в соответствии с первым вариантом осуществления изобретения.
Фиг. 3А, 3В и 3С представляют собой принципиальные схемы оптической системы фотографического устройства в соответствии с первым вариантом осуществления изобретения.
Фиг. 4А и 4В представляют собой схематические изображения, на которых показаны блок-схемы управления АФ в соответствии с первым вариантом осуществления изобретения.
Фиг. 5А, 5В и 5С представляют собой схематические изображения, на которых показаны блок-схемы управления АФ в соответствии с первым вариантом осуществления изобретения.
Фиг. 6А, 6В, 6С и 6D представляют собой принципиальные схемы, на которых показана операция повторного формирования изображения.
Фиг. 7А, 7В и 7С представляют собой принципиальные схемы оптической системы, которая может применяться в настоящем изобретении.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Предпочтительные варианты осуществления настоящего изобретения подробно описаны ниже в соответствии с прилагаемыми чертежами.
ПРИМЕР 1
Ниже со ссылкой на фиг. 1-7С описано устройство съемки изображений в соответствии с первым вариантом осуществления изобретения.
Фиг. 1 представляет собой блок-схему, иллюстрирующую построение системы цифрового фотоаппарата, служащего в качестве устройства съемки изображений, в соответствии с настоящим изобретением. Настоящий фотоаппарат имеет в качестве режимов режим фотографирования неподвижных изображения и режим фотографирования динамических изображений и конструкцию, при которой в каждом режиме фотографирования в качестве задачи настоящего изобретения достигается управление АФ.
Устройство 100 съемки изображений выполнено из фотоаппарата 101 и объектива 102 и содержит систему съемки изображения, систему обработки изображения, систему записи и воспроизведения и систему управления. Система съемки изображения включает в себя фотографическую оптическую систему 103 и элемент 106 съемки изображения. Система обработки изображения включает в себя блок 107 обработки изображения. Система записи и воспроизведения включает в себя блок 108 памяти и блок 109 отображения. Система управления включает в себя блок 105 управления фотоаппаратом, блок 112 управления оптической системой и блок 113 привода объектива. Блок 113 привода объектива может осуществлять привод фокусирующей линзы, линзы коррекции размытия изображения, диафрагмы и т.п.
Система съемки изображения является системой оптической обработки для фокусирования излучения (оптического изображения) от объекта на плоскость съемки изображения элемента 106 съемки изображения, через фотографическую оптическую систему 103, содержащую фотографический объектив. На поверхности (фоточувствительной поверхности) элемента 106 съемки изображения в форме матрицы размещаются микролинзы, при этом формируется так называемый массив микролинз (далее называемый MLA). В настоящем варианте осуществления MLA составляет средство деления зрачка. Несмотря на то что детали назначения и размещения MLA будут описаны ниже с помощью фиг. 3А-3С, благодаря средству деления зрачка оцениваемое значение фокуса/надлежащая величина экспозиции может быть получена по выходному сигналу элемента 106 съемки изображения. Следовательно, фотографическая оптическая система 103 надлежащим образом регулируется на основании полученной таким образом информации. Таким образом, излучение от объекта с надлежащей величиной излучения может подвергаться воздействию элемента 106 съемки изображения, при этом объект может фокусироваться вблизи элемента 106 съемки изображения.
Блок 107 обработки изображения содержит аналого-цифровой (A/D) преобразователь, схему баланса белого, схему гамма-коррекции, схему операции интерполяции и т.п. и может формировать изображение для записи посредством обработки изображения. В состав также может входить средство смещения изображения, средство формирования изображения, средство оценки контраста, средство вычисления корреляции и т.п., служащие в качестве основного раздела изобретения. В настоящем варианте осуществления эти элементы выполнены в виде управляющей программы в системе управления фотоаппаратом.
Блок 108 памяти содержит не только запоминающий блок для фактического запоминания данных, но и блок обработки, необходимый для записи. Блок 108 памяти выдает данные в блок записи и формирует и запоминает изображение, которое выдается в блок 109 отображения. Блок 108 памяти также выполняет обработку со сжатием изображения, динамического изображения, звука и т.п. с помощью заданного способа.
Блок 105 управления фотоаппаратом формирует и выдает синхронизирующий сигнал и т.п. в момент съемки изображения и управляет каждой из системы съемки изображения, системы обработки изображения и системы записи и воспроизведения под действием внешней операции. Например, блок 110 обнаружения срабатывания обнаруживает нажатие спусковой кнопки фотографического затвора (не показана) и управляет приведением в действие (фотоэлектрическим преобразованием) элемента 106 съемки изображения, действием блока 107 обработки изображения, обработкой со сжатием блока 108 памяти и т.п. Кроме того, управление состоянием каждого звена устройства отображения информации для отображения информации на жидкокристаллическом мониторе и т.п. также осуществляется с помощью блока 105 управления фотоаппаратом и блоком 109 отображения.
Далее описана операция регулировки оптической системы с помощью системы управления. Блок 107 обработки изображения соединен с блоком 105 управления фотоаппаратом, при этом положение фокуса и положение диафрагмы, соответствующие условиям фотографирования, формируются на основании сигнала изображения с элемента 106 съемки изображения. Блок 105 управления фотоаппаратом передает команду в блок 112 управления оптической системой через электрическое соединение 111. В соответствии с этой командой блок 112 управления оптической системой управляет блоком 113 привода объектива. Кроме того, с блоком 112 управления оптической системой соединен датчик обнаружения вибраций (не показан). В режиме выполнения коррекции вибраций управление линзой коррекции вибраций осуществляется с помощью блока 113 привода объектива на основании сигнала с датчика обнаружения вибраций.
Далее со ссылкой на фиг. 2А-2С описано действие устройства 100 съемки изображений в целом. Фиг. 2А-2С представляют собой блок-схемы для описания основных принципов действия устройства съемки изображений настоящего изобретения. На фиг. 2А показано действие от включения питания до выключения питания, на фиг. 2В показано действие основного участка режима фотографирования неподвижных изображений, а на фиг. 2С показано действие основного участка режима фотографирования динамических изображений соответственно. Эти действия выполняются с помощью способа, в соответствии с которым блок 105 управления фотоаппаратом загружает управляющую программу, соответствующую каждому схематическому изображению, из запоминающего устройства (не показано) и исполняет ее.
Действие будет описано в порядке этапов, начиная с фиг. 2А. Этап S201 означает включение источника питания. Этап S202 представляет собой этап обнаружения, выключен ли источник питания или нет. Что касается такого обнаружения, то обстоятельство, что выключатель питания (не показан), иное исполнительное устройство (например, кнопка питания, отображаемая на экране отображения меню) и т.п. фотоаппарата сработало, обнаруживается блоком 110 обнаружения срабатывания в соответствии с управляющим воздействием блока 105 управления фотоаппаратом. При обнаружении выключения питания процедура обработки переходит к этапу S205. При необнаружении процедура обработки переходит к этапу S203. Этап S203 представляет собой этап обнаружения действия пользователя блоком 110 обнаружения срабатывания в соответствии с управляющим воздействием блока 105 управления фотоаппаратом. Если управление устройством 100 съемки изображений осуществляется пользователем, далее следует этап S204. В противном случае процедура обработки возвращается на этап S202, и повторяется обнаружение выключения питания или действия пользователя. На этапе S204 выполняется обработка, соответствующая обнаруженному действию пользователя. Например, в тех случаях, когда блоком 110 обнаружения срабатывания обнаруживается операция выбора режима фотографирования неподвижных изображений, блок 105 управления фотоаппаратом запускает действие режима фотографирования неподвижных изображений. Что касается других действий, то имеются осуществление режима фотографирования динамических изображений, воспроизведение данных, записанных в запоминающем средстве, действие для изменения настроек устройства 100 съемки изображений и т.п.
Далее со ссылкой на фиг. 2В и 2С описаны действия режима фотографирования неподвижных изображений и режима фотографирования динамических изображений как обработка, которая выполняется на этапе S204.
Фиг. 2В представляет собой блок-схему, на которой показано действие устройства 100 съемки изображений во время осуществления режима фотографирования неподвижных изображений. Этап S211 означает запуск режима фотографирования неподвижных изображений.
Этап S212 представляет собой этап, на котором в соответствии с управляющим воздействием блока 105 управления фотоаппаратом блок 110 обнаружения срабатывания распознает, включен ли переключатель первого нажатия (именуемый далее SW1). При фотографировании неподвижных изображений операция фотографирования или операция подготовки фотографирования выполняется в соответствии с нажатием спусковой кнопки. Как правило, спусковая кнопка является переключателем двух нажатий. Операция подготовки фотографирования выполняется включением переключателя первого нажатия, а операция фотографирования выполняется включением переключателя второго нажатия. Операция подготовки фотографирования означает операцию корректировки АФ фотографической оптической системы 103 и условий экспозиции элемента 106 съемки изображения путем выполнения фотометрии, измерения дальности и т.п.
Если на этапе S212 обнаруживается включение SW1, процедура обработки переходит на этап S214, а если не обнаруживается, процедура обработки переходит на этап S213. На этапе S213 выполняется обработка в соответствии с действием, отличным от SW1. Несмотря на то что таким действием может быть изменение установок фотографирования и т.п., например, ввиду того что они не связаны с признаками изобретения, их описание в данном случае не приводится.
На этапе S214 в качестве операции подготовки фотографирования выполняется измерение дальности. Хотя одновременно выполняются также другие операции подготовки фотографирования, ввиду того что они не являются признаками настоящего изобретения, для упрощения описания описана операция измерения дальности и лишь операции, связанные с ними.
На этапе S215 при необходимости выполняется привод объектива для коррекции фотографической оптической системы 103 на основании результата этапа S214. Если в результате этапа S214 устанавливается, что в настоящее время достигнуто состояние нахождения в фокусе, нет необходимости выполнять привод объектива для коррекции точки фокусировки.
На этапе S216 контролируется спуск SW1. Если устанавливается, что пользователь спускает SW1, процедура обработки возвращается на этап S212, а устройство возвращается в дежурное состояние обнаружения включения SW1. Если пользователь продолжает действие SW1, далее следует этап S217.
На этапе S217 блок 110 обнаружения срабатывания обнаруживает включение переключателя второго нажатия (именуемого далее SW2) спусковой кнопки в соответствии с управляющим воздействием блока 105 управления фотоаппаратом. Если обнаруживается включение SW2, процедура обработки возвращается на этап S218. Если оно не обнаруживается, процедура обработки возвращается на этап S216.
На этапе S218 выполняется операция фотографирования. Надлежащая экспозиция элемента 106 съемки изображения осуществляется в соответствии с результатом операции подготовки фотографирования. Оптическое изображение объекта формируется в виде электрического сигнала и обрабатывается блоком 107 обработки изображения. После этого оно записывается в блок 108 памяти.
Этап S219 означает прекращение фотографирования неподвижных изображений.
Как описано со ссылкой на фиг. 2В, в режиме фотографирования неподвижных изображений измерение дальности и операция коррекции оптической системы, соответствующие этапам S212, S214 и S215, выполняются в связи с включением SW1. Хотя операции подготовки не всегда ограничиваются описанными выше применительно к ним в способе измерения дальности и коррекции оптической системы, называемом следящим АФ или непрерывным АФ, основное действие при фотографировании неподвижных изображений в данном случае приведено в качестве примера.
Фиг. 2С представляет собой блок-схему, на которой показано действие устройства 100 съемки изображений в момент выполнения фотографирования неподвижных изображений. Этап S221 означает запуск режима фотографирования динамических изображений.
На этапе S222 блоком 110 обнаружения срабатывания обнаруживается включение кнопки записи (не показана) (кнопки, которая указывает на запуск фотографирования динамических изображений). Если на этапе S222 обнаруживается включение кнопки записи, далее следует этап S223.
На этапе S223 выполняется обработка, соответствующая действию, отличному от действия кнопки записи. Например, несмотря на то что можно упомянуть изменение установок фотографирования и т.п., ввиду того что оно не является признаками изобретения, его описание не приводится.
На этапе S224 выполняется измерение дальности в качестве операции подготовки фотографирования. Хотя одновременно выполняются также другие операции подготовки фотографирования, ввиду того что они не являются признаками настоящего изобретения, для упрощения описания описаны операция измерения дальности и лишь операции, связанные с ними.
На этапе S225 при необходимости выполняется привод объектива для коррекции фотографической оптической системы 103 на основании результата этапа S224. Если в результате этапа S224 устанавливается, что в данный момент достигнуто состояние нахождения в фокусе, нет необходимости выполнять привод объектива для коррекции точки фокусировки. Благодаря коррекции оптической системы до начала записи на этапах S224 и S255 непосредственно после начала записи надлежащим образом определяются состояние фокусировки и т.п. и улучшается качество формируемого видеоизображения.
На этапе S226 начинается запись. В частности, сигнал изображения считывается с элемента 106 съемки изображения в заданном интервале выборки и подвергается обработке кодов и т.п. с помощью блока 107 обработки изображения. После этого начинается операция записи в блок 108 памяти.
На этапе S227 блоком 110 обнаружения обнаруживается срабатывание кнопки остановки записи. Если на этапе S227 обнаруживается срабатывание кнопки остановки записи, далее следует этап S229. Если оно не обнаруживается, далее следует этап S228.
На этапе S228 определяется время измерения таймера для выполнения измерения дальности. Процедура обработки переходит на этап S224 в каждом заданном интервале в соответствии со временем измерения таймера. В противном случае процедура обработки возвращается на этап S227, и устройство ожидает срабатывания кнопки остановки записи. Благодаря определению времени измерения таймера на этапе S228 на этапе S224 выполняется операция измерения дальности в каждом заданном интервале, и во время записи также выполняются измерение дальности и коррекция оптической системы. Этап S229 означает прекращение фотографирования динамических изображений.
Как описано на фиг. 2С, при фотографировании динамических изображений измерение дальности и операция коррекции оптической системы, соответствующие этапам S122, S124, S125 и S128, выполняются в связи со срабатыванием кнопки записи и измерением времени измерения таймера.
Далее, фиг. 3А-3С представляют собой схемы для описания признаков фотографической оптической системы в настоящем варианте осуществления. На этих схемах по существу те же составные элементы, что и на фиг. 1, обозначены теми же ссылочными позициями. Чтобы применять данное изобретение, необходимо получать информацию об угле, а также положении лучей, которая называется информацией о световом поле и т.п. В данном варианте осуществления для того, чтобы получить угловую информацию, вблизи плоскости съемки изображения фотографической оптической системы 103 размещается MLA, при этом множество пикселей выполняется соответствующим одной из микролинз, составляющих MLA.
Фиг. 3А представляет собой схему, схематично иллюстрирующую отношение соответствия между элементом 106 съемки изображения и MLA 320. Фиг. 3В представляет собой принципиальную схему, иллюстрирующую соответствие между пикселями элемента 106 съемки изображения и MLA 320. Фиг. 3С представляет собой схему, иллюстрирующую, что пиксели, размещаемые под MLA с помощью MLA 320, выполняются соответствующими определенным участкам зрачка.
Как показано на фиг. 3А, MLA 320 размещается на элементе 106 съемки изображения таким образом, что передняя главная точка MLA 320 располагается вблизи плоскости фокусировки фотографической оптической системы 103. На фиг. 3А показан вертикальный вид MLA 320 сбоку. Линзы MLA 320 размещаются таким образом, чтобы перекрывать пиксели на элементе 106 съемки изображения. Хотя каждая из микролинз, составляющих MLA 320, показана в увеличенном виде на фиг. 3А с тем, чтобы ее хорошо было видно, в действительности каждая микролинза имеет размер, в несколько раз превышающий размер пикселя. Реальный размер будет описан с использованием фиг. 3В.
Фиг. 3В представляет собой частичную увеличенную схему вида MLA 320 спереди на фиг. 3А. Массив в виде матрицы, показанный на фиг. 3А, задает каждый пиксель элемента 106 съемки изображения. Микролинзы, составляющие MLA 320, изображены сплошными кругами 320a, 320b, 320c и 320d соответственно. Как будет понятно из фиг. 3В, на одну микролинзу выделяется множество пикселей. В приведенном на фиг. 3В примере 25 (= 5 строк × 5 столбцов) пикселей образуют одну группу, соответствующую одной микролинзе. То есть размер каждой микролинзы равен размеру, в (5 раз × 5 раз) превышающему размер пикселя.
Фиг. 3С представляет собой схему, иллюстрирующую поперечное сечение одной микролинзы в том случае, когда срез MLA осуществляется таким образом, что поперечное сечение включает в себя оптическую ось микролинзы, а продольное направление (направление Х) элемента съемки изображения параллельно поперечному направлению схемы. Ссылочные позиции 321, 322, 323, 324 и 325 на фиг. 3С означают пиксели (один блок фотоэлектрического преобразования) элемента 106 съемки изображения. На схеме, приведенной в верхней части фиг. 3С, показана плоскость выходного зрачка фотографической оптической системы 103. В действительности, несмотря на то что плоскость выходного зрачка (плоскость X-Y) параллельна вертикальному направлению (направлению y) поверхности бумаги фиг. 3С согласно соответствию направлений между плоскостью выходного зрачка и датчиком, изображенным в нижней части фиг. 3С, направление проектирования для описания изменено. Для упрощения описания фиг. 3С ниже описана одномерная проекция/обработка сигналов. То есть предполагается, что деление зрачка осуществляется в одном измерении лишь с 331 по 335, а соответствующее размещение пикселей также устанавливается в одном измерении, например, лишь с 321а по 325а на фиг. 3В. Это предположение также применимо к описанию фиг. 6А-6D. Это легко может быть распространено на двумерную проекцию/обработку сигналов в реальном устройстве.
Имеются пространственные отношения соответствия между пикселями 321, 322, 323, 324 и 325 на фиг. 3С и 321а, 322а, 323а, 324а и 325а на фиг. 3В соответственно. Как показано на фиг. 3С, каждый пиксель выполнен таким образом, что он сопрягается с определенным участком выходного зрачка в плоскости выходного зрачка фотографической оптической системы 103 с помощью MLA 320. В приведенном на фиг. 3С примере пиксель 321 и участок 331 соответствуют друг другу, пиксель 322 и участок 332 соответствуют друг другу, пиксель 323 и участок 333 соответствуют друг другу, пиксель 324 и участок 334 соответствуют друг другу и пиксель 325 и участок 335 соответствуют друг другу соответственно. То есть только излучение, которое проходит через участок 331 на плоскости выходного зрачка фотографической оптической системы 103, поступает на пиксель 321. Это имеет место и для остальных пикселей. В результате информация об угле падения излучения может быть получена по относительным положениям участков, через которые проходит излучение, в плоскости зрачка, и пикселей на элементе 106 съемки изображения.
Обозначения Δх и Δθ, показанные на фиг. 3С, означают шаг пикселей и угловое разрешение элемента 106 съемки изображения соответственно. Как описано ниже, вместе с числом Nθ делений угла (Nθ=5 в примере на фиг. 3А-3С) они обеспечивают диапазон dmax, в котором может выполняться контрастная АФ. Шаг Δх пикселей определяется формой элемента 106 съемки изображения. Угловое разрешение Δθ определяется диапазоном, в котором формируется угол световых лучей, и числом Nθ делений угла. Следовательно, эти параметры определяются только физической конструкцией (конструкцией элемента 106 съемки изображения и MLA 320).
Далее с помощью фиг. 7А-7С описано повторное формирование изображения в плоскости мнимого фокуса в фотографической оптической системе, изображенной на фиг. 3А-3С. На этих схемах по существу те же составные элементы, что и на фиг. 1 и 3А-3С, обозначены теми же ссылочными позициями. Фиг. 7А-7С представляют собой схемы, схематично иллюстрирующие состояние, в котором излучение от объекта (фотографируемого объекта) фокусируется на элементе 106 съемки изображения. Фиг. 7А соответствует оптической системе, описанной на фиг. 3А-3С, и является примером, в котором MLA 320 располагается вблизи плоскости съемки изображения фотографической оптической системы 103. Фиг. 7В является примером, в котором MLA 320 располагается ближе к объекту, чем плоскость съемки изображения фотографической оптической системы 103. Фиг. 7С является примером, в котором MLA 320 располагается дальше от объекта, чем плоскость съемки изображения фотографической оптической системы 103.
На фиг. 7А-7С ссылочной позицией 106 обозначен элемент съемки изображения; 320-MLA; 331-335 - участки зрачка, используемые на фиг. 3А-3С; 751 - плоскость изображения; 751а-751b - собственные точки на объекте; а 752 - плоскость зрачка фотографической оптической системы. Ссылочными позициями 761, 762, 771, 772, 773, 981, 782, 783 и 784 обозначены конкретные микролинзы в MLA соответственно. На фиг. 7В и 7С ссылочной позицией 106а обозначен элемент съемки изображения, расположенный в плоскости мнимого фокуса, а 320а обозначает MLA, расположенную в плоскости мнимого фокуса. Они изображены в виде ссылок для того, чтобы объяснить отношение соответствия с фиг. 7А. Излучение, выходящее из точки 751а на объекте и проходящее через участки 331 и 333 в плоскости зрачка, показано сплошными линиями, а излучение, выходящее из точки 751b на объекте и проходящее через участки 331 и 333 в плоскости зрачка, показано пунктирными линиями.
В примере на фиг. 7А, как описано также на фиг. 1, благодаря размещению MLA 320 вблизи плоскости съемки изображения фотографической оптической системы 103 элемент 106 съемки изображения и плоскость 752 зрачка имеют сопряженное отношение. Кроме того, плоскость 751 объекта и MLA 320 имеют сопряженное отношение. Поэтому излучение, выходящее из точки 751а на объекте, достигает микролинзы 761, излучение, выходящее из точки 751b на объекте, достигает микролинзы 762, а излучение, проходящее через участки 331-335, достигает соответствующих пикселей, предусмотренных под микролинзами соответственно.
В примере на фиг. 7В излучение от фотографической оптической системы 103 фокусируется с помощью MLA 320, при этом элемент 106 съемки изображения размещается в плоскости съемки изображения. Благодаря размещению микролинз, как описано выше, плоскость 751 объекта и элемент 106 съемки изображения имеют сопряженное отношение. Излучение, выходящее из точки 751а на объекте и проходящее через участок 331 в плоскости зрачка, достигает микролинзы 771. Излучение, выходящее из точки 751а на объекте и проходящее через участок 333 в плоскости зрачка, достигает микролинзы 772. Излучение, выходящее из точки 751b на объекте и проходящее через участок 331 в плоскости зрачка, достигает микролинзы 772, излучение, выходящее из точки 751b на объекте и проходящее через участок 333 в плоскости зрачка, достигает микролинзы 773. Излучение, проходящее через каждую микролинзу, достигает соответствующих пикселей, соответственно предусмотренных под микролинзами. Как указано выше, точки на объекте, соответственно, фокусируются в различных положениях элемента съемки изображения с помощью участков, через которые проходит излучение, в плоскости зрачка. Благодаря перемещению этих точек в положения на мнимом элементе 106а съемки изображения может быть получена информация (о повторном формировании изображения), аналогичная приведенной на фиг. 7А. То есть может быть получена информация об участках зрачка, через которые проходит излучение (об углах падения), и о положениях на элементе съемки изображения, при этом реализуется функция средства деления зрачка.
В примере на фиг. 7С излучение от фотографической оптической системы 103 повторно формируется с помощью MLA 320 (поскольку фокусируется излучение в состоянии, в котором излучение, которое фокусируется однократно, рассеивается, такая обработка называется «повторным формированием»), а элемент 106 съемки изображения размещается в плоскости съемки изображения. Благодаря размещению микролинз, как описано выше, плоскость 751 объекта и элемент 106 съемки изображения имеют сопряженное отношение. Излучение, выходящее из точки 751а на объекте и проходящее через участок 331 в плоскости зрачка, достигает микролинзы 782. Излучение, выходящее из точки 751а на объекте и проходящее через участок 333 в плоскости зрачка, достигает микролинзы 781. Излучение, выходящее из точки 751b на объекте и проходящее через участок 331 в плоскости зрачка, достигает микролинзы 784. Излучение, выходящее из точки 751b на объекте и проходящее через участок 333 в плоскости зрачка, достигает микролинзы 783. Излучение, проходящее через каждую микролинзу, достигает соответствующих пикселей, предусмотренных под микролинзами соответственно. Аналогично фиг. 7В, благодаря перемещению этих точек в положения на мнимом элементе 106а съемки изображения может быть получена информация (о повторном формировании изображения), аналогичная приведенной на фиг. 7А. То есть может быть получена информация об участках зрачка, через которые проходит излучение (об углах падения), и о положениях на элементе съемки изображения, при этом реализуется функция средства деления зрачка.
На фиг. 7А-7С изображен пример, в котором в качестве средства деления зрачка используется MLA (элемент фазовой модуляции), и может быть получена информация о положении и угловая информация. Однако может также использоваться иная оптическая система при условии, что она может получать информацию о положении и угловую информацию (которая эквивалентна информации, которой ограничены участки зрачка, через которые проходит излучение). Например, может также использоваться способ, с помощью которого в оптический путь фотографической оптической системы вводится маска (элемент модуляции коэффициента усиления), на которой формируется необходимая картина.
Обработка для получения оцениваемого значения фокуса по выходному сигналу элемента 106 съемки изображения с помощью фотографической оптической системы, изображенной в данном варианте осуществления, будет описана с помощью фиг. 4А-4В, 5А-5С и 6А-6D.
Операция измерения дальности в качестве признаков настоящего изобретения будет описана с помощью фиг. 4А-4В и фиг. 5А-5С.
Фиг. 4А-4В и фиг. 5А-5С представляют собой блок-схемы для описания операции измерения дальности устройства съемки изображений настоящего изобретения. Фиг. 4А представляет собой блок-схему, иллюстрирующую в целом действие операции измерения дальности, а фиг. 4В представляет собой блок-схему, иллюстрирующую действие средства вычисления корреляции соответственно. Фиг. 5А представляет собой блок-схему, иллюстрирующую действие средства смещения изображения. Фиг. 5В представляет собой блок-схему, иллюстрирующую действие средства формирования изображения. Фиг. 5С представляет собой блок-схему, иллюстрирующую действие средства оценки контраста. Операция измерения дальности настоящего изобретения будет описана в порядке этапов, начиная с фиг. 4А.
Этап S401 показывает начало операции измерения дальности. Например, это имеет место в том случае, когда в режиме фотографирования неподвижных изображений блок 110 обнаружения срабатывания, изображенный на фиг. 1, обнаруживает срабатывание переключателя первого нажатия SW1 спусковой кнопки фотографом (этап S212 на фиг. 2В) и т.п.
На этапе S402 под управлением блока 105 управления фотоаппаратом осуществляется экспозиция элемента 106 съемки изображения в соответствии с результатом операции подготовки фотографирования и считывание (аналого-цифровое преобразование), благодаря чему формируются данные (сигнал съемки изображения объекта). Хотя величина экспозиции в момент фотографирования в данном случае может также вычисляться по времени экспозиции и величине экспозиции, поскольку она не является признаками настоящего изобретения, ее описание не приводится.
На этапе S403 блок 105 управления фотоаппаратом приводит в действие средства вычисления корреляции и получает наилучшее корреляционное