Способ и система для указания режима передачи для управляющей информации восходящей линии связи

Иллюстрации

Показать все

Изобретение относится к области беспроводной связи и предназначено для передачи управляющей информации восходящей линии связи, обеспечивая указание режима передачи для управляющей информации. Изобретение раскрывает в частности базовую станцию, которая включает в себя схемы передающего тракта для выбора одного из первого способа мультиплексирования UCI, который позволяет абонентской станции одновременно передавать PUSCH и PUCCH, и второго способа мультиплексирования UCI, который не позволяет абонентской станции одновременно передавать PUSCH и PUCCH. Схемы передающего тракта также передают сигнал верхнего уровня, указывающий один выбранный способ мультиплексирования UCI, и передают одно или несколько предоставлений восходящей линии связи. Каждое из предоставлений восходящей линии связи планирует PUSCH на CC UL для субкадра n, и каждое из предоставлений восходящей линии связи переносит запрос CQI. Базовая станция также включает в себя схемы приемного тракта для приема апериодического отчета о CSI по PUSCH на компонентной несущей i восходящей линии связи, когда только одно из предоставлений восходящей линии связи, планирующих PUSCH на компонентной несущей i восходящей линии связи, переносит запрос CQI, имеющий значение из некоторого набора значений. 4 н. и 10 з.п. ф-лы, 16 ил., 3 табл.

Реферат

Область техники

Данная заявка в целом относится к беспроводной связи, и более конкретно, к способу и системе для передачи управляющей информации восходящей линии связи.

Предшествующий уровень техники

В Системе долгосрочного развития Проекта партнерства третьего поколения (3GPP LTE) мультиплексирование с ортогональным частотным разделением (OFDM) принято в качестве схемы передачи в нисходящей линии связи (DL).

Раскрытие изобретения

Техническая проблема

Необходим способ для указания режима передачи для управляющей информации восходящей линии связи.

Решение проблемы

Предоставляется базовая станция. Базовая станция включает в себя схемы передающего тракта, сконфигурированные для выбора одного из первого способа мультиплексирования управляющей информации восходящей линии связи (UCI), который позволяет абонентской станции одновременно передавать физический совместно используемый канал восходящей линии связи (PUSCH) и физический канал управления восходящей линии связи (PUCCH), и второго способа мультиплексирования UCI, который не позволяет абонентской станции одновременно передавать PUSCH и PUCCH. Схемы передающего тракта также конфигурируются для передачи сигнала верхнего уровня, указывающего абонентской станции один выбранный способ мультиплексирования UCI, и передачи абонентской станции одного или нескольких предоставлений восходящей линии связи. Каждое из одного или нескольких предоставлений восходящей линии связи планирует PUSCH для абонентской станции на компонентной несущей восходящей линии связи (CC UL) для субкадра n, и каждое из одного или нескольких предоставлений восходящей линии связи переносит запрос информации о качестве канала (CQI). Базовая станция также включает в себя схемы приемного тракта, сконфигурированные для приема апериодического отчета с информацией о состоянии канала (CSI), передаваемого абонентской станцией по PUSCH на компонентной несущей i восходящей линии связи, когда только одно предоставление восходящей линии связи из одного или нескольких предоставлений восходящей линии связи, планирующих PUSCH на компонентной несущей i восходящей линии связи, переносит запрос CQI, имеющий значение из некоторого набора значений. Когда информация о подтверждении приема/отрицательном подтверждении приема (ACK/NACK) планируется в том же субкадре n и когда один выбранный способ мультиплексирования UCI является первым способом мультиплексирования UCI, информация ACK/NACK также передается абонентской станцией по PUSCH, передаваемому на компонентной несущей i восходящей линии связи.

Предоставляется способ работы базовой станции. Способ включает в себя выбор одного из первого способа мультиплексирования управляющей информации восходящей линии связи (UCI), который позволяет абонентской станции одновременно передавать физический совместно используемый канал восходящей линии связи (PUSCH) и физический канал управления восходящей линии связи (PUCCH), и второго способа мультиплексирования UCI, который не позволяет абонентской станции одновременно передавать PUSCH и PUCCH. Способ также включает в себя передачу сигнала верхнего уровня, указывающего абонентской станции один выбранный способ мультиплексирования UCI, и передачу абонентской станции одного или нескольких предоставлений восходящей линии связи. Каждое из одного или нескольких предоставлений восходящей линии связи планирует PUSCH для абонентской станции на компонентной несущей восходящей линии связи (CC UL) для субкадра n, и каждое из одного или нескольких предоставлений восходящей линии связи переносит запрос информации о качестве канала (CQI). Способ дополнительно включает в себя прием апериодического отчета с информацией о состоянии канала (CSI) по PUSCH, передаваемому абонентской станцией на компонентной несущей i восходящей линии связи, когда только одно предоставление восходящей линии связи из одного или нескольких предоставлений восходящей линии связи, планирующих PUSCH на компонентной несущей i восходящей линии связи, переносит запрос CQI, имеющий значение из некоторого набора значений. Когда информация о подтверждении приема/отрицательном подтверждении приема (ACK/NACK) планируется в том же субкадре n и когда один выбранный способ мультиплексирования UCI является первым способом мультиплексирования UCI, информация ACK/NACK также передается абонентской станцией по PUSCH, передаваемому на компонентной несущей i восходящей линии связи.

Предоставляется абонентская станция. Абонентская станция включает в себя схемы приемного тракта, сконфигурированные для приема сигнала верхнего уровня от базовой станции, указывающего один из первого способа мультиплексирования управляющей информации восходящей линии связи (UCI), который позволяет абонентской станции одновременно передавать физический совместно используемый канал восходящей линии связи (PUSCH) и физический канал управления восходящей линии связи (PUCCH), и второго способа мультиплексирования UCI, который не позволяет абонентской станции одновременно передавать PUSCH и PUCCH. Схемы приемного тракта также конфигурируются для приема одного или нескольких предоставлений восходящей линии связи от базовой станции. Каждое из одного или нескольких предоставлений восходящей линии связи планирует физический совместно используемый канал восходящей линии связи (PUSCH) для абонентской станции на компонентной несущей восходящей линии связи (CC UL) для субкадра n, и каждое из одного или нескольких предоставлений восходящей линии связи переносит запрос информации о качестве канала (CQI). Абонентская станция также включает в себя схемы передающего тракта, сконфигурированные для передачи апериодического отчета с информацией о состоянии канала (CSI) к базовой станции по PUSCH на компонентной несущей i восходящей линии связи, когда только одно предоставление восходящей линии связи из одного или нескольких предоставлений восходящей линии связи, планирующих PUSCH на компонентной несущей i восходящей линии связи, переносит запрос CQI, имеющий значение из некоторого набора значений. Когда информация о подтверждении приема/отрицательном подтверждении приема (ACK/NACK) планируется в том же субкадре n и когда один выбранный способ мультиплексирования UCI является первым способом мультиплексирования UCI, информация ACK/NACK также передается к базовой станции по PUSCH, передаваемому на компонентной несущей i восходящей линии связи.

Предоставляется способ работы абонентской станции. Способ включает в себя прием сигнала верхнего уровня от базовой станции, указывающего один из первого способа мультиплексирования управляющей информации восходящей линии связи (UCI), который позволяет абонентской станции одновременно передавать физический совместно используемый канал восходящей линии связи (PUSCH) и физический канал управления восходящей линии связи (PUCCH), и второго способа мультиплексирования UCI, который не позволяет абонентской станции одновременно передавать PUSCH и PUCCH. Способ также включает в себя прием одного или нескольких предоставлений восходящей линии связи от базовой станции. Каждое из одного или нескольких предоставлений восходящей линии связи планирует физический совместно используемый канал восходящей линии связи (PUSCH) для абонентской станции на компонентной несущей восходящей линии связи (CC UL) для субкадра n, и каждое из одного или нескольких предоставлений восходящей линии связи переносит запрос информации о качестве канала (CQI). Способ дополнительно включает в себя передачу апериодического отчета с информацией о состоянии канала (CSI) по PUSCH к базовой станции на компонентной несущей i восходящей линии связи, когда только одно предоставление восходящей линии связи из одного или нескольких предоставлений восходящей линии связи, планирующих PUSCH на компонентной несущей i восходящей линии связи, переносит запрос CQI, имеющий значение из некоторого набора значений. Когда информация о подтверждении приема/отрицательном подтверждении приема (ACK/NACK) планируется в том же субкадре n и когда один выбранный способ мультиплексирования UCI является первым способом мультиплексирования UCI, информация ACK/NACK также передается абонентской станцией по PUSCH, передаваемому на компонентной несущей i восходящей линии связи.

Перед переходом к описанию ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ ниже может быть полезно сформулировать определения некоторых слов и фраз, используемых в данном патентном документе: термины "включают в себя" и "содержат", а также их производные, означают включение без ограничения; термин "или" является включающим, означая "и/или"; фразы "ассоциированный с" и "ассоциированный с этим", а также их производные, могут означать "включают в себя", "включены в", "связывают с", "содержат", "содержатся в", "подключают к", "соединяют с", "совместимы с", "осуществляют связь с", "чередуют", "сопоставляют", "находятся близко к", "связаны с", "имеют", "обладают свойством" или т.п.; и термин "контроллер" означает любое устройство, систему или их часть, которое управляет по меньшей мере одной операцией, такое устройство может быть реализовано в аппаратных средствах, микропрограммном обеспечении или программном обеспечении либо некотором сочетании по меньшей мере двух из перечисленных. Следует отметить, что функциональные возможности, ассоциированные с любым конкретным контроллером, могут быть централизованным или распределенными, локально либо удаленно. Определения для некоторых слов и фраз предоставляются по всему этому патентному документу, средние специалисты в данной области техники должны понимать, что во многих, если не в большинстве случаев такие определения применяются к прежним, а также к будущим употреблениям таких определенных слов и фраз.

Полезные результаты изобретения

Настоящее изобретение позволяет эффективно указывать режим передачи для управляющей информации восходящей линии связи.

Краткое описание чертежей

Более полное понимание настоящего раскрытия изобретения и его преимуществ может быть получено из нижеследующего описания в сочетании с прилагаемыми чертежами, на которых одинаковые ссылочные позиции относятся к одинаковым элементам:

Фиг. 1 иллюстрирует примерную беспроводную сеть, которая передает сообщения по восходящей линии связи в соответствии с принципами настоящего раскрытия изобретения;

Фиг. 2 - высокоуровневая схема передатчика множественного доступа с ортогональным частотным разделением (OFDMA) в соответствии с одним вариантом осуществления настоящего раскрытия изобретения;

Фиг. 3 - высокоуровневая схема приемника OFDMA в соответствии с одним вариантом осуществления настоящего раскрытия изобретения;

Фиг. 4 иллюстрирует схему базовой станции, осуществляющую связь с множеством мобильных станций в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 5a иллюстрирует схему множественного доступа с пространственным разделением (SDMA) в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 5b иллюстрирует цепь передачи по физическому совместно используемому каналу восходящей линии связи (PUSCH) в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 6a иллюстрирует передачу A/N в субкадре, в котором не планируется ни один физический совместно используемый канал восходящей линии связи (PUSCH), в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 6b иллюстрирует передачу A/N в субкадрах, где запланирован физический совместно используемый канал восходящей линии связи (PUSCH) на одной компонентной несущей восходящей линии связи (CC UL) в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 6c иллюстрирует схемы передачи A/N в субкадрах, где физический совместно используемый канал восходящей линии связи (PUSCH) запланирован более чем на одной компонентной несущей в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 7 иллюстрирует способ работы пользовательского оборудования или абонентской станции в соответствии с вариантом осуществления настоящего раскрытия изобретения;

Фиг. 8 иллюстрирует способ работы пользовательского оборудования или абонентской станции в соответствии с другим вариантом осуществления настоящего раскрытия изобретения;

Фиг. 9 иллюстрирует способ работы пользовательского оборудования или абонентской станции в соответствии с еще одним вариантом осуществления настоящего раскрытия изобретения;

Фиг. 10 иллюстрирует способ работы пользовательского оборудования или абонентской станции в соответствии с дополнительным вариантом осуществления настоящего раскрытия изобретения;

Фиг. 11 иллюстрирует способ работы пользовательского оборудования или абонентской станции в соответствии с еще одним дополнительным вариантом осуществления настоящего раскрытия изобретения;

Фиг. 12 иллюстрирует способ работы eNodeB или базовой станции в соответствии с вариантом осуществления настоящего раскрытия изобретения; и

Фиг. 13 иллюстрирует способ работы eNodeB или базовой станции в соответствии с другим вариантом осуществления настоящего раскрытия изобретения.

Осуществление изобретения

Обсуждаемые ниже фигуры с 1 по 13 и различные варианты осуществления, используемые для описания принципов настоящего раскрытия изобретения в этом патентном документе, служат только в качестве иллюстрации и не должны толковаться как каким-либо образом ограничивающие объем раскрытия изобретения. Специалисты в данной области техники поймут, что принципы настоящего раскрытия изобретения могут быть реализованы в любой соответствующим образом организованной системе беспроводной связи.

В отношении нижеследующего описания отметим, что LTE-термины "Узел Б", "усовершенствованный Узел Б" и "eNodeB" являются синонимами для термина "базовая станция", используемого ниже. Также LTE-термин "пользовательское оборудование" или "UE" является синонимом для термина "абонентская станция", используемого ниже.

Фиг. 1 иллюстрирует примерную беспроводную сеть 100, которая передает сообщения в соответствии с принципами настоящего раскрытия изобретения. В проиллюстрированном варианте осуществления беспроводная сеть 100 включает в себя базовую станцию 101 (BS), базовую станцию 102 (BS), базовую станцию 103 (BS) и другие аналогичные базовые станции (не показаны).

Базовая станция 101 осуществляет связь с Интернетом 130 или аналогичной сетью на основе IP (не показана).

Базовая станция 102 предоставляет беспроводной широкополосный доступ к Интернету 130 для первого множества абонентских станций в зоне 120 обслуживания базовой станции 102. Первое множество абонентских станций включает в себя абонентскую станцию 111, которая может располагаться на малом предприятии (SB), абонентскую станцию 112, которая может располагаться на предприятии (E), абонентскую станцию 113, которая может располагаться в точке доступа (HS) WiFi, абонентскую станцию 114, которая может располагаться в первом местожительстве (R), абонентскую станцию 115, которая может располагаться во втором местожительстве (R), и абонентскую станцию 116, которая может быть мобильным устройством (M), например сотовым телефоном, беспроводным переносным компьютером, беспроводным PDA или т.п.

Базовая станция 103 предоставляет беспроводной широкополосный доступ к Интернету 130 для второго множества абонентских станций в зоне 125 обслуживания базовой станции 103. Второе множество абонентских станций включает в себя абонентскую станцию 115 и абонентскую станцию 116. В примерном варианте осуществления базовые станции 101-103 могут осуществлять связь друг с другом и с абонентскими станциями 111-116, используя методы OFDM или OFDMA.

Хотя на фиг. 1 изображены только шесть абонентских станций, подразумевается, что беспроводная сеть 100 может предоставлять беспроводной широкополосный доступ дополнительным абонентским станциям. Отметим, что абонентская станция 115 и абонентская станция 116 располагаются на границах зоны 120 обслуживания и зоны 125 обслуживания. Абонентская станция 115 и абонентская станция 116 осуществляют связь с базовой станцией 102 и базовой станцией 103, и можно сказать, что они работают в режиме передачи обслуживания, который известен специалистам в данной области техники.

Абонентские станции 111-116 могут обращаться к голосовым службам, информационным службам, службам видео, видеоконференциям и/или другим широкополосным службам через Интернет 130. В примерном варианте осуществления одна или несколько абонентских станций 111-116 можно ассоциировать с точкой доступа (AP) в WLAN WiFi. Абонентская станция 116 может быть любым из некоторого количества мобильных устройств, включая переносной компьютер с возможностью беспроводной связи, персональный цифровой помощник, ноутбук, карманное устройство или другое устройство с возможностью беспроводной связи. Абонентские станции 114 и 115 могут быть, например, персональным компьютером (PC) с возможностью беспроводной связи, переносным компьютером, шлюзом или другим устройством.

Фиг. 2 - высокоуровневая схема передающего тракта 200 множественного доступа с ортогональным частотным разделением (OFDMA). Фиг. 3 - высокоуровневая схема приемного тракта 300 множественного доступа с ортогональным частотным разделением (OFDMA). На фиг. 2 и 3 передающий тракт 200 OFDMA реализуется в базовой станции 102 (BS), а приемный тракт 300 OFDMA реализуется в абонентской станции 116 (SS) только с целью иллюстрации и объяснения. Однако специалистам в данной области техники будет понятно, что приемный тракт 300 OFDMA также может быть реализован в BS 102, а передающий тракт 200 OFDMA может быть реализован в SS 116.

Передающий тракт 200 в BS 102 содержит блок 205 канального кодирования и модуляции, последовательно-параллельный (S-to-P) блок 210, блок 215 обратного быстрого преобразования Фурье (IFFT) размера N, параллельно-последовательный (P-to-S) блок 220, блок 225 добавления циклического префикса, преобразователь 230 с повышением частоты (UC), мультиплексор 290 опорного сигнала и распределитель 295 опорного сигнала.

Приемный тракт 300 в SS 116 содержит преобразователь 255 с понижением частоты (DC), блок 260 удаления циклического префикса, последовательно-параллельный (S-to-P) блок 265, блок 270 быстрого преобразования Фурье (FFT) размера N, параллельно-последовательный (P-to-S) блок 275 и блок 280 канального декодирования и демодуляции.

По меньшей мере некоторые компоненты на фиг. 2 и 3 могут быть реализованы в программном обеспечении, тогда как другие компоненты могут быть реализованы конфигурируемыми аппаратными средствами или смесью программного обеспечения и конфигурируемых аппаратных средств. В частности, отметим, что блоки FFT и блоки IFFT, описанные в настоящем раскрытии изобретения, могут быть реализованы в виде конфигурируемых программно-реализованных алгоритмов, где значение Размера N может изменяться в соответствии с реализацией.

Кроме того, хотя настоящее раскрытие изобретения ориентировано на вариант осуществления, который реализует быстрое преобразование Фурье и обратное быстрое преобразование Фурье, это приведено всего лишь в качестве иллюстрации и не должно толковаться как ограничивающее объем раскрытия изобретения. Следует принять во внимание, что в дополнительном варианте осуществления раскрытия изобретения функции быстрого преобразования Фурье и функции обратного быстрого преобразования Фурье можно легко заменить функциями дискретного преобразования Фурье (DFT) и функциями обратного дискретного преобразования Фурье (IDFT) соответственно. Следует принять во внимание, что для функций DFT и IDFT значение переменной N может быть любым целым числом (то есть 1, 2, 3, 4 и т.д.), тогда как для функций FFT и IFFT значение переменной N может быть любым целым числом, которое является степенью двойки (то есть 1, 2, 4, 8, 16 и т.д.).

В BS 102 блок 205 канального кодирования и модуляции принимает набор информационных битов, применяет кодирование (например, турбо-кодирование) и модулирует (например, QPSK, QAM) входные биты для создания последовательности символов модуляции частотной области. Последовательно-параллельный блок 210 преобразует (то есть демультиплексирует) последовательно модулированные символы в параллельные данные, чтобы создать N параллельных потоков символов, где N является размером IFFT/FFT, используемым в BS 102 и SS 116. Блок 215 IFFT размера N затем выполняет операцию IFFT над N параллельными потоками символов для создания выходных сигналов временной области. Параллельно-последовательный блок 220 преобразует (то есть мультиплексирует) параллельные выходные символы временной области из блока 215 IFFT размера N для создания последовательного сигнала временной области. Блок 225 добавления циклического префикса затем вставляет циклический префикс в сигнал временной области. В конечном счете преобразователь 230 с повышением частоты модулирует (то есть преобразует с повышением частоты) вывод блока 225 добавления циклического префикса в радиочастоту для передачи по беспроводному каналу. Сигнал также можно фильтровать в базовой полосе перед преобразованием в радиочастоту. В некоторых вариантах осуществления мультиплексор 290 опорного сигнала работает для мультиплексирования опорных сигналов, используя мультиплексирование с кодовым разделением (CDM) или мультиплексирование с разделением по времени/частоте (TFDM). Распределитель 295 опорного сигнала работает для динамического распределения опорных сигналов в сигнале OFDM в соответствии со способами и системой, раскрытыми в настоящем раскрытии изобретения.

Переданный РЧ-сигнал поступает в SS 116 после прохождения по беспроводному каналу и обратных операций, выполненных на BS 102. Преобразователь 255 с понижением частоты преобразует принятый сигнал в базовую полосу, а блок 260 удаления циклического префикса удаляет циклический префикс для создания последовательного сигнала базовой полосы временной области. Последовательно-параллельный блок 265 преобразует сигнал базовой полосы временной области в параллельные сигналы временной области. Блок 270 FFT размера N затем выполняет алгоритм FFT для создания N параллельных сигналов частотной области. Параллельно-последовательный блок 275 преобразует параллельные сигналы частотной области в последовательность модулированных символов данных. Блок 280 канального декодирования и демодуляции демодулирует, а затем декодирует модулированные символы для восстановления исходного входного потока данных.

Каждая из базовых станций 101-103 может реализовать передающий тракт, который аналогичен передаче по нисходящей линии связи к абонентским станциям 111-116, и может реализовать приемный тракт, который аналогичен приему по восходящей линии связи от абонентских станций 111-116. Аналогичным образом, каждая из абонентских станций 111-116 может реализовать передающий тракт, соответствующий архитектуре для передачи по восходящей линии связи к базовым станциям 101-103, и может реализовать приемный тракт, соответствующий архитектуре для приема по нисходящей линии связи от базовых станций 101-103.

Общая ширина полосы в системе OFDM делится на узкополосные частотные блоки, именуемые поднесущими. Число поднесущих равно размеру N FFT/IFFT, используемому в системе. Вообще, число поднесущих, используемых для данных, меньше N, потому что некоторые поднесущие на границе частотного спектра зарезервированы в качестве защитных поднесущих. Вообще, никакая информация по защитным поднесущим не передается.

Переданный сигнал в каждом временном интервале нисходящей линии связи (DL) в блоке ресурсов описывается сеткой ресурсов из поднесущих и символов OFDM. Количество зависит от ширины полосы передачи в нисходящей линии связи, сконфигурированной в соте, и удовлетворяет где и являются соответственно наименьшей и наибольшей поддерживаемой шириной полосы нисходящей линии связи. В некоторых вариантах осуществления поднесущие считаются наименьшими элементами, которые допускают модулирование.

В случае передачи по нескольким антеннам существует одна сетка ресурсов, заданная на каждый вход антенны.

Каждый элемент в сетке ресурсов для входа антенны называется элементом ресурса (RE) и однозначно идентифицируется парой индексов во временном интервале, где и являются индексами в частотной и временной областях соответственно. Элемент ресурса на входе антенны соответствует комплексной величине . Если отсутствует опасность путаницы или ни один конкретный вход антенны не задан, то индекс можно опустить.

В LTE опорные сигналы (RS) DL используются для двух целей. Во-первых, UE измеряют информацию о качестве канала (CQI), информацию о ранге (RI) и информацию о матрице предварительного кодирования (PMI) с использованием RS DL. Во-вторых, каждое UE демодулирует предназначенный для себя сигнал передачи DL с использованием RS DL. К тому же, RS DL разделяются на три категории: индивидуальные для соты RS, RS сети мультимедийного вещания на одной частоте (MBSFN) и индивидуальные для UE RS или назначенные RS (DRS).

Индивидуальные для соты опорные сигналы (или общие опорные сигналы: CRS) передаются в субкадрах нисходящей линии связи в соте, поддерживающей передачу не по MBSFN. Если субкадр используется для передачи с помощью MBSFN, то только первые несколько (0, 1 или 2) символов OFDM в субкадре могут использоваться для передачи индивидуальных для соты опорных символов. Нотация используется для обозначения элемента ресурса, используемого для передачи опорного сигнала по входу p антенны.

Индивидуальные для UE опорные сигналы (или назначенные RS: DRS) поддерживаются для передачи по одному входу антенны на Физическом совместно используемом канале нисходящей линии связи (PDSCH) и передаются по входу 5 антенны. UE информируется верхними уровнями о том, присутствует ли индивидуальный для UE опорный сигнал и является ли он допустимой опорной фазой для демодуляции PDSCH. Индивидуальные для UE опорные сигналы передаются только в блоках ресурсов, на которые отображается соответствующий PDSCH.

Временные ресурсы системы LTE разделяются на кадры по 10 мс, и каждый кадр дополнительно разделяется на 10 субкадров длительностью в одну миллисекунду каждый. Субкадр делится на два временных интервала, каждый из которых охватывает 0,5 мс. Субкадр в частотной области разделяется на несколько блоков ресурсов (RB), где RB состоит из 12 поднесущих.

Фиг. 4 иллюстрирует схему 400 базовой станции 420, осуществляющую связь с множеством мобильных станций 402, 404, 406 и 408 в соответствии с вариантом осуществления настоящего раскрытия изобретения.

Как показано на фиг. 4, базовая станция 420 одновременно осуществляет связь с несколькими мобильными станциями посредством использования нескольких лучей антенны, причем каждый луч антенны формируется в направлении предназначенной мобильной станции с одинаковым временем и одинаковой частотой. Базовая станция 420 и мобильные станции 402, 404, 406 и 408 применяют несколько антенн для передачи и приема радиоволновых сигналов. Радиоволновые сигналов могут быть сигналами мультиплексирования с ортогональным частотным разделением (OFDM).

В этом варианте осуществления базовая станция 420 выполняет одновременное формирование луча (диаграммы направленности) в множестве передатчиков для каждой мобильной станции. Например, базовая станция 420 передает данные к мобильной станции 402 посредством сформированного в луч сигнала 410, данные к мобильной станции 404 посредством сформированного в луч сигнала 412, данные к мобильной станции 406 посредством сформированного в луч сигнала 414 и данные к мобильной станции 408 посредством сформированного в луч сигнала 416. В некоторых вариантах осуществления настоящего раскрытия изобретения базовая станция 420 допускает одновременное формирование луча для мобильных станций 402, 404, 406 и 408. В некоторых вариантах осуществления каждый сформированный в луч сигнал формируется в направлении предназначенной мобильной станции с одинаковым временем и одинаковой частотой. Для ясности связь от базовой станции к мобильной станции также может называться связью по нисходящей линии связи, а связь от мобильной станции к базовой станции может называться связью по восходящей линии связи.

Базовая станция 420 и мобильные станции 402, 404, 406 и 408 применяют несколько антенн для передачи и приема радиосигналов. Подразумевается, что радиосигналы могут быть радиоволновыми сигналами, и радиосигналы могут использовать любую схему передачи, известную специалисту в данной области техники, включая схему передачи с мультиплексированием с ортогональным частотным разделением (OFDM).

Мобильные станции 402, 404, 406 и 408 могут быть любым устройством, которое допускает прием радиосигналов. Примеры мобильных станций 402, 404, 406 и 408 включают в себя, но не ограничиваются, персональный цифровой помощник (PDA), переносной компьютер, мобильный телефон, карманное устройство или любое другое устройство, которое допускает прием сформированных в луч передач.

Использование нескольких передающих антенн и нескольких приемных антенн на базовой станции и одиночной мобильной станции для повышения пропускной способности и надежности канала беспроводной связи известно в качестве системы со многими входами и выходами с одним пользователем (SU-MIMO). Система MIMO обещает линейное увеличение пропускной способности при K, где K - минимальное количество передающих (M) и приемных (N) антенн (то есть K=min(M,N)). Система MIMO может быть реализована с помощью схем пространственного мультиплексирования, формирования луча при передаче/приеме или разнесения передачи/приема.

В качестве расширения SU-MIMO система MIMO с несколькими пользователями (MU-MIMO) является сценарием связи, где базовая станция с несколькими передающими антеннами может одновременно осуществлять связь с несколькими мобильными станциями посредством использования схем формирования лучей для множества абонентов, например множественного доступа с пространственным разделением (SDMA), для повышения пропускной способности и надежности канала беспроводной связи.

Фиг. 5a иллюстрирует схему SDMA в соответствии с вариантом осуществления настоящего раскрытия изобретения.

Как показано на фиг. 5, базовая станция 420 оборудована 8 передающими антеннами, тогда как мобильные станции 402, 404, 406 и 408 оборудованы двумя антеннами каждая. В этом примере базовая станция 420 содержит восемь передающих антенн. Каждая из передающих антенн передает один из сформированных в луч сигналов 410, 502, 504, 412, 414, 506, 416 и 508. В этом примере мобильная станция 402 принимает сформированные в луч передачи 410 и 502, мобильная станция 404 принимает сформированные в луч передачи 504 и 412, мобильная станция 406 принимает сформированные в луч передачи 506 и 414, и мобильная станция 408 принимает сформированные в луч передачи 508 и 416.

Поскольку базовая станция 420 содержит восемь лучей передающих антенн (каждая антенна излучает один поток из потоков данных), на базовой станции 420 можно сформировать восемь потоков сформированных в луч данных. Каждая мобильная станция может потенциально принимать вплоть до 2 потоков (лучей) данных в этом примере. Если каждая из мобильных станций 402, 404, 406 и 408 была ограничена приемом только одиночного потока (луча) данных, то вместо нескольких потоков одновременно это было бы формированием лучей для множества абонентов (то есть MU-BF).

В LTE-A вып. 10 в 3GPP вводится пространственное мультиплексирование (SM) UL MIMO. Когда UE планируется для передачи сигналов в субкадре с использованием схемы SM UL-MIMO в LTE-A, UE может передавать вплоть до двух кодовых слов (CW) в субкадре.

Когда два CW нужно передать в субкадре, два потока и двоичных сигналов для двух CW формируются отдельно, где , где . Два входа из этапов кодирования отдельно проходят через скремблирование и модуляционное отображение. Выходом блока модуляционного отображения является CW. Вплоть до двух CW вводятся в блок отображения CW-в-уровень, чьими выходами являются уровни, которые составляют потоков символов модуляции. Затем каждый из потоков символов модуляции вводится в преобразующий предварительный кодер (или с дискретным преобразованием Фурье (DFT)), и выходы предварительного кодера с DFT вводятся в блок предварительного кодирования передачи. Блок предварительного кодирования передачи формирует потоков символов модуляции, каждый из которых будет передан во вход передающей антенны.

Одним из ключевых компонентов этой передачи по восходящей линии связи является функция мультиплексирования данных/управляющей информации.

Фиг. 5b иллюстрирует цепь 510 передачи по физическому совместно используемому каналу восходящей линии связи (PUSCH) в соответствии с вариантом осуществления настоящего раскрытия изобретения.

Фиг. 5b иллюстрирует N-уровневую передачу на UE с Nt передающими антеннами. Фиг. 5b иллюстрирует отображение выходов N блоков 511-1 - 511-N предварительного кодирования с дискретным преобразованием Фурье (DFT) в непрерывный набор поднесущих в блоках 513-1 - 513-N обратного быстрого преобразования Фурье (IFFT).

Одним из ключевых компонентом цепи 510 передачи PUSCH является функция мультиплексирования данных/управляющей информации, реализованная в блоке 515 мультиплексирования данных/управляющей информации, который полностью определен в документе 3GPP TS 36.212 v 8.5.0, "E-UTRA, Multiplexing and Channel Coding", декабрь 2008 г., который настоящим включен в данную заявку посредством ссылки, как если бы он был полностью изложен в нем.

Отображение уровней выполняется перед предварительным кодированием с DFT, чтобы данные и управляющая информация должным образом мультиплексировались и перемежались. Предварительное кодирование передачи выполняется между блоками 511-1 - 511-N предварительного кодирования с DFT и блоком 513 IFFT, чтобы на основе поднесущей преобразовать N-мерный сигнал на выходе блоков 511-1 - 511-N предварительного кодирования с DFT в Nt-мерный сигнал в качестве входа в блоки 513-1 - 513-N IFFT. Отображение поднесущих на входе блоков 513-1 - 513-N IFFT может включать в себя несмежные сегменты поднесущих.

В варианте осуществления настоящего раскрытия изобретения вся управляющая информация восходящей линии связи (включая CQI, RI и биты A/N) переносится только на одном из уровней со следующими способами выбора конкретного уровня для переноса управляющей информации восходящей линии связи. Общее количество уровней передачи обозначается как N.

Если схема модуляции и кодирования (MCS), используемая N уровнями, является различной, то уровень, который имеет наибольшее значение MCS, выбирается для переноса управляющей информации восходящей линии связи, например CQI, RI и A/N. Значения MCS обычно переносятся в предоставлении распределения планирования UL (отправленном eNodeB к UE) и поэтому известны на UE во время этой передачи данных и управляющей информации. Размер области управления задается в виде количества элементов ресурса.

Если MCS, используемая N уровнями, одинакова, то первый уровень выбирается для переноса управляющей информации восходящей линии связи, например CQI, RI и A/N. Такой вариант осуществления мог бы быть подходящим для ситуаций, где используются методы, например смешивание уровней/перестановка уровней, для обеспечения одинакового качества канала, и следовательно, одинаковых значений MCS на всех уровнях.