Автоматическая система для пцр в реальном времени для различных анализов биологического образца

Иллюстрации

Показать все

Группа изобретений относится к области медицины и может быть использована для диагностических исследований. Группа изобретений характеризует автоматическую систему количественной амплификации в реальном времени, способ автоматической очистки нуклеиновой кислоты и количественного определения амплификации гена с использованием указанной системы, способ автоматического измерения количества жизнеспособных клеток патогенных бактерий, анализа патогенных бактерий на чувствительность к антибиотикам и автоматического получения антигенной плотности с использованием указанной системы, а также способ очистки связывающей нуклеиновой кислоты-мишени, которой мечен антиген-мишень, содержащийся в биологическом образце, с использованием указанной автоматической системы. Группа изобретений обеспечивает возможность автоматической обработки большого количества образцов за короткий период времени, а также позволяет проводить разнообразные медико-биологические анализы в одной системе. 7 н. и 52 з.п. ф-лы, 48 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[1] Настоящее изобретение относится к автоматической системе количественной амплификации в реальном времени, которая может осуществлять анализ различных биологических образцов, и более конкретно к автоматической системе количественной амплификации в реальном времени, в которой множество платформ для соответствующего размещения биологических образцов помещают в устройство для хранения/переноса платформ, посредством чего возможно автоматически анализировать количество или присутствие вещества-мишени, содержащего нуклеиновую кислоту-мишень в биологическом образце, такую как конкретный ген, конкретная патогенная бактерия и конкретный белок, посредством амплификации нуклеиновой кислоты-мишени, очищенной с помощью некоторых процессов очистки, очистки после культивирования или очистки после реакции вещества-мишени, содержащегося в биологическом образце, и затем проверки количества амплифицированной нуклеиновой кислоты-мишени.

[2] Настоящее изобретение относится к автоматической системе количественной амплификации в реальном времени, которая может автоматически осуществлять различные анализы микроорганизмов, содержащихся в биологическом образце, то есть, которая культивирует микроорганизмы, содержащиеся во множестве биологических образцов в автоматической платформе, очищает нуклеиновые кислоты из каждого микроорганизма, распределяет очищенные нуклеиновые кислоты в многолуночный планшет для количественной реакции ПЦР в реальном времени, и затем осуществляет количественную амплификацию и сравнительный анализ, тем самым осуществляя количественный/качественный анализ микроорганизма содержащегося. Настоящее изобретение относится к системе, в которой для того, чтобы осуществлять тесты на чувствительность к антибиотикам, постоянное количество биологического образца вносят в каждую лунку многолуночного планшета, которые содержат различные антибиотики, и автоматически культивируют в течение желаемого периода времени, и затем осуществляют сравнительный анализ посредством использования относительного количественного способа для роста в среде для культивирования, содержащей антибиотики, через автоматическую очистку нуклеиновой кислоты и количественной ПЦР в реальном времени, тем самым быстро получая результаты теста на чувствительность к антибиотикам.

[3] Кроме того, настоящее изобретение относится к автоматической системе количественной амплификации в реальном времени, которая может осуществлять количественный анализ белка и антигена, содержащегося в биологическом образце, а именно, в которой множество биологических образцов распределяют в многолуночный планшет, в котором первое антитело, связанное с антигеном-мишенью, содержащимся в биологических образцах, фиксируют на внутренней поверхности каждой лунки или магнитных частиц с тем, чтобы антиген в биологическом образце был связан с первым антителом, и раствор второго антитела, содержащий второе антитело, применяют к ним с тем, чтобы второе антитело было связано с антигеном-мишенью, и после процесса очистки, смесь реактивов для количественной амплификации для амплификации зонда из нуклеиновой кислоты применяют к зонду из нуклеиновой кислоты, получаемому посредством использования раствор для элюирования нуклеиновых кислот, тем самым осуществляя количественный анализ через количественную амплификацию генов, где все указанные выше процессы осуществляют автоматически, и, таким образом систему по настоящему изобретению можно использовать в количественном анализе белка.

УРОВЕНЬ ТЕХНИКИ

[4] Количественная ПЦР в реальном времени, которая представляет собой наиболее широко используемых способ для молекулярно-диагностических исследований или тестирования нуклеиновых кислот (NAT), позволяет быстро осуществлять количественный и качественный анализ гена, и она представляет собой наиболее быстро растущий сегмент на мировом рынке диагностики вне организма, составляющий в среднем 20 процентов в год.

[5] Этот способ можно применять к различным областям, таким как: скрининговый тест крови для предотвращения инфекций, обусловленных переливанием крови, тест на вирусную нагрузку для проверки эффективности нового лечения для вирусных заболеваний, подтверждающий тест для независимого подтверждения результатов диагностического исследования, фармакогеномный тест для определения лечения, выбора лекарственного средства и оценки лекарственного эффекта и процесс проверки генетической предрасположенности или обнаружения или мониторинга анормального гена для того, чтобы предотвращать заболевание.

[6] Однако, поскольку количественную ПЦР в реальном времени очень сложно выполнять, ее еще не используют так широко, как иммуногистохимию, несмотря на различные ее преимущества. В этом способе осуществляют тестирование с чистой нуклеиновой кислотой, из которой удаляют вещества, препятствующие амплификации гена, и, таким образом, необходимо выделять чистую нуклеиновую кислоту из биологического образца. Соответственно, для того, чтобы осуществлять количественное определение амплификации гена в реальном времени, необходимо осуществлять очистку нуклеиновой кислоты. Очистку нуклеиновой кислоты традиционно осуществляют вручную. Но в силу роста числа тестирований, а также возрастающей необходимости контроля качества, происходит быстрое распространение различного автоматического оборудования. Однако, даже когда используют оборудование для автоматической очистки нуклеиновой кислоты, процесс смешивания очищенной нуклеиновой кислоты и различных реактивов и затем анализ смеси осуществляют вручную для того, чтобы осуществлять количественный анализ в реальном времени, и, таким образом, сложно полностью исключить ошибку оператора. Чтобы решить проблему, разработано различное оборудование для автоматического осуществления, в свою очередь, цепи стадий от очистки нуклеиновой кислоты до количественного определения амплификации гена в реальном времени.

[7] В Cepheid, Inc. разработаны картриджи (патенты США №№ 6818185, 6783736, 9970434 и 11977697), которые могут экстрагировать нуклеиновую кислоту в герметичной структуре, картриджи (патенты США №№ 6660228 и 7101509), которые могут осуществлять количественную ПЦР в реальном времени, и автоматическое оборудование для картриджей (патенты США №№ 6660228, 7101509 и 11742028), которое может независимо осуществлять экстрагирование нуклеиновой кислоты и количественную ПЦР в реальном времени, где приборы GeneXpert в качестве бесконечных систем используют один, четыре или шестнадцать картриджей (с помощью блока картриджей), и автоматически осуществляют установку и тестирование картриджей.

[8] В IQuum, Inc. разработано оборудование (патенты США №№ 7718421, 7785535 и 12782354), которое может автоматически и быстро осуществлять экстрагирование нуклеиновой кислоты и количественную ПЦР в реальном времени в полуфиксированной и разделенной пробирке, основываясь на технологии «Liat» («Lab-in-a-tube»).

[9] В Idaho Technology, Inc. разработан способ, основанный на технологии «Lab-in-a-film» (патенты США №№ 10512255 и 7670832), который позволяет автоматически и быстро осуществлять в реальном времени количественную ПЦР посредством экстрагирования нуклеиновой кислоты в герметизирующей пленке и перемещения между двумя различными температурными блоками.

[10] В этих технологиях модуль для обработки одного образца используют в качестве стандартного блока и, таким образом, необходимо большое количество оборудования или крупномасштабная система для того, чтобы осуществлять количественную ПЦР в реальном времени для множества образцов, как того требуют клинические эксперименты, а также поскольку биологические образцы обрабатывают один за одним, это требует много времени и денег для того, чтобы получить клинические образцы. Чтобы решить проблему, разработано различное оборудование для обработки множества образцов одновременно.

[11] В Handy lab, Inc. разработано новое оборудование, которое экстрагирует нуклеиновые кислоты из множества биологических образцов одновременно с использованием экстрактора нуклеиновых кислот, который имеет робот XYZ-Cartesian с цилиндром, инъецирует экстрагированные нуклеиновые кислоты в микрожидкостный картридж для реакции ПЦР и затем осуществляет количественную ПЦР в реальном времени (патенты США №№ 12515003, 200090719, 20090130745 и 20080714).

[12] Roche Diagnostic, Inc. выпускает систему cobas s201, которая может автоматически осуществлять очистку нуклеиновых кислот и количественную ПЦР в реальном времени.

[13] В этих технологиях множество образцов, которые можно обрабатывать за один раз, составляет 32 или менее, а число образцов, которое может быть установлено за один раз, составляет 72 или менее. Соответственно, имеет место неудобство в том, что оператор должен снова устанавливать биологические образцы, и в расходе реактивов для следующей операции анализа. Кроме того, слишком много времени занимает обработка сотен образцов, например, при скрининговом тесте в банке крови, а также оператор должен часто проверять их.

[14] Кроме того, это оборудование можно использовать только для количественной ПЦР в реальном времени. Следовательно, невозможно автоматически осуществлять различные тесты с использованием количественного генетического анализа в реальном времени, такого как тестирование культуры микроорганизмов, быстрый тест на чувствительность к антибиотикам и тест на количественную амплификацию иммунных генов.

[15] Эксперименты по культивированию и анализу микроорганизмов с использованием генетического количественного анализа в реальном времени являются очень важным для получения различной полезной информации. Однако, поскольку этих эксперименты имеют несколько стадий культивирования, экстрагирование нуклеиновой кислоты и количественную ПЦР в реальном времени, и каждую стадию осуществляют вручную, это требует многих усилий и могут возникать привнесенные ошибки. Следовательно, необходимо разработать новое оборудование для автоматического осуществления стадий. Настоящее изобретение относится к многоцелевой автоматической системе количественной амплификации в реальном времени, которая может автоматически осуществлять такие различные эксперименты и, таким образом, может осуществлять анализ биологических образцов.

[16] Количественная иммуно-ПЦР в реальном времени, которая представляет собой способ обнаружения белка с использованием высокой чувствительности количественной ПЦР в реальном времени, представляет собой иммунодиагностический способ, который обладает самой высокой чувствительностью. Однако, количественная иммуно-ПЦР в реальном времени также имеет множество стадий реакции антиген-антитело, очистки и количественной ПЦР в реальном времени, и каждая стадия имеет значительное влияние на генетическую чувствительность, специфичность и предшествующее сжатие. Следовательно, необходимо разработать новое оборудование для автоматического и единообразного осуществления стадий.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

ТЕХНИЧЕСКАЯ ПРОБЛЕМА

[17] Цель настоящего изобретения состоит в том, чтобы предоставить систему, которая может автоматически осуществлять очистку нуклеиновой кислоты и количественную ПЦР в реальном времени посредством многолуночного блока для того, чтобы обрабатывать большое количество образцов за короткий период времени при минимальном ручном труде, тем самым получая результаты анализа различных биологических образцов.

[18] Кроме того, другая цель настоящего изобретения состоит в том, чтобы предоставить систему, которая может осуществлять анализ количественной ПЦР в реальном времени после культивирования микроорганизма и, таким образом, может автоматически осуществлять тест на микроорганизм в биологических образцах и тест на чувствительность к антибиотикам. Система по настоящему изобретению может осуществлять анализ микроорганизма. Когда начальное число микроорганизмов меньше, чем предел обнаружения, микроорганизм амплифицируют посредством стадии культивирования и затем анализируют посредством количественной ПЦР в реальном времени, и, таким образом, возможно точно осуществлять тест микроорганизма.

[19] Кроме того, тестирование только жизнеспособных клеток имеет значение для данного теста на микроорганизм. Например, в случае контагиозных бактерий, как мертвые клетки, так и жизнеспособные клетки содержатся в биологическом образце, выделенном у пациента, которого лечили антибиотиками, и при лечении очень важно измерять число жизнеспособных клеток. В случае продуктов питания или продуктов сельского хозяйства и животноводства, измерение количества жизнеспособных клеток после стерилизации является очень важным. Даже несмотря на то, что количественная ПЦР в реальном времени быстрее и более точна, чем способ культивирования, широко используют способ культивирования, который требует много времени. Это обусловлено тем, что не возможно отличать жизнеспособные клетки от мертвых клеток, поскольку амплификация всей ДНК происходит независимо от того, живы они или мертвы. Чтобы решить проблему, в настоящем изобретении культивирование осуществляют только в течение короткого периода времени, который составляет меньше пяти поколений, и затем каждое количество ДНК в образцах до и после культивирования сравнивают друг с другом посредством относительного количественного определения в количественной ПЦР в реальном времени, и таким образом возможно точно и быстро анализировать количество жизнеспособных клеток. По тому же принципу систему по настоящему изобретению можно использовать при автоматическом осуществлении теста на чувствительность к антибиотикам. Сообщалось о способе быстрого осуществления теста на чувствительность к антибиотикам, в котором микроорганизмы культивируют в течение 2-4 часов в среде для культивирования, которая содержит антибиотики, и другой среде для культивирования, которая не содержит антибиотики, соответственно, и затем 16S рРНК или ген rpoB каждого микроорганизма анализируют посредством количественной ПЦР в реальном времени. (Journal of Antimicrobial Chemotherapy (2004) 53, 538-541). Также предложен другой способ для быстрого осуществления теста на чувствительность к антибиотикам в течении от 4 до 6 часов, в котором грамположительные штаммы культивируют в течение 4 часов, а грамотрицательные штаммы культивируют в течение 2 часов при температуре 35° в каждой среде для культивирования, содержащей различные антибиотики друг от друга, соответственно, и затем количественную ПЦР в реальном времени осуществляют, но автоматическая система для осуществления способ еще не разработана. Настоящее изобретение предназначено для того, чтобы предоставить средство, в котором биологический образец, содержащий микроорганизмы, в равной мере распределяют во множество лунок, содержащих различные антибиотики друг от друга и культивируют в течение предварительно определяемого периода времени, и затем анализ количественной ПЦР в реальном времени осуществляют с тем, чтобы сравнивать количество нуклеиновых кислот с использованием относительного количественного способа, и таким образом возможно быстро анализировать чувствительность микроорганизма к антибиотикам, тем самым позволяя выбирать эффективные антибиотики в течение короткого периода времени.

[20] Еще одна другая цель настоящего изобретения состоит в том, чтобы предоставить систему, которая может автоматически осуществлять количественную иммуно-ПЦР для того, чтобы точно осуществлять количественный тест для малого количества белков и антигенов. В количественной иммуно-ПЦР используют высокочувствительные особенности количественной ПЦР в реальном времени, которая может обнаруживать даже несколько нуклеиновых кислот. Согласно принципу количественной иммуно-ПЦР, антиген связывают с иммобилизованным антителом, иммобилизованным на твердом веществе, а второе антитело, меченое нуклеиновой кислотой-мишенью, связывают с ним, и затем осуществляют количественную ПЦР в реальном времени. В настоящем документе используемое второе антитело включает антитело, которое ковалентно связано с нуклеиновой кислотой-мишенью, и антитело, в котором второе антитело, связанное со стрептавидином, связано также с нуклеиновой кислотой-мишенью, меченой биотином (Nature Protocols 1918-1930 8, (2007)). В этом способе различные реакции прикрепления и процессы очистки осуществляют в соответствии со способом прикрепления нуклеиновой кислоты-мишени ко второму антителу, а затем осуществляют количественный анализ нуклеиновой кислоты-мишени посредством количественной ПЦР в реальном времени. Следовательно, в количественной иммуно-ПЦР каждая стадия имеет значительное влияние на генетическую чувствительность, специфичность и предшествующее сжатие. Тем не менее, автоматическая система для автоматического осуществления способа еще не разработана.

РЕШЕНИЕ ПРОБЛЕМЫ

[21] Чтобы достичь цели настоящего изобретения, настоящее изобретение предоставляет автоматическую систему количественной амплификации в реальном времени, которая может осуществлять анализ различных биологических образцов, содержащую платформу 1000, загружающую многолуночный планшет для обработки биологического образца, которая очищает нуклеиновую кислоту-мишень в веществе-мишени, содержащемся в биологическом образце, культивирует вещество-мишень, содержащееся в биологическом образце, и затем очищает нуклеиновую кислоту-мишень или очищает связывающую нуклеиновую кислоту-мишень, связанную с антигеном-мишенью, содержащимся в биологическом образце, посредством реакции антиген-антитело, и многолуночный планшет 400 для ПЦР, в который вносят реакционную смесь для количественной ПЦР в реальном времени; устройство автоматической очистки и подготовки к реакции, которое автоматически очищает нуклеиновую кислоту-мишень или культивированную нуклеиновую кислоту-мишень от биологического образца и распределяет очищенную нуклеиновую кислоту-мишень или культивированную и очищенную нуклеиновую кислоту-мишень в многолуночный планшет 400 для ПЦР, и затем смешивает распределенную нуклеиновую кислоту-мишень с реактивом для количественной ПЦР в реальном времени, или которое автоматически очищает связывающую нуклеиновую кислоту-мишень, связанную с антигеном-мишенью, содержащемся в биологическом образце, посредством реакции антиген-антитело, и распределяет очищенную связывающую нуклеиновую кислоту-мишень в многолуночный планшет 400 для ПЦР, и затем смешивает распределенную связывающую нуклеиновую кислоту-мишень с реактивом для количественной ПЦР в реальном времени; автоматическое устройство 2000 для хранения и перемещения платформы, снабженное корпусом 2000C для хранения, который имеет дверцу 2000C-1 для того, чтобы вставлять или вынимать платформу 1000, и внутреннюю часть которого можно поддерживать при предварительно определяемой температуре, и узел 2400 переноса платформы для переноса платформы 1000 в устройство автоматической очистки и подготовки к реакции; герметизирующее устройство 6000 для герметизации верхней поверхности многолуночного планшета 400 для ПЦР, в который распределяют очищенную нуклеиновую кислоту-мишень, культивированную и очищенную нуклеиновую кислоту-мишень или очищенную связывающую нуклеиновую кислоту-мишень; центробежный разделитель 7200, который применяет центростремительную силу к многолуночному планшету 400 для ПЦР с тем, чтобы вещество, оставшееся на боковой стенке каждой лунки, образованной в многолуночном планшете 400 для ПЦР, отделить и затем переместить на поверхность дна каждой лунки; устройство 8000 количественной амплификации в реальном времени, которое амплифицирует вещество-мишень в многолуночном планшете 400 для ПЦР; и перемещающее устройство 9000 для многолуночного планшета для ПЦР, которое перемещает многолуночный планшет 400 для ПЦР, в который распределяют очищенную нуклеиновую кислоту-мишень, культивированную и очищенную нуклеиновую кислоту-мишень или очищенную связывающую нуклеиновую кислоту-мишень, в герметизирующее устройство 6000, и перемещает многолуночный планшет 400 для ПЦР, герметизированный посредством герметизирующего устройства 6000, в центробежный разделитель 7200, а также перемещает многолуночный планшет 400 для ПЦР, к которому прикладывают центростремительную силу посредством центробежного разделителя 72000, в устройство 8000 количественной амплификации в реальном времени.

[22] Предпочтительно, устройство автоматической очистки и подготовки к реакции содержит шприцевой блок 3000, образованный с множеством первых крепежных частей 3330, в которые съемно установлено множество пипеток P для отсасывания и выгрузки текучего вещества, узел 4000 перемещения шприцевого блока, который перемещает шприцевой блок 3000 с тем, чтобы множество пипеток P, установленных в множестве первых крепежных частей 3330, расположить непосредственно над каждым из многолуночного планшета для обработки биологического образца и многолуночного планшета 400 для ПЦР; лоток 4375 для сбора раствора, который выполнен с возможностью перемещения к нижней стороне множества пипеток P, установленного во множество первых крепежных частей 3330, посредством узла перемещения лотка для сбора раствора, установленного на узел 4000 перемещения шприцевого блока; узел 5100 приложения магнитного поля, который перемещает магнит 5110 к нижней стороне первого определенного многолуночного планшета из многолуночных планшетов для обработки биологического образца с тем, чтобы прикладывать магнитное поле к первому определенному многолуночному планшету; нагревающий узел 5200, который перемещает нагревающий блок 5229 к нижней стороне второго определенного многолуночного планшета из многолуночных планшетов для обработки биологического образца с тем, чтобы нагревать второй определенный многолуночный планшет; перфоратор 12100, в котором множество шиловидных пальцев 12110 перфоратора сформированы выступающими с тем, чтобы прокалывать отверстия в герметизирующей пленке для герметизации верхней поверхности многолуночного планшета для обработки биологического образца, и который расположен на нижней стороне шприцевого блока 3000 с тем, чтобы быть съемно установленным во множестве первых крепежных частей 3330 в другой момент времени по сравнению с моментом времени, когда множество пипеток P установлено в множестве первых крепежных частей 3330, и часть 12300 выгрузки жидких отходов, которая расположена на нижней стороне шприцевого блока с тем, чтобы выгружать жидкие отходы, выбрасываемые из множества пипеток P, установленных в множестве первых крепежных частей 3330.

[23] Предпочтительно, узел перемещения лотка для сбора раствора содержит пластину 4371 поддержки лотка для сбора раствора, которая установлена в узел 4000 перемещения шприцевого блока; и двигатель 4373 перемещения лотка для сбора раствора, который установлен на пластине 4371 поддержки лотка для сбора раствора и который соединен с лотком 4375 для сбора раствора с тем, чтобы горизонтально вращать лоток 4373 для сбора раствора.

[24] Предпочтительно, устройство автоматической очистки и подготовки к реакции содержит шприцевой блок 3000, образованный с множеством первых крепежных частей 3330, которые съемно установлено множество пипеток P для отсасывания и выгрузки текучего вещества; узел 4000 перемещения шприцевого блока, который перемещает шприцевой блок 3000 с тем, чтобы множество пипеток P, установленных в множестве первых крепежных частей 3330, расположить непосредственно над каждым из многолуночного планшета для обработки биологического образца и многолуночного планшета 400 для ПЦР; узел 5100 приложения магнитного поля, который перемещает магнит 5110 к нижней стороне первого определенного многолуночного планшета из многолуночных планшетов для обработки биологического образца с тем, чтобы прикладывать магнитное поле к первому определенному многолуночному планшету; нагревающий узел 5200, который перемещает нагревающий блок 5229 к нижней стороне второго определенного многолуночного планшета из многолуночных планшетов для обработки биологического образца с тем, чтобы нагревать второй определенный многолуночный планшет; перфоратор 12100, в котором множество шиловидных пальцев 12110 перфоратора сформированы выступающими с тем, чтобы прокалывать отверстия в герметизирующей пленке для герметизации верхней поверхности многолуночного планшета для обработки биологического образца, и который расположен на нижней стороне шприцевого блока 3000 с тем, чтобы быть съемно установленным во множество первых крепежных частей 3330 в другой момент времени по сравнению с моментом времени, когда множество пипеток P установлено в множестве первых крепежных частей 3330 и

[25] Блок 12200 испарения для многолуночного планшета, который соединен с трубкой подачи сжатого воздуха и который образован с множеством вторых крепежных частей 12210 для выстрела сжатым воздухом, подаваемым через трубку подачи сжатого воздуха и съемно установленное множество пипеток P, и который расположен на нижней стороне шприцевого блока 3000 с тем, чтобы быть съемно установленным в множество первых крепежных частей 3330 в другой момент времени по сравнению с моментами времени, когда множество пипеток P и перфоратор 12100 соответственно установлены в множестве первых крепежных частей 3330 и часть 12300 выгрузки жидких отходов, которая расположена на нижней стороне шприцевого блока 3000 с тем, чтобы выгружать жидкие отходы, выбрасываемые из множества пипеток P, установлен в множество первых крепежных частей 3330.

[26] Предпочтительно, многолуночный планшет 400 для ПЦР, в который вносят реакционную смесь для количественной ПЦР в реальном времени, представляет собой планшет набора для амплификации, который имеет множество пробирок, в которые вносят реактив для количественной ПЦР в реальном времени, и первый определенный многолуночный планшет представляет собой многолуночный планшет 220 для дисперсионного раствора магнитных частиц, в который вносят суспензию магнитных частиц, содержащую магнитные частицы, когда он загружен на платформу 1000, из числа многолуночных планшетов для обработки биологического образца, и второй определенный многолуночный планшет представляет собой многолуночный планшет 100 для биологического образца, в который вносят биологический образец, когда он загружен на платформу 1000, из числа многолуночных планшетов для обработки биологического образца.

[27] Предпочтительно, многолуночные планшеты для обработки биологического образца включают многолуночный планшет 100 для биологического образца; многолуночный планшет 210 для раствора для лизиса клеток, в который вносят раствор для лизиса клеток, когда он загружен на платформу 1000; многолуночный планшет 220 для дисперсионного раствора магнитных частиц; многолуночный планшет 230 для раствора для связывания нуклеиновых кислот, в который вносят раствор для связывания нуклеиновых кислот, когда он загружен на платформу 1000; многолуночный планшет 241, 242, 243 для чистящего раствора, в который вносят чистящий раствор, когда он загружен на платформу 1000; и многолуночный планшет 250 для раствора для элюирования нуклеиновых кислот, в который вносят раствор для элюирования нуклеиновых кислот, когда он загружен на платформу 1000.

[28] Предпочтительно, множество пипеток P представляет собой множество пипеток P1 для очистки, или множество пипеток P2 для распределения, которые имеют меньшую емкость, чем множество пипеток P1 для очистки, и подставку 310 для пипеток для очистки, которая вмещает множество пипеток P1 для очистки, и подставку 320 для пипеток для распределения, которая вмещает множество пипеток P2 для распределения, загружают на платформу 1000, и многолуночный планшет 400 для ПЦР содержит первый многолуночный планшет 410 для ПЦР и второй многолуночной планшет 420 для ПЦР.

[29] Предпочтительно, узел 5100 приложения магнитного поля содержит блок 5120 монтажа магнита, в который устанавливают магнит 5110; и часть транспортировки блока монтажа магнита для того, чтобы поднимать и опускать блок 5120 монтажа магнита.

[30] Предпочтительно, магнит 5110 представляет собой множество стержневых магнитов, которые расположены с тем, чтобы находиться на расстоянии друг от друга с тем, чтобы верхняя часть магнита 5110 охватывала каждую лунку, сформированную в многолуночном планшете 220 для дисперсионного раствора магнитных частиц, когда блок 5120 монтажа магнита поднят.

[31] Предпочтительно, часть транспортировки блока монтажа магнита содержит поддерживающую пластину 5130 для узла приложения магнитного поля, которая расположена на нижней стороне блока 5120 монтажа магнита; и двигатель 5120M транспортировки блока монтажа магнита, который соединен с поддерживающей пластиной 5130 для узла приложения магнитного поля, и также соединен с блоком 5120 монтажа магнита с тем, чтобы поднимать и опускать блок 5120 монтажа магнита.

[32] Предпочтительно, автоматическая система количественной амплификации в реальном времени дополнительно содержит

[33] шариковый ходовой винт 5150S для транспортировки блока монтажа магнита, который соединен с двигателем 5120M транспортировки блока монтажа магнита; шариковую гайку для транспортировки блока монтажа магнита, которую помещают на шариковый ходовой винт 5150S для транспортировки блока монтажа магнита с тем, чтобы перемещать вверх и вниз, когда вращают шариковый ходовой винт 5150S для транспортировки блока монтажа магнита; и стержень 5160 перемещения блока монтажа магнита, который соединяет шариковую гайку для транспортировки блока монтажа магнита, и блок 5120 монтажа магнита друг с другом с тем, чтобы перемещать вверх и вниз блок 5120 монтажа магнита.

[34] Предпочтительно, нагревающий узел 5200 содержит часть транспортировки нагревающего блока для того, чтобы поднимать и опускать нагревающий блок 5220.

[35] Предпочтительно, часть транспортировки нагревающего блока содержит поддерживающую пластину 5230 для нагревающего узла, которая расположена на нижней стороне нагревающего блока 5220; и двигатель 5220M транспортировки нагревающего блока, который соединен с поддерживающей пластиной 5230 для нагревающего узла, и также соединен с нагревающим блоком 5220 с тем, чтобы поднимать и опускать нагревающий блок 5220.

[36] Предпочтительно, автоматическая система количественной амплификации в реальном времени дополнительно содержит шариковый ходовой винт 5250S для транспортировки нагревающего блока, который соединен с двигателем 5220M транспортировки нагревающего блока; шариковую гайку для транспортировки нагревающего блока, которую помещают на шариковый ходовой винт 5250S для транспортировки нагревающего блока с тем, чтобы перемещать вверх и вниз, когда вращают шариковый ходовой винт 5250S для транспортировки нагревающего блока; и стержень 5260 перемещения нагревающего блока, который соединяет шариковую гайку для транспортировки нагревающего блока, и нагревающий блок 5220 друг с другом с тем, чтобы перемещать нагревающий блок 5220 вверх и вниз.

[37] Предпочтительно, узел 5100 приложения магнитного поля содержит поддерживающую пластину 5130 для узла приложения магнитного поля, которая расположена на нижней стороне блока 5120 монтажа магнита; и двигатель 5120M транспортировки блока монтажа магнита, который устанавливают на поддерживающую пластину 5130 для узла приложения магнитного поля, а также соединяют с блоком 5120 монтажа магнита с тем, чтобы поднимать и опускать блок 5120 монтажа магнита, и нагревающий узел 5200 содержит часть перемещения вперед и назад для нагревающего блока, которая перемещает нагревающий блок 5220 в переднем и заднем направлении платформы 1000, и поддерживающая пластина 5130 для узла приложения магнитного поля и поддерживающая пластина 5230 для нагревающего узла смежны друг с другом в переднем и заднем направлении платформы 1000 и соединены друг с другом.

[38] Предпочтительно, часть перемещения вперед и назад для нагревающего блока содержит двигатель 5230M перемещения вперед и назад для нагревающего блока, который расположен на расстоянии от поддерживающей пластины 5230 для нагревающего узла и который соединен с одной или обеими из поддерживающей пластины 5230 для нагревающего узла и поддерживающей пластины 5130 для узла приложения магнитного поля с тем, чтобы перемещать поддерживающую пластину 5230 для нагревающего узла в переднем и заднем направлении платформы 1000.

[39] Предпочтительно, автоматическая система количественной амплификации в реальном времени дополнительно содержит ремень перемещения вперед и назад для нагревающего блока, который перемещают в переднем и заднем направлении платформы 1000 посредством работы двигателя 5230M перемещения вперед и назад для нагревающего блока; и соединяющий нагревающий блок элемент 5234, один конец которого неподвижно соединен с ремнем перемещения вперед и назад для нагревающего блока, а другой конец неподвижно соединен с одной или обеими из поддерживающей пластины 5230 для нагревающего узла и поддерживающей пластины 5130 для узла приложения магнитного поля.

[40] Предпочтительно, шприцевой блок 3000 содержит держатель 3200 штифта шприца, который выполнен с возможностью перемещения вверх и вниз и к которому прикрепляют множество стержневых штифтов 3100 шприцов; направляющий штифты шприцов блок 3300, который образован с множеством направляющих штифты шприцов отверстий 3310H для того, чтобы направлять перемещение вверх/вниз множества штифтов 3100 шприцов; первую отделяющую часть, которую перемещают вниз, при этом находясь в контакте с держателем 3200 штифта шприца, с тем, чтобы отделять по меньшей мере множество пипеток P и блок 12200 испарения для многолуночного планшета из множества пипеток P, перфоратора 12100 и блока 12200 испарения для многолуночного планшета от первой крепежной части 3330, которые соответственно установлены в первую крепежную часть 3330 в различные моменты времени; и вторую-1 отделяющую часть, которую перемещают вниз, при этом находясь в контакте с держателем 3200 штифта шприца, с тем, чтобы войти в зацепление со второй-2 отделяющей часть, предусмотренной на блоке 12200 испарения для многолуночного планшета и, таким образом, отделять множество пипеток P, установленных во второй крепежной части 12210.

[41] Предпочтительно, первая отделяющая часть содержит первый отделяющий стержень 3731, который вставляют в направляющее первый отделяющий стержень отверстие, сформированное в направляющем штифты шприцов блоке 3300 с тем, чтобы перемещать вниз посредством сжимающего усилия держателя 3200 штифта шприца; и первую нижнюю отделяющую пластину 3720, которую помещают на множество первых крепежных частей 3330, выступающих из нижнего конца направляющего штифты шприцов блока 3300 с тем, чтобы перемещать вверх и вниз, и которую перемещают вниз посредством первого отделяющего стержня 3731 с тем, чтобы нажимать и отделять множество пипеток P, перфоратор 12100 и блок 12200 испарения для многолуночного планшета, которые соответственно установлены в множество крепежных частей 3330 в различные моменты времени.

[42] Предпочтительно, первая отделяющая часть содержит пружину 3731S первого отделяющего стержня, которая выдвигает верхнюю часть первого отделяющего стержня 3731 за пределы направляющего штифты шприцов блока 3300 за счет своего упругого усилия, когда высвобождено сжимающее усилие держателя 3200 штифта шприца.

[43] Предпочтительно, первая отделяющая часть содержит первую верхнюю отделяющую пластину 3710, которая прикреплена к верхней части первого отделяющего стержня 3731 с тем, чтобы располагаться между держателем 3200 штифта шприца и направляющим штифты шприцов блоком 3300, и через которую проходит множество штифтов 3100 шприцов.

[44] Предпочтительно, первый отделяющий стержень 3731 содержит первый отделяющий стержень 3731-1 малого диаметра, который сформирован на нижней части первого отделяющего стержня 3731, и первый отделяющий стержень 3731-2 большого диаметра, который сформирован на верхней стороне первого отделяющего стержня 3731-1 малого диаметра с тем, чтобы иметь больший диаметр, чем у первого отделяющего стержня 3731-1 малого диаметра, и направляющее первый отделяющий стержень отверстие содержит направляющее первый отделяющий стержень малого диаметра отверстие 3321H1, которое сформировано в нижней части направляющего первый отделяющий стержень отв