Производные карбоновой кислоты, содержащие 2,5-замещенное оксазолопиримидиновое кольцо

Иллюстрации

Показать все

Изобретение относится к оксазолопиримидиновым соединениям формулы I в любой из его стереоизомерных форм или его физиологически приемлемой соли, где А выбирают из NH, О и S; X выбирают из (C16)-алкандиила, (С26)-алкендиила, и (С16)-алкандиилокси, где атом кислорода (C1-C6)-алкандиилокси-группы связан с группой R2; R1 выбирают из водорода и (C1-C4)-алкила; R2 выбирают из фенилена, который необязательно замещен по одному или двум атомам углерода в кольце одинаковыми или различными заместителями R22; R3 выбирают из (C1-C6)-алкила, необязательно замещенного 1-3 атомами фтора, или R3 является остатком насыщенного или ненасыщенного 5-членного - 10-членного моноциклического или бициклического кольца, которое содержит 0, 1 или 2 гетероатома в кольце, выбранных из N, О и S, и представляет собой циклопентил, инданил, фенил, нафтил, тиазолил, изотиазолил, пиридил, бензотиазолил или хинолин, и где остаток кольца необязательно замещен по одному или двум атомам углерода в кольце одинаковыми или различными заместителями R31; R22 выбирают из (C1-C4)-алкила, необязательно замещенного 1-3 атомами фтора; R31 выбирают из галогена, (С14)-алкила, необязательно замещенного 1-3 атомами фтора, (C1-C4)-алкилокси, необязательно замещенного 1-3 атомами фтора, и (C1-C4)-алкил-S(О)m-, необязательно замещенного 1-3 атомами фтора; m равен 0. Также изобретение относится к фармацевтической композиции, содержащей соединения формулы I, и к способу получения соединений формулы I. Технический результат - соединения формулы I, предназначенные для активации рецептора EDG-1. 3 н. и 11 з.п. ф-лы, 2 табл., 2 пр.

Реферат

Настоящее изобретение относится к производным карбоновой кислоты, содержащим 2,5-замещенное оксазолопиримидиновое кольцо, и их физиологически приемлемым солям.

Соединения с подобной структурой, которые являются подходящими для лечения рассеянного склероза, уже были описаны в предшествующем уровне техники (см. WO2009/154775). Механизм действия данных соединений заключается в десенсибилизации EDG-1 сигнального пути путем активации EDG-1 рецептора (так называемый суперагонизм), что в данном случае эквивалентно функциональному антагонизму EDG-1 сигнального пути. В целом это означает, что, особенно в случае лимфоцитов, EDG-1 сигнальный путь непрерывно подавляется, в результате чего данные клетки теряют способность к хемотаксису вдоль градиента S1P между кровью и лимфой. Это означает, что после воздействия лимфоциты больше уже не покидают вторичную лимфоидную ткань (повышенный хоуминг) и количество свободно циркулирующих в плазме лимфоцитов значительно уменьшается. Дефицит лимфоцитов в плазме (лимфопения) вызывает подавление иммунитета, что необходимо для механизма действия модуляторов EDG-1 рецептора, описанных в WO 2009/154775.

Объектом настоящего изобретения является обеспечение соединений, подходящих для заживления ран и, в частности, для лечения нарушений, связанных с заживлением ран у пациентов с сахарным диабетом. Кроме того, желательным является обеспечение соединений, которые являются подходящими для лечения синдрома диабетической стопы (СДС). Кроме того, желательным является достижение воспроизводимой активации рецептора EDG-1 сигнального пути, благодаря чему достигается возможность, в фармакологическом смысле, постоянной активации EDG-1 сигнального пути.

Настоящее изобретение относится к оксазолопиримидинам Формулы I:

,

где A, R1, R2, R3 и X определены далее. Механизм действия соединений Формулы I, таким образом, основан не на десенсибилизации EDG-1 сигнального пути и поэтому диаметрально противоположен механизму действия, описанному в WO 2009/154775. Следовательно, настоящее изобретение относится к способу получения соединений Формулы I, их применению, в частности, в качестве активных компонентов в лекарственных препаратах, и содержащим их фармацевтическим композициям.

В отличие от здоровых людей, пациенты с диабетом страдают от медленного заживления ран и более высокой частоты инфицирования, особенно в случае длительной гипергликемии, что вызвано, например, плохой регуляцией сахара в крови. Причины включают нарушение кровообращения, в частности в мелких сосудах, что приводит к плохому снабжению тканей кислородом и питательными веществами. Кроме того, понижается деление клеток, а также степень миграции кератиноцитов, фибробластов и эндотелиальных клеток дермы. В дополнение к этому, ограничивается активность различных защитных клеток (гранулоцитов), а также уменьшается фагоцитоз (поглощение и разрушение бактерий). В случае высокого уровня сахара в крови также ограничивается функция антител (иммуноглобулинов) в отношении бактерий. Соответственно, в случае ран и инфекций у пациентов с диабетом требуется особый подход при лечении.

Рецептор EDG-1 является членом семейства рецепторов гена эндотелиальной дифференциации из восьми в настоящее идентифицированных GPCR (рецепторов, сопряженных с G-белком) класса А. Данное семейство может быть разделено на подсемейства сфингозин-1-фосфат(S1P)-активируемых рецепторов (пять членов) и рецепторов, активируемых лизофосфатидной кислотой (LPA; три члена). Эндогенный лиганд S1P является плюрипотентным лизофосфолипидом, действующим на различные типы клеток путем активации GPCR из семейства EDG-рецепторов, а именно EDG-1 (=S1P1), EDG-3 (=S1P3), EDG-5 (=S1P2), EDG-6 (=S1P4) и EDG-8 (S1P5). Хотя S1P также описывается как внутриклеточный мессенджер, многочисленные клеточные ответы на S1P опосредуются активацией EDG-рецепторов. S1P синтезируется семейством ферментов сфингозинкиназ (SPHK) и подвергается деградации под действием фосфатаз и лиаз.

Объектом настоящего изобретения является оксазолопиримидиновое соединение Формулы I в любой его стереоизомерной форме или в виде смеси стереоизомеров в любом соотношении, или его физиологически приемлемая соль или физиологически приемлемый сольват любого из них:

,

где

A выбирают из NH, O и S;

X выбирают из (C1-C6)-алкандиила, (C2-C6)-алкендиила, (C2-C6)-алкиндиила, (C3-C7)-циклоалкандиила и (C1-C6)-алкандиилокси, которые все необязательно замещены одним или несколькими одинаковыми или различными заместителями, выбранными из фтора или гидрокси, где атом кислорода (C1-C6)-алкандиилокси-группы связан с группой R2;

R1 выбирают из водорода, (С1-C4)-алкила и (C3-C7)-циклоалкил-CzH2z-, где z выбирают из 0, 1 и 2;

R2 выбирают из фенилена и двухвалентного остатка ароматического, 5-членного-6-членного моноциклического гетероцикла, который содержит 1, 2 или 3 одинаковых или различных гетероатома в кольце, выбранных из N, O и S, где один из атомов азота в кольце может нести атом водорода или заместитель R21 и где фенилен и двухвалентный остаток ароматического гетероцикла необязательно замещены по одному или нескольким атомам углерода в кольце одинаковыми или различными заместителями R22;

R3 выбирают из (C1-C6)-алкила, (C2-C6)-алкенила, (C2-C6)-алкинила, (C3-C7)-циклоалкил-CuH2u- и Het-CvH2v-, где u и v выбирают из 1 и 2, или R3 является остатком насыщенного или ненасыщенного, 3-членного-10-членного моноциклического или бициклического кольца, которое содержит 0, 1, 2, 3 или 4 одинаковых или различных гетероатома в кольце, выбранных из N, O и S, где один или два атома азота в кольце могут нести атом водорода или (C1-C4)-алкильный заместитель и один или два атома серы в кольце могут нести одну или две оксо-группы, и где остаток кольца необязательно замещен по одному или нескольким атомам углерода в кольце одинаковыми или различными заместителями R31;

R21 выбирают из (С1-C4)-алкила, (C3-C7)-циклоалкил-CwH2w- и окси, где w выбирают из 0, 1 и 2;

R22 выбирают из галогена, гидрокси, (С1-C4)-алкил-, (С1-C4)-алкилокси, (C1-C4)-алкил-S(O)m-, амино, нитро, циано, гидроксикарбонила, (С1-C4)-алкилоксикарбонила, аминокарбонила и аминосульфонила;

R31 выбирают из галогена, (С1-C4)-алкила, (C3-C7)-циклоалкила, гидрокси, (C1-C4)-алкилокси, оксо, (C1-C4)-алкил-S(O)m-, амино, (C1-C4)-алкиламино, ди((С1-C4)-алкил)амино, (C1-C4)-алкилкарбониламино, (C1-C4)-алкилсульфониламино, нитро, циано, (С1-C4)-алкилкарбонила, аминосульфонила (C1-C4)-алкиламиносульфонила и ди((С1-C4)-алкил)аминосульфонила;

Het представляет собой остаток насыщенного, 4-членного-7-членного моноциклического гетероцикла, который содержит 1 или 2 одинаковых или различных гетероатома в кольце, выбранных из N, O и S, и которые соединены через атом углерода в кольце, где остаток гетероцикла необязательно замещен одним или несколькими одинаковыми или различными заместителями, выбранными из фтора и (C1-C4)-алкила;

m выбирают из 0, 1 и 2, где все значения m являются независимыми одно от другого;

где все циклоалкильные и циклоалкандиильные группы, независимо друг от друга и независимо от любых других заместителей, необязательно замещены одним или несколькими одинаковыми или различными заместителями, выбранными из фтора и (C1-C4)-алкила;

где все алкильные, алкандиильные, CuH2u, CvH2v, CwH2w, CzH2z, алкенильные, алкендиильные, алкинильные и алкиндиильные группы, независимо друг от друга и независимо от любых других заместителей, необязательно замещены одним или несколькими фторами.

Структурные элементы, такие как группы, заместители, члены гетероцикла, числовые значения или другие характерные черты, например, алкильные группы, подобные R22 или R31 группы, числовые значения подобно m, u и v, которые могут встречаться несколько раз в соединениях Формулы I, могут все независимо друг от друга иметь любое из указанных значений и в каждом случае могут быть одинаковыми или отличаться друг от друга. Например, алкильные группы в диалкиламино-группе могут быть одинаковыми или различными.

Алкильные, алкенильные и алкинильные группы могут быть линейными, например, с прямой цепью, или разветвленными. Это правило действует также тогда, когда они являются частью других групп, например алкилокси-групп (=алкокси-групп, алкил-O-групп), алкилоксикарбонильных групп или алкил-замещенных аминогрупп, или являются замещенными. В зависимости от определения количество атомов углерода в алкильной группе может быть 1, 2, 3, 4, 5 или 6 или 1, 2, 3 или 4, или 1, 2 или 3. Примерами алкила являются метил, этил, пропил, включая н-пропил и изопропил, бутил, включая н-бутил, втор-бутил, изобутил и трет-бутил, пентил, включая н-пентил, 1-метилбутил, изопентил, неопентил и трет-пентил, и гексил, включая н-гексил, 3,3-диметилбутил и изогексил. Двойные связи и тройные связи в алкенильных группах и алкинильных группах могут присутствовать в любых положениях. В одном варианте осуществления изобретения, алкенильные группы содержат одну двойную связь, и алкинильные группы содержат одну тройную связь. В одном варианте осуществления изобретения, алкенильная группа или алкинильная группа содержит по меньшей мере три атома углерода и соединена с остальной частью молекулы посредством атома углерода, который не является частью двойной связи или тройной связи. Примерами алкенила и алкинила являются этенил, проп-1-енил, проп-2-енил (=аллил), бут-2-енил, 2-метилпроп-2-енил, 3-метилбут-2-енил, гекс-3-енил, гекс-4-енил, проп-2-инил (=пропаргил), бут-2-инил, бут-3-инил, гекс-4-инил или гекс-5-инил. Замещенные алкильные группы, алкенильные группы и алкинильные группы могут быть замещены в любом положении, при условии, что соответствующее соединение является достаточно стабильным и может применяться для желаемой цели, такой как применение в качестве лекарственного вещества. Условие, что конкретная группа и соединение Формулы I являются достаточно стабильными и подходят для применения в качестве лекарственного вещества, является общим условием в отношении определения всех групп в соединениях Формулы I.

Что касается применимости, предшествующие объяснения в отношении алкильных, алкенильных и алкинильных групп касаются, соответственно, двухвалентных алкильных групп, таких как группы алкандиила, CuH2u, CvH2v, CwH2w и CzH2z, и двухвалентных алкенильных групп и алкинильных групп, таких как группы алкендиила и алкиндиила, которые, таким образом, также могут быть линейными или разветвленными. Двойные связи и тройные связи в алкендиильных и алкиндиильных группах могут присутствовать в любых положениях. В одном варианте осуществления изобретения, алкендиильные группы содержат одну двойную связь, и алкиндиильные группы содержат одну тройную связь. Примерами двухвалентных алкильных групп являются -CH2- (=метилен), -CH2-CH2-, -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, -CH(CH3)-, -C(CH3)2-, -CH(CH3)-CH2-, -CH2-CH(CH3)-, -C(CH3)2-CH2-, -CH2-C(CH3)2-, примерами двухвалентных алкенильных групп являются -CH=CH-, -CH2-CH=CH-, -CH=CH-CH2-, -CH2-CH=CH-CH2-, -CH2-CH2-CH=CH-, -C(CH3)=C(CH3)-, и примерами двухвалентных алкинильных групп являются -C≡C-, -CH2-C≡C-, -C≡C-CH2-, -C(CH3)2-C≡C-, -C≡C-C(CH3)2-, -CH2-C≡C-CH2-, -CH2-CH2-C≡C-. Если число в двухвалентной группе, такое как z в группе CzH2z, например, равно 0 (=ноль), две группы, которые присоединены к рассматриваемой группе, такой как CzH2z, связаны непосредственно одна с другой посредством одинарной связи.

Число атомов углерода в кольце в циклоалкильной группе может составлять 3, 4, 5, 6 или 7. В одном варианте осуществления изобретения, число атомов углерода в циклоалкильной группе является независимым от числа атомов углерода в любой другой циклоалкильной группе и составляет 3, 4, 5 или 6, в другом варианте осуществления 3, 4 или 5, в другом варианте осуществления 3 или 4, в другом варианте осуществления 3, в другом варианте осуществления 5, 6 или 7, в другом варианте осуществления 5 или 6, в другом варианте осуществления 6 или 7, в другом варианте осуществления 6. Это применимо, соответственно, в случае двухвалентных циклоалкильных групп, например циклоалкандиильных групп, которые могут быть связаны с соседними группами через любой один или два кольцевых атома углерода. Примерами циклоалкильных групп являются циклопропил, циклобутил, циклопентил, циклогексил и циклогептил. Примерами двухвалентных циклоалкильных групп являются циклопропан-1,1-диил, циклопропан-1,2-диил, циклобутан-1,3-диил, циклопентан-1,1-диил, циклопентан-1,2-диил, циклопентан-1,3-диил, циклогексан-1,1-диил, циклогексан-1,2-диил, циклогексан-1,3-диил, циклогексан-1,4-диил, циклогептан-1,4-диил. Независимо друг от друга и независимо от любых других заместителей циклоалкильные группы и циклоалкандиильные группы необязательно замещены одним или несколькими одинаковыми или различными (C1-C4)-алкильными заместителями, которые могут находиться в любом из положений, например, циклоалкильные группы могут быть не замещены алкильными заместителями или замещены алкильными заместителями, например, 1, 2, 3 или 4, или 1 или 2 (C1-C4)-алкильными заместителями, например, метильными группами. Примерами алкилзамещенных циклоалкильных групп и циклоалкандиильных групп являются 4-метилциклогексил, 4-трет-бутилциклогексил или 2,3-диметилциклопентил, 2,2-диметилциклопропан-1,1-диил, 2,2-диметилциклопропан-1,2-диил, 2,2-диметилциклопентан-1,3-диил, 6,6-диметилциклогептан-1,4-диил. Примерами циклоалкилалкильных групп, которые могут представлять собой такие группы, как (C3-C7)-циклоалкил-CzH2z-, например, являются циклопропилметил, циклобутилметил, циклопентилметил, циклогексилметил, циклогептилметил, 1-циклопропилэтил, 2-циклопропилэтил, 1-циклобутилэтил, 2-циклобутилэтил, 2-циклопентилэтил, 2-циклогексилэтил, 2-циклогептилэтил.

Независимо друг от друга и независимо от любых других заместителей алкильные группы, двухвалентные алкильные группы, алкенильные группы, двухвалентные алкенильные группы, алкинильные группы, двухвалентные алкинильные группы, циклоалкильные группы и двухвалентные циклоалкильные группы необязательно замещены одним или несколькими фторами, которые могут находиться в любом из положений, например, указанные группы могут быть не замещены фторами или замещены фторами, например, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 или 13, или 1, 2, 3, 4, 5, 6, 7, 8 или 9, или 1, 2, 3, 4, 5, 6 или 7, или 1, 2, 3, 4 или 5, или 1, 2 или 3, или 1 или 2 фторами. Примерами указанных фторзамещенных групп являются трифторметил, 2-фторэтил, 2,2,2-трифторэтил, пентафторэтил, 3,3,3-трифторпропил, 2,2,3,3,3-пентафторпропил, 4,4,4-трифторбутил, гептафторизопропил, -CHF-, -CF2-, -CF2-CH2-, -CH2-CF2-, -CF2-CF2-, -CF(CH3)-, -C(CF3)2-, 1-фторциклопропил, 2,2-дифторциклопропил, 3,3-дифторциклобутил, 1-фторциклогексил, 4,4-дифторциклогексил, 3,3,4,4,5,5-гексафторциклогексил, 2,2-дифторциклопропан-1,2-диил. Примерами алкилокси-групп, в которых алкильный фрагмент является фторзамещенным, являются трифторметокси, 2,2,2-трифторэтокси, пентафторэтокси и 3,3,3-трифторпропокси. В одном варианте осуществления изобретения, общее число фторов в качестве заместителей и (C1-C4)-алкильных заместителей, которые независимо от любых других заместителей необязательно присутствуют в циклоалкильных группах и циклоалкандиильных группах в соединениях Формулы I, составляет 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или 11, в другом варианте осуществления 1, 2, 3, 4, 5, 6, 7, 8 или 9, в другом варианте осуществления 1, 2, 3, 4 или 5, в другом варианте осуществления 1, 2, 3 или 4.

Такие группы, как фенил, нафтил (=нафталенил) и остатки ароматических гетероциклов, которые необязательно замещены одним или несколькими заместителями, могут быть не замещенными или замещенными, например, 1, 2, 3, 4 или 5, или 1, 2, 3 или 4, или 1, 2 или 3, или 1 или 2, или 1 одинаковыми или различными заместителями, которые могут находиться в любом из положений. В одном варианте осуществления изобретения, общее количество нитро-заместителей в соединении Формулы I составляет не более двух. Ароматические азотсодержащие гетероциклы, которые в родоначальной кольцевой системе несут атом водорода на кольцевом атоме азота в 5-членном кольце, таком как пиррол, имидазол, индол или бензимидазол, например, могут быть замещены по атомам углерода и/или данным кольцевым атомам азота. В одном варианте осуществления изобретения, заместители по данным кольцевым атомам азота выбирают из (C1-C4)-алкильных групп, например, такие кольцевые атомы азота в ароматических гетероциклах несут водород или (C1-C4)-алкильный заместитель. Когда в отношении кольцевых атомов азота в ароматических гетероциклах и в любых других гетероциклах известно, что они могут нести атом водорода или заместитель, такие кольцевые атомы азота либо несут атом водорода или заместитель, либо они не несут атом водорода или заместитель. Кольцевые атомы азота, которые несут атом водорода или заместитель, находятся в азотсодержащем ароматическом 5-членном кольце, таком как присутствующее в пирроле, имидазоле, индоле или бензимидазоле, например, и в неароматическом кольце, включая насыщенное кольцо. Кольцевые атомы азота, которые не несут атом водорода или заместитель, за исключением, когда они присутствуют в положительно заряженной форме, включая любые атомы азота дополнительного кольца помимо кольцевых атомов азота, которые несут атом водорода или заместитель, находятся в ароматическом кольце, таком как присутствующее, например, в тиазоле, имидазоле, пиридине или бензимидазоле, и в неароматическом кольце, в котором они являются мостиковыми атомами или являются частью двойной связи, а также они являются кольцевыми атомами азота, через которые осуществляется присоединение кольца. Подходящие кольцевые атомы азота в ароматических гетероциклах в соединениях Формулы I, такие как кольцевой атом азота в пиридиновом кольце, в частности, кольцевой атом азота в ароматическом гетероцикле, представляющем R2, могут также нести окси-группу -O- и присутствовать в виде N-оксида, и такие кольцевые атомы азота могут также присутствовать в виде четвертичной соли, например в виде соли N-(C1-C4)-алкила, такой как соль N-метила, где в одном варианте осуществления изобретения противоион в указанной четвертичной соли представляет собой физиологически приемлемый анион, который образуется из кислоты для получения физиологически приемлемой соли. В монозамещенных фенильных группах заместитель может находиться в положении 2, положении 3 или положении 4. В дизамещенных фенильных группах заместители могут находиться в 2,3-положении, 2,4-положении, 2,5-положении, 2,6-положении, 3,4-положении или 3,5-положении. В тризамещенных фенильных группах заместители могут находиться в 2,3,4-положении, 2,3,5-положении, 2,3,6-положении, 2,4,5-положении, 2,4,6-положении или 3,4,5-положении. Нафтил может представлять собой 1-нафтил (=нафталин-1-ил) или 2-нафтил (=нафталин-2-ил). В монозамещенных 1-нафтильных группах заместитель может находиться во 2-, 3-, 4-, 5-, 6-, 7- или 8-положении. В монозамещенных 2-нафтильных группах заместитель может находиться в 1-, 3-, 4-, 5-, 6-, 7- или 8-положении. В дизамещенных нафтильных группах заместители также оба могут находиться в любых положениях в кольце, через которое нафтильная группа присоединена, и/или в соседнем кольце. Это утверждение, относящееся к одновалентным остаткам, применяется соответственно для двухвалентных остатков, таких как, например, фениленовые группы, представляющие R2, которые могут также быть незамещенными или замещенными, например, по 1, 2, 3 или 4, или по 1, 2 или 3, или по 1 или 2, или по 1 одинаковыми или различными заместителями, которые могут находиться в любом из положений.

В остатках ароматических гетероциклов, представляющих R2 или R3, которые могут обозначаться как группы гетероарила и гетероарилена, а также во всех других гетероциклах в соединениях Формулы I, включая группу Het и неароматические гетероциклические группы, представляющие R3, гетероатомы в кольце обычно выбирают из N, O и S, где N включает кольцевые атомы азота, которые несут атом водорода или заместитель, а также кольцевые атомы азота, которые не несут атом водорода или заместитель. Кольцевые гетероатомы могут находиться в любом положении, при условии, что гетероциклическая система известна из уровня техники и является стабильной, а также является подходящей в качестве подгруппы для требуемой цели соединения Формулы I, такой как применение в качестве лекарственного вещества. В одном варианте осуществления изобретения, два кольцевых атома кислорода не могут находиться в двух соседних положениях в кольце любого гетероцикла, в другом варианте осуществления два кольцевых гетероатома, выбранных из кислорода и серы, не могут присутствовать в двух соседних положениях в кольце любого гетероцикла. Насыщенные кольца не содержат двойную связь в кольце. Ненасыщенные кольцевые системы могут быть ароматическими или частично ненасыщенными, включая частично ароматические, где в последнем случае одно кольцо в бициклической системе является ароматическим и кольцевая система присоединена через атом в неароматическом кольце. В зависимости от соответствующей группы ненасыщенные кольца могут содержать одну, две, три, четыре или пять двойных связей в кольце. Ароматические группы имеют циклическую систему из шести или десяти делокализованных π-электронов в кольце. В зависимости от соответствующей группы, насыщенные и неароматические ненасыщенные гетероциклические кольца, включая Het и неароматические группы, представляющие R3, могут быть 3-членными, 4-членными, 5-членными, 6-членными, 7-членными, 8-членными, 9-членными или 10-членными. В одном варианте осуществления изобретения, ароматические гетероциклические кольца представляют собой 5-членные или 6-членные моноциклические кольца или 8-членные, 9-членные или 10-членные бициклические кольца, в другом варианте осуществления 5-членные или 6-членные моноциклические кольца или 9-членные или 10-членные бициклические кольца, в другом варианте осуществления 5-членные или 6-членные моноциклические кольца, где 8-членные, 9-членные или 10-членные бициклические кольца состоят из двух конденсированных 5-членных колец, 5-членного кольца и 6-членного кольца, которое конденсировано с другим, и двух конденсированных 6-членных колец, соответственно. В бициклических ароматических гетероциклических группах одно или два кольца могут содержать гетероатомы в кольце, и одно или два кольца могут быть ароматическими. Как правило, бициклические кольцевые системы, содержащие ароматическое кольцо и неароматическое кольцо, рассматриваются как ароматические, когда они присоединены через атом углерода в ароматическом кольце, и как неароматические, когда они присоединены через атом углерода в неароматическом кольце. Если не указано особо, гетероциклические группы, включая ароматические гетероциклические группы, могут быть присоединены через любой подходящий кольцевой атом углерода и, в случае азотсодержащих гетероциклов, через любой подходящий кольцевой атом азота. В одном варианте осуществления изобретения, ароматическая гетероциклическая группа в соединении Формулы I, независимо от любой другой ароматической гетероциклической группы, присоединена через кольцевой атом углерода, в другом варианте осуществления через кольцевой атом азота. В зависимости от определения соответствующей гетероциклической группы, в одном варианте осуществления изобретения количество кольцевых гетероатомов, которое может присутствовать в гетероциклической группе, независимо от количества кольцевых гетероатомов в любой другой гетероциклической группе, составляет 1, 2, 3 или 4, в другом варианте осуществления 1, 2 или 3, в другом варианте осуществления 1 или 2, в другом варианте осуществления 1, где кольцевые гетероатомы могут быть одинаковыми или различными. Гетероциклические группы, которые необязательно являются замещенными, могут независимо от любой другой гетероциклической группы быть незамещенными или замещенными одним или несколькими одинаковыми или различными заместителям, например, 1, 2, 3, 4 или 5, или 1, 2, 3 или 4, или 1, 2 или 3, или 1 или 2, или 1 заместителями, которые указаны при определении соответствующей группы. Заместители гетероциклических групп могут находиться в любом из положений. Например, в случае пиридин-2-ильной группы заместители могут находиться в положении 3 и/или положении 4 и/или положении 5 и/или положении 6, в случае пиридин-3-ильной группы заместители могут находиться в положении 2 и/или положении 4 и/или положении 5 и/или положении 6, и в случае пиридин-4-ильной группы заместители могут находиться в положении 2 и/или положении 3 и/или положении 5 и/или положении 6.

Примерами родоначальных гетероциклов, из которых гетероциклические группы, включая ароматические гетероциклические группы, насыщенные гетероциклические группы и неароматическиие ненасыщенные гетероциклические группы, могут образовываться, являются азет, оксет, пиррол, фуран, тиофен, имидазол, пиразол, [1,3]диоксол, оксазол (=[1,3]оксазол), изоксазол (=[1,2]оксазол), тиазол (=[1,3]тиазол), изотиазол (=[1,2]тиазол), [1,2,3]триазол, [1,2,4]триазол, [1,2,4]оксадиазол, [1,3,4]оксадиазол, [1,2,4]тиадиазол, [1,3,4]тиадиазол, тетразол, пиридин, пиран, тиопиран, пиридазин, пиримидин, пиразин, [1,3]оксазин, [1,4]оксазин, [1,3]тиазин, [1,4]тиазин, [1,2,3]триазин, [1,3]дитиин, [1,4]дитиин, [1,2,4]триазин, [1,3,5]триазин, [1,2,4,5]тетразин, азепин, [1,3]диазепин, [1,4]диазепин, [1,3]оксазепин, [1,4]оксазепин, [1,3]тиазепин, [1,4]тиазепин, азоцин, азецин, циклопента[b]пиррол, 2-азабицикло[3.1.0]гексан, 3-азабицикло[3.1.0]гексан, 2-окса-5-азабицикло[2.2.1]гептан, индол, изоиндол, бензотиофен, бензофуран, [1,3]бензодиоксол (=1,2-метилендиоксибензол), [1,3]бензоксазол, [1,3]бензотиазол, бензимидазол, тиено[3,2-c]пиридин, хромен, изохромен, [1,4]бензодиоксин, [1,4]бензоксазин, [1,4]бензотиазин, хинолин, изохинолин, циннолин, хиназолин, хиноксалин, фталазин, тиенотиофен, [1,8]нафтиридин и другие нафтиридины, птеридин, и соответствующие насыщенные и частично ненасыщенные гетероциклы, в которых одна или несколько, например, одна, две, три, четыре или все двойные связи в кольце, включая двойные связи в ароматическом кольце, заменены на одинарные связи, такие как, например, азетидин, оксетан, пирролидин, тетрагидрофуран, тетрагидротиофен, имидазолидин, оксазолидин, тиазолидин, дигидропиридин, пиперидин, тетрагидропиран, пиперазин, морфолин, тиоморфолин, азепан, хроман, изохроман, [1,4]бензодиоксан (=1,2-этилендиоксибензол), 2,3-дигидробензофуран, 1,2,3,4-тетрагидрохинолин, 1,2,3,4-тетрагидроизохинолин.

Примерами остатков ароматических гетероциклов, которые могут встречаться в соединениях Формулы I, являются тиофенил (=тиенил), включая тиофен-2-ил и тиофен-3-ил, пиридинил (=пиридил) включая пиридин-2-ил (=2-пиридил), пиридин-3-ил (=3-пиридил) и пиридин-4-ил (=4-пиридил), имидазолил, включая, например, 1H-имидазол-1-ил, 1H-имидазол-2-ил, 1H-имидазол-4-ил и 1H-имидазол-5-ил, [1,2,4]триазолил, включая 1H-[1,2,4]-триазол-1-ил и 4H-[1,2,4]-триазол-3-ил, тетразолил, включая 1H-тетразол-1-ил и 1H-тетразол-5-ил, хинолинил (=хинолил), включая хинолин-2-ил, хинолин-3-ил, хинолин-4-ил, хинолин-5-ил, хинолин-6-ил, хинолин-7-ил и хинолин-8-ил, все из которых необязательно замещены, как указано в определении соответствующей группы. Примерами остатков насыщенных и частично ненасыщенных гетероциклов, которые могут встречаться в соединениях Формулы I, являются азетидинил, пирролидинил, включая пирролидин-1-ил, пирролидин-2-ил и пирролидин-3-ил, 2,5-дигидро-1H-пирролил, пиперидинил, включая пиперидин-1-ил, пиперидин-2-ил, пиперидин-3-ил и пиперидин-4-ил, 1,2,3,4-тетрагидропиридинил, 1,2,5,6-тетрагидропиридинил, 1,2-дигидропиридинил, азепанил, азоканил, азеканил, октагидроциклопента[b]пирролил, 2,3-дигидробензофуранил, включая 2,3-дигидробензофуран-7-ил, 2,3-дигидро-1H-индолил, октагидро-1H-индолил, 2,3-дигидро-1H-изоиндолил, октагидро-1H-изоиндолил, 1,2-дигидрохинолинил, 1,2,3,4-тетрагидрохинолинил, декагидрохинолинил, 1,2-дигидроизохинолинил, 1,2,3,4-тетрагидроизохинолинил, 1,2,3,4-тетрагидроизохинолинил, декагидроизохинолинил, декагидроизохинолинил, 4,5,6,7-тетрагидротиено[3,2-c]пиридинил, пиразолидинил, имидазолидинил, гексагидропиримидинил, 1,2-дигидропиримидинил, пиперазинил, [1,3]диазепанил, [1,4]диазепанил, оксазолидинил, [1,3]оксазинанил, [1,3]оксазепанил, морфолинил, включая морфолин-2-ил, морфолин-3-ил и морфолин-4-ил, [1,4]оксазепанил, тиазолидинил, [1,3]тиазинанил, тиоморфолинил, включая тиоморфолин-2-ил, тиоморфолин-3-ил и тиоморфолин-4-ил, 3,4-дигидро-2H-[1,4]тиазинил, [1,3]тиазепанил, [1,4]тиазепанил, [1,4]тиазепанил, оксетанил, тетрагидрофуранил, тетрагидротиенил, изоксазолидинил, изотиазолидинил, оксазолидинил, [1,2,4]-оксадиазолидинил, [1,2,4]-тиадиазолидинил, [1,2,4]триазолидинил, [1,3,4]оксадиазолидинил, [1,3,4]тиадиазолидинил, [1,3,4]триазолидинил, 2,3-дигидрофуранил, 2,5-дигидрофуранил, 2,3-дигидротиенил, 2,5-дигидротиенил, 2,3-дигидропирролил, 2,3-дигидроизоксазолил, 4,5-дигидроизоксазолил, 2,5-дигидроизоксазолил, 2,3-дигидроизотиазолил, 4,5-дигидроизотиазолил, 2,5-дигидроизотиазолил, 2,3-дигидропиразолил, 4,5-дигидропиразолил, 2,5-дигидропиразолил, 2,3-дигидрооксазолил, 4,5-дигидрооксазолил, 2,5-дигидрооксазолил, 2,3-дигидротиазолил, 4,5-дигидротиазолил, 2,5-дигидротиазолил, 2,3-дигидроимидазолил, 4,5-дигидроимидазолил, 2,5-дигидроимидазолил, тетрагидропиридазинил, тетрагидропиримидинил, тетрагидропиразинил, тетрагидро[1,3,5]триазинил, [1,3]дитианил, тетрагидропиранил, тетрагидротиопиранил, [1,3]диоксоланил, 3,4,5,6-тетрагидропиридинил, 4H-[1,3]тиазинил, 1,1-диоксо-2,3,4,5-тетрагидротиенил, 2-азабицикло[3.1.0]гексил, включая 2-азабицикло[3.1.0]гекс-2-ил, 3-азабицикло[3.1.0]гексил, включая 3-азабицикло[3.1.0]гекс-3-ил, 2-окса-5-азабицикло[2.2.1]гептил, включая 2-окса-5-азабицикло[2.2.1]гепт-5-ил, которые все присоединены через подходящий кольцевой атом углерода или кольцевой атом азота и являются необязательно замещенными, как указано в определении соответствующей группы.

Галоген представляет собой фтор, хлор, бром или йод. В одном варианте осуществления изобретения, любой галоген в соединении Формулы I выбирается независимо от любого другого галогена из фтора, хлора и брома, в другом варианте осуществления из фтора и хлора.

В случае если оксо-группа связана с атомом углерода, она заменяет два атома водорода у атома углерода в родоначальной системе. Таким образом, если CH2-группа в цепи или в кольце замещена оксо-группой, то есть присоединенным двойной связью атомом кислорода, она превращается в C(O)-группу (=C(=O)-группу). Очевидно, что оксо-группа не может находиться в качестве заместителя при атоме углерода в ароматическом кольце, таком как, например, фенильная группа. Когда в гетероциклической группе кольцевой атом серы может нести одну или две оксо-группы, атом серы S может быть неокисленным при отсутствии какой-либо оксо-группы, или находиться в виде S(O)-группы (сульфоксидной группы, S-оксидной группы) в случае присутствия одной оксо-группы, или находиться в виде S(O)2-группы (=сульфоновой группы, S,S-диоксидной группы) в случае присутствия двух оксо-групп.

Настоящее изобретение охватывает все стереоизомерные формы соединений Формулы I и их солей и сольватов. Что касается каждого хирального центра, независимо от любого другого хирального центра соединения Формулы I могут находиться в S-конфигурации или главным образом в S-конфигурации, или в R-конфигурации или главным образом в R-конфигурации, или в виде смеси S-изомера и R-изомера в любом соотношении. Изобретение охватывает все возможные энантиомеры и диастереомеры, а также смеси двух или более стереоизомеров, например, смеси энантиомеров и/или диастереомеров во всех соотношениях. Таким образом, соединения по изобретению, которые могут существовать в виде энантиомеров, могут присутствовать в энантиомерно чистой форме, как в виде левовращающих, так и правовращающих антиподов, и в виде смесей двух энантиомеров в любых соотношениях, включая рацематы. В случае E/Z-изомерии или цис/транс-изомерии, например, двойных связей или колец, таких как циклоалкильные кольца, изобретение охватывает как E-форму, так и Z-форму, или цис-форму и транс-форму, а также смеси данных форм во всех соотношениях. В одном варианте осуществления изобретения, соединение, которое может существовать в двух или более стереоизомерных формах, является чистым или по существу чистым индивидуальным стереоизомером. Получение индивидуальных стереоизомеров может осуществляться, например, путем разделения смеси изомеров общепринятыми методами, например, с помощью хроматографии или кристаллизации, путем применения в синтезе стереохимически однородных исходных веществ или путем использования стереоселективных методов синтеза. При необходимости, перед разделением стереоизомеров может быть проведена дериватизация. Разделение смеси стереоизомеров может осуществляться на стадии соединения Формулы I или на стадии исходных веществ или промежуточных соединений в процессе синтеза. Настоящее изобретение также охватывает все таутомерные формы соединений Формулы I и их солей и сольватов.

В случае если соединения Формулы I содержат одну или несколько кислотных и/или основных групп, например, формирующих соли групп, изобретение также охватывает их соответствующие физиологически или токсикологически приемлемые соли, то есть нетоксичные соли, в частности, их фармацевтически приемлемые соли. Таким образом, соединения Формулы I, которые содержат кислотную группу, такую как гидроксикарбонильная группа (=карбоксильная группа=C(O)-OH-группа), могут присутствовать в таких группах и могут применяться в соответствии с изобретением в виде, например, солей с щелочными металлами, солей с щелочноземельными металлами или аммониевых солей. Более конкретные примеры таких солей включают соли натрия, соли калия, соли кальция, соли магния, четвертичные аммониевые соли, такие как тетраалкиламмониевая соль, или соли присоединения кислоты с аммиаком или органическими аминами, такими как, например, этиламин, этаноламин, триэтаноламин или аминокислоты. Соединения Формулы I, содержащие основную группу, то есть группу, которая может протонироваться, такую как амино-группа или азотсодержащий гетероцикл, могут присутствовать в таких группах и могут применяться в соответствии с изобретением в виде их солей присоединения с неорганическими и органическими кислотами. Примеры подходящих кислот включают хлороводород, бромоводород, фосфорную кислоту, серную кислоту, метансульфоновую кислоту, щавелевую кислоту, уксусную кислоту, трифторуксусную кислоту, винную кислоту, молочную кислоту, бензойную кислоту, малоновую кислоту, фумаровую кислоту, малеиновую кислоту, лимонную кислоту и другие кислоты, известные специалисту в данной области техники. Если соединение Формулы I содержит в молекуле кислотную группу и основную группу, соединение также охватывает, в дополнение к упомянутым солевым формам, внутренние соли (=бетаины, цвиттерионы). Соли соединений Формулы I могут быть получены традиционными методами, которые хорошо известны специалисту в данной области техники, например, в результате контактирования соединения Формулы I с органической или неорганической кислотой или основанием в растворителе или разбавителе или при анионном обмене или катионном обмене с другой солью. Изобретение также охватывает все соли соединений Формулы I, которые в результате низкой физиологической совместимости образующей соль кислоты или основания не могут непосредственно применяться в фармацевтических продуктах, но которые могут применяться, например, в качестве промежуточных веществ для химических реакций или для получения физиологически приемлемых солей.

Настоящее изобретение также охватывает все сольваты соединений Формулы I, например