Полимеры, функционализованные полиоксимными соединениями, и способы их получения
Иллюстрации
Показать всеИзобретение относится к полимерам, функционализованным полиоксимными соединениями, и способам их получения. Способ получения функционализованного полимера включает стадии: (i) полимеризации сопряженного диенового мономера с получением реакционноспособного полимера; и (ii) взаимодействия между реакционноспособным полимером и защищенным полиоксимным соединением, где защищенное полиоксимное соединение включает две или более защищенные оксимные группы и где две или более защищенные оксимные группы описываются формулой -CR1=N-O-R2, в которой R1 представляет собой атом водорода или одновалентную органическую группу и R2 представляет собой одновалентную органическую группу. Полученные функционализированные полимеры придают пониженный гистерезис и пониженную хладотекучесть. 15 з.п. ф-лы, 4 ил., 6 табл., 25 пр.
Реферат
Область техники, к которой относится изобретение
Один или несколько вариантов осуществления настоящего изобретения относятся к полимерам, функционализованным полиоксимными соединениями, и способам их получения.
Уровень техники
На современном уровне техники изготовления покрышек желательным является использование вулканизатов каучуков, которые характеризуются пониженным гистерезисом, то есть, меньшими потерями механической энергии на нагревание. Например, вулканизаты каучуков, которые характеризуются пониженным гистерезисом, в преимущественном варианте используют в компонентах покрышки, таких как боковины и протекторы, для изготовления покрышек, характеризующихся желательно низким сопротивлением качению. Гистерезис у вулканизата каучука зачастую приписывают свободным концам полимерных цепей в сетке (сетчатой системе) сшитого каучука, а также диссоциации агломератов наполнителя.
Для уменьшения гистерезиса у вулканизатов каучуков использовали функционализованные полимеры. Функциональная группа функционализованного полимера может уменьшить количество свободных концов полимерных цепей в результате взаимодействия с частицами наполнителя. Кроме того, функциональная группа может уменьшить агломерирование наполнителя. Тем не менее, зачастую невозможно предсказать то, сможет ли конкретная функциональная группа, введенная в полимер, уменьшить гистерезис.
Функционализованные полимеры могут быть получены в результате проведения после полимеризации обработки реакционноспособных полимеров определенными функционализующими агентами. Однако невозможно предсказать то, может ли реакционноспособный полимер быть функционализованным в результате обработки конкретным функционализующим агентом. Например, функционализующие агенты, которые работают для одного типа полимера, не обязательно работают для другого типа полимера и наоборот.
Системы катализаторов на основе лантаноидов, как известно, являются подходящими для использования при полимеризации сопряженных диеновых мономеров для получения полидиенов, характеризующихся высоким уровнем содержания цис-1,4-соединительных звеньев. Получающиеся в результате цис-1,4-полидиены могут демонстрировать характеристики псевдо-живых цепей в том смысле, что по завершении полимеризации некоторые из полимерных цепей имеют реакционноспособные концевые группы, которые могут вступать в реакцию с определенными функционализующими агентами с образованием функционализованных цис-1,4-полидиенов.
Цис-1,4-полидиены, полученные при использовании систем катализаторов на основе лантаноидов, обычно имеют линейную основную цепь, которая, как представляется, придает лучшие механические свойства при растяжении, лучшую стойкость к истиранию, меньший гистерезис и лучшее сопротивление усталости в сопоставлении с тем, что имеет место для цис-1,4-полидиенов, полученных при использовании других систем катализаторов, таких как системы катализаторов на основе титана, кобальта и никеля. Поэтому цис-1,4-полидиены, полученные при использовании катализаторов на основе лантаноидов, являются в особенности хорошо подходящими для использования в компонентах покрышки, таких как боковины и протекторы. Однако, один недостаток цис-1,4-полидиенов, полученных при использовании катализаторов на основе лантаноидов, заключается в проявлении полимерами высокой хладотекучести вследствие линейной структуры их основной цепи. Высокая хладотекучесть приводит к возникновению проблем во время хранения и транспортирования полимеров, а также препятствует использованию автоматического дозирующего оборудования в смесительных устройствах для каучуковых композиций.
Анионные инициаторы, как известно, являются подходящими для использования при полимеризации сопряженных диеновых мономеров для получения полидиенов, содержащих комбинацию 1,2-, цис-1,4- и транс-1,4-соединительных звеньев. Анионные инициаторы также являются подходящими для использования при сополимеризации сопряженных диеновых мономеров с винилзамещенными ароматическими соединениями. Полимеры, полученные при использовании анионных инициаторов, могут демонстрировать характеристики живых цепей в том смысле, что по завершении полимеризации полимерные цепи имеют живые концевые группы, которые способны вступать в реакцию с дополнительными мономерами для дополнительного роста цепи или в реакцию с определенными функционализующими агентами для получения функционализованных полимеров. Без введения каких-либо структур, полученных по реакции сочетания, или разветвленных структур полимеры, полученные при использовании анионных инициаторов, также могут обнаруживать проблему высокой хладотекучести.
Вследствие выгодности функционализованных полимеров, в особенности при изготовлении покрышек, существует потребность в разработке новых функционализованных полимеров, которые придают пониженный гистерезис и пониженную хладотекучесть.
Раскрытие изобретения
Один или несколько вариантов осуществления настоящего изобретения предлагают способ получения функционализованного полимера, при этом способ включает стадии полимеризации мономера с получением реакционноспособного полимера и взаимодействия реакционноспособного полимера с защищенным полиоксимным соединением.
Другие варианты осуществления настоящего изобретения предлагают функционализованный полимер, полученный с помощью стадий полимеризации мономера с получением реакционноспособного полимера и взаимодействия полимера с защищенным полиоксимным соединением.
Краткое описание чертежей
Фигура 1 показывает график зависимости толщины образца в условиях хладотекучести (мм при 8 мин) от вязкости по Муни (ML 1+4 при 100°С) для функционализованного цис-1,4-полибутадиена, полученного в соответствии с одним или несколькими вариантами осуществления настоящего изобретения, в сравнении с соответствующими характеристиками нефункционализованного цис-1,4-полибутадиена.
Фигура 2 показывает график зависимости потерь на гистерезис (tan δ) от вязкости по Муни (ML 1+4 при 130°С) для вулканизатов, полученных из функционализованного цис-1,4-полибутадиена, полученного в соответствии с одним или несколькими вариантами осуществления настоящего изобретения, в сравнении с соответствующими характеристиками вулканизатов, полученных из нефункционализованного цис-1,4-полибутадиена.
Фигура 3 показывает график зависимости толщины образца в условиях хладотекучести (мм при 30 мин) от вязкости по Муни (ML 1+4 при 100°С) для функционализованного сополи(стирола-бутадиена), полученного в соответствии с одним или несколькими вариантами осуществления настоящего изобретения, в сравнении с соответствующими характеристиками нефункционализованного сополи(стирола-бутадиена).
Фигура 4 демонстрирует график зависимости потерь на гистерезис (tan δ) от вязкости по Муни (ML 1+4 при 130°С) для вулканизатов, полученных из функционализованного сополи(стирола-бутадиена), полученного в соответствии с одним или несколькими вариантами осуществления настоящего изобретения, в сравнении с соответствующими характеристиками вулканизата, полученного из нефункционализованного сополи(стирола-бутадиена).
Осуществление изобретения
В соответствии с одним или несколькими вариантами осуществления настоящего изобретения в результате проведения полимеризации сопряженного диенового мономера и необязательно мономера, сополимеризуемого с ним, получают реакционноспособный полимер, и после этого данный реакционноспособный полимер функционализуют в результате взаимодействия с защищенным полиоксимным соединением. Получающиеся в результате функционализованные полимеры могут быть использованы при изготовлении компонентов покрышки. В одном или нескольких вариантах осуществления, получающиеся в результате функционализованные полимеры характеризуются выгодным сопротивлением хладотекучести и обеспечивают изготовление компонентов покрышки, которые выгодным образом характеризуются низким гистерезисом.
Примеры сопряженного диенового мономера включают 1,3-бутадиен, изопрен, 1,3-пентадиен, 1,3-гексадиен, 2,3-диметил-1,3-бутадиен, 2-этил-1,3-бутадиен, 2-метил-1,3-пентадиен, 3-метил-1,3-пентадиен, 4-метил-1,3-пентадиен и 2,4-гексадиен. При сополимеризации также могут быть использованы и смеси двух и более сопряженных диенов.
Примеры мономера, сополимеризуемого с сопряженным диеновым мономером, включают винилзамещенные ароматические соединения, такие как стирол, п-метилстирол, α-метилстирол и винилнафталин.
В одном или нескольких вариантах осуществления реакционноспособный полимер получают в результате проведения координационной полимеризации, где мономер полимеризуют при использовании системы координационного катализатора. Ключевые признаки механизма координационной полимеризации обсуждались в книгах (например, Kuran, W., Principles of Coordination Polymerization; John Wiley (Sons: New York, 2001) и обзорных статьях (например, Mulhaupt, R., Macromolecular Chemistry and Physics 2003, volume 204, pages 289-327). Координационные катализаторы, как представляется, инициируют полимеризацию мономера по механизму, который включает перед внедрением мономера в растущую полимерную цепь координацию или комплексообразование мономера на металлсодержащем активном центре. Однимвыгодным признаком координационных катализаторов является их способность обеспечивать получение стереохимического контроля полимеризаций и, тем самым, приводить к получению стереорегулярных полимеров. Как известно на современном уровне техники, существует множество способов создания координационных катализаторов, но все способы, в конечном счете, приводят к получению активного промежуточного соединения, которое способно координироваться с мономером и обеспечивать вставление мономера в ковалентную связь между металлсодержащим активным центром и растущей полимерной цепью. Координационная полимеризация сопряженных диенов, как представляется, протекает через π-аллильные комплексы в качестве промежуточных соединений. Координационные катализаторы могут представлять собой одно-, двух-, трех- или многокомпонентные системы. В одном или нескольких вариантах осуществления координационный катализатор может быть получен в результате объединения соединения тяжелого металла (например, соединения переходного металла или соединения, содержащего лантаноид), алкилирующего агента (например, алюминийорганического соединения) и необязательно других компонентов сокатализатора (например, кислоты Льюиса или основания Льюиса). В одном или нескольких вариантах осуществления соединение тяжелого металла может быть названо координирующим соединением металла.
Для получения координационных катализаторов могут быть использованы различные методики. В одном или нескольких вариантах осуществления координационный катализатор может быть получен «in situ» в результате раздельного либо постадийного, либо одновременного добавления компонентов катализатора к полимеризуемому мономеру. В других вариантах осуществления координационный катализатор может быть получен предварительно. То есть, компоненты катализатора предварительно перемешивают вне полимеризационной системы либо в отсутствие какого-либо мономера, либо в присутствии небольшого количества мономера. Получающаяся в результате композиция предварительно полученного катализатора при желании может быть подвергнута старению, а после этого добавлена к мономеру, который предполагается заполимеризовать.
Подходящие для использования системы координационных катализаторов включают системы катализаторов на основе лантаноидов. Данные системы катализаторов выгодным образом могут приводить к получению цис-1,4-полидиенов, которые перед гашением активных центров имеют реакционноспособные концевые группы цепей и могут рассматриваться в качестве псевдо-живых полимеров. Несмотря на возможность использования также и других систем координационных катализаторов, как было установлено, в особенности выгодными являются катализаторы на основе лантаноидов, и поэтому без ограничения объема настоящего изобретения они будут обсуждаться более подробно.
Практика настоящего изобретения необязательно ограничивается выбором какой-либо конкретной системы катализатора на основе лантаноида. В одном или нескольких вариантах осуществления использующиеся системы катализаторов включают (а) соединение, содержащее лантаноид, (b) алкилирующий агент и (с) источник галогена. В других вариантах осуществления вместо источника галогена могут быть использовано соединение, содержащее некоординирующий анион, или предшественник некоординируюшего аниона. В данных или других вариантах осуществления в дополнение к представленным выше ингредиентам или компонентам могут быть использованы и другие металлоорганические соединения, основания Льюиса и/или модификаторы катализаторов. Например, в одном варианте осуществления в качестве регулятора степени полимеризации может быть использовано никельсодержащее соединение, как это описывается в патенте США №6699813, который посредством ссылки включается в настоящий документ.
Как упоминалось выше, системы катализаторов на основе лантаноидов, использующиеся в настоящем изобретении, могут содержать соединение, содержащее лантаноид. Содержащими лантаноид соединениями, подходящими для использования в настоящем изобретении, являются те соединения, которые содержат, по меньшей мере, один атом лантана, неодима, церия, празеодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция и дидимия. В одном варианте осуществления данные соединения могут содержать неодим, лантан, самарий или дидимий. В соответствии с использованием в настоящем документе термин «дидимий» должен обозначать коммерческую смесь редкоземельных элементов, полученную из монацитового песка. В дополнение к этому содержащие лантаноид соединения, подходящие для использования в настоящем изобретении, могут иметь форму элементарного лантаноида.
Атом лантаноида в соединениях, содержащих лантаноид, может находиться в различных степенях окисления, включающих нижеследующие, но не ограничивающихся только этими: степени окисления 0,+2,+3 и+4. В одном варианте осуществления может быть использовано соединение, содержащее трехвалентный лантаноид, где атом лантаноида находится в степени окисления+3. Подходящие для использования соединения, содержащие лантаноид, включают нижеследующие, но не ограничиваются только этими: карбоксилаты лантаноидов, органофосфаты лантаноидов, органофосфонаты лантаноидов, органофосфинаты лантаноидов, карбаматы лантаноидов, дитиокарбаматы лантаноидов, ксантогенаты лантаноидов, β-дикетонаты лантаноидов, алкоксиды или арилоксиды лантаноидов, галогениды лантаноидов, псевдогалогениды лантаноидов, оксигалогениды лантаноидов и лантаноидорганические соединения.
В одном или нескольких вариантах осуществления соединения, содержащие лантаноид, могут быть растворимыми в углеводородных растворителях, таких как ароматические углеводороды, алифатические углеводороды или циклоалифатические углеводороды. Однако подходящими для использования в настоящем изобретении также могут оказаться и нерастворимые в углеводороде соединения, содержащие лантаноид, поскольку для получения каталитически активных частиц они могут быть суспендированы в полимеризационной среде.
Для облегчения иллюстрирования дальнейшее обсуждение подходящих для использования соединений, содержащих лантаноид, будет фокусироваться на соединениях неодима, хотя специалисты в соответствующей области техники будут способны выбрать подобные соединения, которые в своей основе имеют и другие лантаноидные металлы.
Подходящие для использования карбоксилаты неодима включают нижеследующие, но не ограничиваются только этими: формиат неодима, ацетат неодима, акрилат неодима, метакрилат неодима, валерат неодима, глюконат неодима, цитрат неодима, фумарат неодима, лактат неодима, малеинат неодима, оксалат неодима, 2-этилгексаноат неодима, неодеканоат неодима (также известный под наименованием версатат неодима), нафтенат неодима, стеарат неодима, олеинат неодима, бензоат неодима и пиколинат неодима.
Подходящие для использования органофосфаты неодима включают нижеследующие, но не ограничиваются только этими: дибутилфосфат неодима, дипентилфосфат неодима, дигексилфосфат неодима, дигептилфосфат неодима, диоктилфосфат неодима, бис(1-метилгептил)фосфат неодима, бис(2-этилгексил)фосфат неодима, дидецилфосфат неодима, дидодецилфосфат неодима, диоктадецилфосфат неодима, диолеилфосфат неодима, дифенилфосфат неодима, бис(п-нонилфенил)фосфат неодима, бутил(2-этилгексил)фосфат неодима, (1-метилгептил)(2-этилгексил)фосфат неодима и (2-этилгексил)(п-нонилфенил)фосфат неодима.
Подходящие для использования органофосфонаты неодима включают нижеследующие, но не ограничиваются только этими: бутилфосфонат неодима, пентилфосфонат неодима, гексилфосфонат неодима, гептилфосфонат неодима, октилфосфонат неодима, (1-метилгептил)фосфонат неодима, (2-этилгексил)фосфонат неодима, децилфосфонат неодима, додецилфосфонат неодима, октадецилфосфонат неодима, олеилфосфонат неодима, фенилфосфонат неодима, (п-нонилфенил)фосфонат неодима, бутил(бутилфосфонат) неодима, пентил(пентилфосфонат) неодима, гексил(гексилфосфонат) неодима, гептил(гептилфосфонат) неодима,
октил(октилфосфонат) неодима, (1-метилгептил)(1-метилгептил)фосфонат неодима, (2-этилгексил)(2-этилгексил)фосфонат неодима, децил(децилфосфонат) неодима, додецил(додецилфосфонат) неодима, октадецил(октадецилфосфонат) неодима, олеил(олеилфосфонат) неодима, фенил(фенилфосфонат) неодима, (п-нонилфенил)(п-нонилфенил)фосфонат неодима, бутил(2-этилгексил)фосфонат неодима, (2-этилгексил)(бутилфосфонат) неодима, (1-метилгептил)(2-этилгексил)фосфонат неодима, (2-этилгексил)(1 -метилгептил)фосфонат неодима, (2-этилгексил)(п-нонилфенил)фосфонат неодима и (п-нонилфенил)(2-этилгексил)фосфонат неодима.
Подходящие для использования органофосфинаты неодима включают нижеследующие, но не ограничиваются только этими: бутилфосфинат неодима, пентилфосфинат неодима, гексилфосфинат неодима, гептилфосфинат неодима, октилфосфинат неодима, (1-метилгептил)фосфинат неодима, (2-этилгексил)фосфинат неодима, децилфосфинат неодима, додецилфосфинат неодима, октадецилфосфинат неодима, олеилфосфинат неодима, фенилфосфинат неодима, (п-нонилфенил)фосфинат неодима, дибутилфосфинат неодима, дипентилфосфинат неодима, дигексилфосфинат неодима, дигептилфосфинат неодима, диоктилфосфинат неодима, бис(1-метилгептил)фосфинат неодима, бис(2-этилгексил)фосфинат неодима, дидецилфосфинат неодима, дидодецилфосфинат неодима, диоктадецилфосфинат неодима, диолеилфосфинат неодима, дифенилфосфинат неодима, бис(п-нонилфенил)фосфинат неодима, бутил(2-этилгексил)фосфинат неодима, (1-метилгептил)(2-этилгексил)фосфинат неодима и (2-этилгексил)(п-нонилфенил)фосфинат неодима.
Подходящие для использования карбаматы неодима включают нижеследующие, но не ограничиваются только этими: диметилкарбамат неодима, диэтилкарбамат неодима, диизопропилкарбамат неодима, дибутилкарбамат неодима и дибензилкарбамат неодима.
Подходящие для использования дитиокарбаматы неодима включают нижеследующие, но не ограничиваются только этими: диметилдитиокарбамат неодима, диэтилдитиокарбамат неодима, диизопропилдитиокарбамат неодима,
дибутилдитиокарбамат неодима и дибензилдитиокарбамат неодима.
Подходящие для использования ксантогенаты неодима включают нижеследующие, но не ограничиваются только этими: метилксантогенат неодима, этилксантогенат неодима, изопропилксантогенат неодима, бутилксантогенат неодима и бензилксантогенат неодима.
Подходящие для использования β-дикетонаты неодима включают нижеследующие, но не ограничиваются только этими: ацетилацетонат неодима, трифторацетилацетонат неодима, гексафторацетилацетонат неодима, бензоилацетонат неодима и 2,2,6,6-тетраметил-3,5-гептандионат неодима.
Подходящие для использования алкоксиды или арилоксиды неодима включают нижеследующие, но не ограничиваются только этими: метоксид неодима, этоксид неодима, изопропоксид неодима, 2-этилгексоксид неодима, феноксид неодима, нонилфеноксид неодима и нафтоксид неодима.
Подходящие для использования галогениды неодима включают нижеследующие, но не ограничиваются только этими: фторид неодима, хлорид неодима, бромид неодима и иодид неодима. Подходящие для использования псевдогалогениды неодима включают нижеследующие, но не ограничиваются только этими: цианид неодима, цианат неодима, тиоцианат неодима, азид неодима и ферроцианид неодима. Подходящие для использования оксигалогениды неодима включают нижеследующие, но не ограничиваются только этими: оксифторид неодима, оксихлорид неодима и оксибромид неодима. В качестве добавки, содействующей солюбилизации данного класса соединений неодима в инертных органических растворителях, может быть использовано основание Льюиса, такое как тетрагидрофуран («ТГФ»). В случае использования галогенидов лантаноидов, оксигалогенидов лантаноидов или других содержащих лантаноид соединений, содержащих атом галогенов, соединение, содержащее лантаноид, в вышеупомянутой системе катализатора также может быть использовано и в качестве всего или части источника галогена.
В соответствии с использованием в настоящем документе термин «лантаноидорганическое соединение» обозначает любое содержащее лантаноид соединение, включающее, по меньшей мере, одну связь лантаноид-углерод. Данными соединениями преимущественно, хотя и не исключительно, являются те соединения, которые содержат циклопентадиенильный («Ср»), замещенный циклопентадиенильный, аллильный и замещенный аллильный лиганды. Подходящие для использования лантаноидорганические соединения включают нижеследующие, но не ограничиваются только этими: Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, СрLn (циклооктатетраен), (C5Me5)2LnR, LnR3, Ln(аллил)3 и Ln(аллил)2Сl, где Ln представляет собой атом лантаноида, a R представляет собой гидрокарбильную группу. В одном или нескольких вариантах осуществления гидрокарбильные группы, подходящие для использования в настоящем изобретении, могут содержать гетероатомы, такие как, например, атомы азота, кислорода, бора, кремния, серы и фосфора.
Как упоминалось выше, системы катализаторов на основе лантаноидов, использующиеся в настоящем изобретении, могут содержать алкилирующий агент.В одном или нескольких вариантах осуществления алкилирующие агенты, которые также могут быть названы гидрокарбилирующими агентами, включают металлоорганические соединения, которые могут переносить одну или несколько гидрокарбильных групп на другой металл. Обычно данные агенты включают металлоорганические соединения электроположительных металлов, таких как металлы из групп 1, 2 и 3 (металлы из групп IA, IIA и IIIA). Алкилирующие агенты, подходящие для использования в настоящем изобретении, включают нижеследующие, но не ограничиваются только этими: алюминийорганические и магнийорганические соединения. В соответствии с использованием в настоящем документе термин «алюминийорганическое соединение» обозначает любое соединение алюминия, включающее, по меньшей мере, одну связь алюминий-углерод. В одном или нескольких вариантах осуществления могут быть использованы алюминийорганические соединения, которые являются растворимыми в углеводородном растворителе. В соответствии с использованием в настоящем документе термин «магнийорганическое соединение» обозначает любое соединение магния, которое включает, по меньшей мере, одну связь магний-углерод. В одном или нескольких вариантах осуществления могут быть использованы магнийорганические соединения, которые являются растворимыми в углеводороде. Как будет более подробно описываться ниже, некоторые разновидности подходящих для использования алкилирующих агентов могут иметь форму галогенида. В случае содержания в алкилирующем агенте атома галогена алкилирующий агент в вышеупомянутой системе катализатора также может быть использован и в качестве всего или части источника галогена.
В одном или нескольких вариантах осуществления алюминийорганические соединения, которые могут быть использованы, включают те соединения, которые описываются общей формулой АlRnХ3_n, где каждый R независимо может представлять собой одновалентную органическую группу, которая присоединена к атому алюминия через атом углерода, где каждый X независимо может представлять собой атом водорода, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу, и где n может представлять собой целое число в диапазоне от 1 до 3. В одном или нескольких вариантах осуществления каждый R независимо может представлять собой гидрокарбильную группу, такую как, например, алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, замещенная арильная, аралкильная, алкарильная, аллильная и алкинильная группы, при этом каждая группа содержит атомы углерода в количестве в диапазоне от 1 атома углерода или минимального количества атомов углерода, подходящего для использования при получении группы, вплоть до приблизительно 20 атомов углерода. Данные гидрокарбильные группы могут содержать гетероатомы, включающие нижеследующие, но не ограничивающиеся только этими: атомы азота, кислорода, бора, кремния, серы и фосфора.
Типы алюминийорганических соединений, которые описываются общей формулой АlRnХ3_n, включают нижеследующие, но не ограничиваются только этими: производные тригидрокарбилалюминия, дигидрокарбилалюминийгидрида, гидрокарбилалюминийдигидрида, дигидрокарбилалюминийкарбоксилата, гидрокарбилалюминийбис(карбоксилата), дигидрокарбилалюминийалкоксида, гидрокарбилалюминийдиалкоксида, дигидрокарбилалюминийгалогенида, гидрокарбилалюминийдигалогенида, дигидрокарбилалюминийарилоксида и гидрокарбилалюминийдиарилоксида. В одном варианте осуществления алкилирующий агент может включать производные тригидрокарбилалюминия, дигидрокарбилалюминийгидрида и/или гидрокарбилалюминийдигидрида. В одном варианте осуществления в случае включения в алкилирующий агент алюминийорганического гидридного соединения вышеупомянутый источник галогена может быть представлен галогенидом олова, как это описывается в патенте США №7008899, который посредством ссылки во всей своей полноте включается в настоящий документ.
Подходящие для использования производные тригидрокарбилалюминия включают нижеследующие, но не ограничиваются только этими: триметил алюминий, триэтилалюминий, триизобутилалюминий, три-н-пропилалюминий,
триизопропилалюминий, три-н-бутилалюминий, три-трет-бутилалюминий, три-н-пентилалюминий, тринеопентилалюминий, три-н-гексилалюминий, три-н-октилалюминий, трис(2-этилгексил)алюминий, трициклогексилалюминий, трис(1-метилциклопентил)алюминий, трифенилалюминий, три-п-толилалюминий, трис(2,6-диметилфенил)алюминий, трибензилалюминий, диэтилфенилалюминий, диэтил-п-толилалюминий, диэтилбензилалюминий, этилдифенилалюминий, этилди-п-толилалюминий и этилдибензилалюминий.
Подходящие для использования производные дигидрокарбилалюминийгидрида включают нижеследующие, но не ограничиваются только этими: диэтилалюминийгидрид, ди-н-пропилалюминийгидрид, диизопропилалюминийгидрид, ди-н-бутилалюминийгидрид, диизобутилалюминийгидрид, ди-н-октилалюминийгидрид, дифенилалюминийгидрид, ди-п-толилалюминийгидрид, дибензилалюминийгидрид, фенилэтилалюминийгидрид, фенил-н-пропилалюминийгидрид, фенилизопропилалюминийгидрид, фенил-н-бутилалюминийгидрид, фенилизобутилалюминийгидрид, фенил-н-октилалюминийгидрид, п-толилэтилалюминийгидрид, п-толил-н-пропилалюминийгидрид, п-толилизопропилалюминийгидрид, п-толил-н-бутилалюминийгидрид, п-толилизобутилалюминийгидрид, п-толил-н-октилалюминийгидрид, бензилэтилалюминийгидрид, бензил-н-пропилалюминийгидрид, бензилизопропилалюминийгидрид, бензил-н-бутилалюминийгидрид, бензилизобутилалюминийгидрид и бензил-н-октилалюминийгидрид.
Подходящие для использования гидрокарбилалюминийдигидриды включают нижеследующие, но не ограничиваются только этими: этилалюминийдигидрид, н-пропилалюминийдигидрид, изопропилалюминийдигидрид, н-бутилалюминийдигидрид, изобутилалюминийдигидрид и н-октилалюминийдигидрид.
Подходящие для использования производные дигидрокарбилалюминийгалогенида включают нижеследующие, но не ограничиваются только этими: диэтилалюминийхлорид, ди-н-пропилалюминийхлорид, диизопропилалюминийхлорид, ди-н-бутилалюминийхлорид, диизобутилалюминийхлорид, ди-н-октилалюминийхлорид, дифенилалюминийхлорид, ди-п-толилалюминийхлорид, дибензилалюминийхлорид, фенилэтилалюминийхлорид, фенил-н-пропилалюминийхлорид, фенилизопропилалюминийхлорид, фенил-н-бутилалюминийхлорид, фенилизобутилалюминийхлорид, фенил-н-октилалюминийхлорид, п-толилэтилалюминийхлорид, п-толил-н-пропилалюминийхлорид, п-толилизопропилалюминийхлорид, п-толил-н-бутилалюминийхлорид, п-толилизобутилалюминийхлорид, п-толил-н-октилалюминийхлорид, бензилэтилалюминийхлорид, бензил-н-пропилалюминийхлорид, бензилизопропилалюминийхлорид, бензил-н-бутилалюминийхлорид, бензилизобутилалюминийхлорид и бензил-н-октилалюминийхлорид.
Подходящие для использования производные гидрокарбилалюминийдигалогенида включают нижеследующие, но не ограничиваются только этими: этилалюминийдихлорид, н-пропилалюминийдихлорид, изопропилалюминийдихлорид, н-бутилалюминийдихлорид, изобутилалюминийдихлорид и н-октилалюминийдихлорид.
Другие алюминийорганические соединения, подходящие для использования в качестве алкилирующих агентов, которые могут быть описаны общей формулой AlRnX3_n, включают нижеследующие, но не ограничиваются только этими: диметилалюминийгексаноат, диэтилалюминийоктаноат, диизобутилалюминий(2-этилгексаноат), диметилалюминийнеодеканоат, диэтилалюминийстеарат, диизобутилалюминийолеинат, метилалюминийбис(гексаноат), этилалюминийбис(октаноат), изобутилалюминийбис(2-этилгексаноат), метилалюминийбис(неодеканоат), этилалюминийбис(стеарат), изобутилалюминийбис(олеинат), диметилалюминийметоксид, диэтилалюминийметоксид, диизобутилалюминийметоксид, диметилалюминийэтоксид, диэтилалюминийэтоксид, диизобуталалюминийэтоксид, диметалалюминийфеноксид, диэтилалюминийфеноксид, диизобутилалюминийфеноксид, метилалюминийдиметоксид, этилалюминийдиметоксид, изобутилалюминийдиметоксид, метилалюминийдиэтоксид, этилалюминийдиэтоксид, изобутилалюминийдиэтоксид, метилалюминийдифеноксид, этилалюминийдифеноксид и изобутилалюминийдифеноксид.
Еще один класс алюминийорганических соединений, подходящих для использования в качестве алкилирующего агента в настоящем изобретении, представляют собой алюмоксаны. Алюмоксаны могут включать олигомерные линейные алюмоксаны, которые могут быть описаны общей формулой:
и олигомерные циклические алюмоксаны, которые могут быть описаны общей формулой:
где х может представлять собой целое число в диапазоне от 1 до приблизительно 100 или от приблизительно 10 до приблизительно 50; у может представлять собой целое число в диапазоне от 2 до приблизительно 100 или от приблизительно 3 до приблизительно 20; и где каждый R независимо может представлять собой одновалентную органическую группу, которая присоединена к атому алюминия через атом углерода. В одном варианте осуществления каждый R независимо может представлять собой гидрокарбильную группу, включающую нижеследующие, но не ограничивающуюся только этими: алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, замещенная арильная, аралкильная, алкарильная, аллильная или алкинильная группы, при этом каждая группа содержит атомы углерода в количестве в диапазоне от 1 атома углерода или минимального количества атомов углерода, подходящего для использования при получении группы, вплоть до приблизительно 20 атомов углерода. Данные гидрокарбильные группы также могут содержать гетероатомы, включающие нижеследующие, но не ограничивающиеся только этими: атомы азота, кислорода, бора, кремния, серы и фосфора. Необходимо отметить то, что количество молей алюмоксана, использующееся в данной заявке, относится к количеству молей атомов алюминия, а не к количеству молей олигомерных молекул алюмоксана. Данная условность широко используется на современном уровне техники систем катализаторов, использующих алюмоксаны.
Алюмоксаны могут быть получены в результате проведения реакции между производными тригидрокарбилалюминия и водой. Данная реакция может быть проведена в соответствии с известными способами, такими как, например, (1) способ, по которому производное тригидрокарбилалюминия растворяют в органическом растворителе, а после этого вводят в контакт с водой, (2) способ, по которому производное тригидрокарбилалюминия вводят в реакцию с кристаллизационной водой, содержащейся, например, в металлических солях, или с водой, адсорбированной на неорганических или органических соединениях, или (3) способ, по которому производное тригидрокарбилалюминия вводят в реакцию с водой в присутствии мономера или раствора мономера, который предполагается заполимеризовать.
Подходящие для использования производные алюмоксана включают нижеследующие, но не ограничиваются только этими: метилалюмоксан («МАО»), модифицированный метилалюмоксан («ММАО»), этилалюмоксан, н-пропилалюмоксан, изопропилалюмоксан, бутилалюмоксан, изобутилалюмоксан, н-пентилалюмоксан, неопентилалюмоксан, н-гексилалюмоксан, н-октилалюмоксан, 2-этилгексилалюмоксан, циклогексилалюмоксан, 1-метилциклопентилалюмоксан, фенилалюмоксан и 2,6-диметилфенилалюмоксан. Модифицированный метилалюмоксан может быть получен в результате замещения приблизительно от 20 до 80 процентов метальных групп метилалюмоксана С2-С12 гидрокарбильными группами, предпочтительно изобутильными группами, при использовании методик, известных специалистам в соответствующей области техники.
Алюмоксаны могут быть использованы индивидуально или в комбинации с другими алюминийорганическими соединениями. В одном варианте уществления в комбинации могут быть использованы метилалюмоксан и, по меньшей мере, одно другое алюминийорганическое соединение (например, AlRnX3_n,), такое как диизобутилалюминийгидрид. Публикация США №2008/0182954, которая посредством ссылки во всей своей полноте включается в настоящий документ, предлагает другие примеры, в которых алюмоксаны и алюминийорганические соединения могут быть использованы в комбинации.
Как упоминалось выше, алкилирующие агенты, подходящие для использования в настоящем изобретении, могут включать магнийорганические соединения. В одном или нескольких вариантах осуществления магнийорганические соединения, которые могут быть использованы, включают те соединения, которые описываются общей формулой MgR2, где каждый R независимо может представлять собой одновалентную органическую группу, которая присоединена к атому магния через атом углерода. В одном или нескольких вариантах осуществления каждый R независимо может представлять собой гидрокарбильную группу, включающую нижеследующие, но не ограничивающуюся только этими: алкильная, циклоалкильная, замещенная циклоалкильная, алкенильная, циклоалкенильная, замещенная циклоалкенильная, арильная, аллильная, замещенная арильная, аралкильная, алкарильная и алкинильная группы, при этом каждая группа содержит атомы углерода в количестве в диапазоне от 1 атома углерода или минимального количества атомов углерода, подходящего для использования при получении группы, вплоть до приблизительно 20 атомов углерода. Данные гидрокарбильные гр