Система экологически безопасного охлаждения промышленных процессов

Иллюстрации

Показать все

Изобретение относится к обработке воды и может быть использовано для охлаждения промышленных процессов. Система обеспечения промышленного процесса охлаждающей водой включает контейнер 12 для хранения охлаждающей воды с дном 13 для приема осевших частиц; линию подачи 11 в контейнер поступающей воды; автоматизированную систему 10, выполненную с возможностью получения информации, обработки этой информации и активации операций, выполняемых средством введения химических веществ 18, подвижным средством всасывания 22 и фильтрующим средством; средство введения химических веществ; подвижное средство всасывания 22; движущее средство 23; фильтрующее средство 20; коллекторную линию 19, соединяющую подвижное средство всасывания 22 и фильтрующее средство 20; возвратную линию 21 из фильтрующего средства 20 в контейнер 12; линию впуска 1 в теплообменник от контейнера к промышленному процессу и линию возврата 2 воды из промышленного процесса в контейнер 12. Изобретение позволяет обеспечить промышленный процесс охлаждающей водой высокого качества, сравнимого с качеством воды плавательных бассейнов, и снизить затраты на эксплуатацию. 5 з.п. ф-лы, 5 ил., 3 табл., 2 пр.

Реферат

Данная заявка подана 12 сентября 2011 г. в качестве международной заявки на патент РСТ. Заявителем для всех государств, за исключением США, является Crystal Lagoons Corporation LLC, национальная корпорация США, и только для США заявителем является Fernando Fischmann Т., гражданин Чили. В заявке испрашивается приоритет по дате предварительной заявки US 61/469526, поданной 30 марта 2011 г., и по дате полезной модели US 13/195695, поданной 1 августа 2011 г., которые включены в данную заявку по упоминанию.

Область техники

Настоящее изобретение относится к системе для обработки воды и применению обработанной воды для охлаждения промышленных процессов. Вода, которую обрабатывают и хранят в большом контейнере или искусственной лагуне, обладает высокой прозрачностью и высоким микробиологическим качеством. Большой контейнер или искусственная лагуна может действовать как поглотитель тепла, поглощая отходящее тепло от промышленных процессов охлаждения, таким образом создают запас тепловой энергии экологически безопасным образом, и этот запас затем можно использовать для других целей. Способ и систему можно использовать в любых промышленных системах охлаждения с любым типом доступной воды, включая пресную воду, слабоминерализованную воду и морскую воду.

Уровень техники

В последние годы темпы роста промышленности во всем мире значительно увеличились и значительно усовершенствованы технологические процессы. Большинство отраслей промышленности требуют наличия систем, обеспечивающих охлаждение по меньшей мере некоторых технологических процессов. В большинстве систем охлаждения применяют воду в качестве поглотителя тепла или теплоносителя. Однако вода является ограниченным ресурсом. Происходит разработка месторождений и загрязнение подземных водоносных горизонтов, океанов и поверхностных вод, что приводит к

снижению как количества подходящей воды, так и качества доступной природной воды. Следовательно, необходимо найти новые пути экологически безопасного и экономически выгодного применения воды, чтобы использовать данный ресурс эффективным образом и без ущерба для окружающей среды.

Современные промышленные системы охлаждения часто ограничены областями, в которых имеется в наличии большой объем охлаждающей воды. Например, системы охлаждения часто расположены вдоль береговой линии океана или вблизи других природных источников воды, таких как реки и большие озера, в которых данный ресурс имеется в большом количестве. Соответственно, существенным недостатком, связанным с системами охлаждения на водной основе, является то, что они часто ограничены определенным географическим расположением. Например, для электростанции мощностью 350 МВт, работающей на угле, требуется приблизительно 45000 м3 воды в час в целях охлаждения, например, в теплообменниках станции, что эквивалентно заполнению 18 олимпийских плавательных бассейнов только за один час.

Кроме того, отходящее тепло, поглощаемое охлаждающей водой, в основном теряется в окружающей среде из-за сброса нагретой воды обратно в природный источник воды или из-за выброса паров воды в атмосферу. Поддающаяся извлечению энергия, которая ежедневно пропадает впустую по всему миру, может составлять до 80% от всей электроэнергии, потребляемой ежедневно по всему миру.

Конкретные виды типичного оборудования, которое может выиграть от усовершенствованных систем охлаждения на водной основе, включают, но не ограничены перечисленным, следующие виды оборудования.

Тепловые электростанции

Рост населения и развитие технологий привело к большим потребностям в дополнительной энергии. Значительное применение энергии в мире сконцентрировано на получении электричества. Потребность в электроэнергии возрастает благодаря темпам, задаваемым развитием государств и их экономическим развитием. Например, получение электроэнергии возросло приблизительно на 40% за последние 10 лет (см. Фиг.1). Эта потребность привела к интенсификации разработки нового оборудования для получения электроэнергии по всему миру.

Тепловые электростанции в настоящее время являются преобладающим типом электростанций, находящихся в эксплуатации. На таких станциях используют топливо для обеспечения горения, с помощью которого нагревают текучую среду, которая в свою очередь приводит в действие турбину в цикле генерирования электричества. Также существует ряд электростанций, на которых применяют возобновляемые источники, такие как энергия солнечного света или геотермальная энергия, генерирующие рабочую текучую среду, которая в свою очередь приводит в действие турбину. На других тепловых электростанциях применяют ядерное топливо, такое как уран. Однако доступные статистические данные показывают, что общее количество потребляемой энергии в 2008 году, от 80% до 90%, было получено от горения ископаемого топлива на тепловых электростанциях. В большинстве случаев на станциях такого типа используют уголь, нефть или природный газ. Такая большая доля этих станций при получении электричества отчасти обусловлена высокой доступностью ископаемого топлива в мире. В 1973 году мировая энергетическая сеть состояла из 78,4% тепловых электростанций (включая ядерные станции), тогда как в 2008 году их доля увеличилась до 81,5%. Для таких станций существует постоянная потребность в улучшении эффективности их эксплуатации и снижении их влияния на окружающую среду.

С течением времени теплоэлектростанции претерпевали различные изменения, связанные с их эксплуатацией. Например, вносили изменения в отношении выбросов и эффективного использования топлива. Однако, остающимся недостатком этих станций является применение систем водного охлаждения. Такие системы имеют несколько недостатков, ограничивающих их применение определенными географическими регионами. Кроме того, использование воды и сопутствующий нагрев воды потенциально оказывают вредное воздействие на окружающую среду, увеличивают стоимость энергии, приводят к интенсивному потреблению воды, потере остаточного тепла и/или имеют высокую стоимость ввода в эксплуатацию и стоимость эксплуатации. Соответственно, необходимы усовершенствованные системы охлаждения для поддержания возрастающих потребностей в энергии и электричестве.

Современными системами охлаждения, используемыми на тепловых электростанциях и в других отраслях промышленности, являются системы прямоточного охлаждения, башенные охладители и пруды-охладители.

Системы прямоточного охлаждения

Одним из основных типов систем охлаждения, используемых в настоящее время, является система «прямоточного» охлаждения, которая относится к системе открытого цикла (т.е. в которой не используют рециркуляцию воды). Система такого типа состоит из водоприемного сооружения для сбора воды из природного источника и водосбросного сооружения для возврата воды обратно в природный источник (например, часто в океан или море). Собранная охлаждающая вода циркулирует через теплообменник, работающий в составе промышленного процесса. В теплообменниках вода действует как поглотитель тепла, посредством чего температура воды возрастает по мере ее прохождения через теплообменник. Затем нагретую воду отводят обратно к природному источнику. Только в США приблизительно на 5500 электростанций используют систему прямоточного охлаждения. На этих станциях используют более 681372 миллионов литров (180000 миллионов галлонов) воды в сутки в целях охлаждения. Это количество, например, в 13 раз превышает количество воды, используемой ежедневно для орошения в Австралии. Системы прямоточного охлаждения имеют множество недостатков, включая вред для окружающей среды из-за всасывания и уничтожения морских организмов, теплового загрязнения окружающей среды возвращаемой нагретой водой; ограниченное расположение систем по береговой линии (или по границе больших водных источников); плохое качества воды и сброс остаточного тепла.

В системах прямоточного охлаждения используют большие объемы воды при относительно низкой стоимости, но это часто приводит к крупномасштабным отрицательным воздействиям на морскую экосистему. Например, система создает рост температуры отводимой воды. В океане резкое увеличение температуры может вызывать серьезные проблемы, даже приводить к смерти живых организмов. Это оказывает вредное влияние на морскую экосистему и жизнедеятельность человека, которая происходит на побережье, такую как рыболовство и другая экономическая деятельность. Система прямоточного охлаждения также может вызывать смерть морских организмов из-за давления всасывания, создаваемого в водоприемном устройстве. Это может затрагивать миллионы рыб, личинок и других водных организмов ежегодно по всему миру, поскольку они всасываются в трубопроводы, ведущие к теплообменникам. Смерть может происходить из-за фильтров или сеток (например, столкновение с фильтрами/сетками или удержание фильтрами или экранами), из-за ротационных насосов (например, при прохождении внутри конструкций и/или потоков при высоком давлении, что вызывает столкновение со стенками), из-за химических веществ, которые могут быть добавлены, и в теплообменниках из-за резкого изменения температуры. Законы в некоторых странах и штатах запрещают применение систем прямоточного охлаждения. Следовательно, существует потребность в новых способах охлаждения, которые являются стабильными во времени и позволяют обеспечить улучшенные характеристики и эффективность.

Другим главным ограничением систем прямоточного охлаждения является их ограниченное местоположение. Как указано выше, установки такого типа обычно должны быть расположены на морском побережье или на территории вдоль рек, чтобы обеспечить лучший прием большого количества воды. Такие местоположения могут создавать значительные проблемы землепользования. Таким образом, данные отрасли промышленности ограничены из-за больших объемов воды, которые необходимо принимать, и эффекта теплового загрязнения в таких местах. Вследствие этого, установки могут создавать различные проблемы в отношении размещения, что приводит к более высокой стоимости и возможному их неприятию жителями населенных пунктов.

Другой проблемой системы прямоточного охлаждения является плохое качество воды, используемой для охлаждения. В прямоточных системах охлаждения обычно используют морскую воду, которая имеет большое содержание органических веществ. Это отрицательно влияет на теплообменные системы процессов охлаждения. Например, происходит пониженный теплоперенос из-за живых или мертвых организмов, которые прилипают к трубам или засоряют их. Накапливаются биологические загрязнения и начинается их прилипание к внутренней поверхности труб, что снижает теплоперенос, и следовательно, эффективность. Кроме того, новые нормы по охране окружающей среды рекомендуют (а некоторые требуют), чтобы станции работали с высокой эффективностью для максимизации количества энергии, получаемой на единицу топлива. В одном научном исследовании подсчитано, что обрастание в теплообменниках вызывает потери в денежном выражении в промышленно развитых странах на уровне приблизительно 0,25% от валового внутреннего продукта (ВВП).

Другое ограничение систем прямоточного охлаждения состоит в том, что все поглощаемое тепло отводят обратно в природный источник воды без использования тепловой энергии в воде. В некоторых случаях, тепловая энергия, которую теряют впустую, может приближаться к двум третям от общего генерированного тепла, тогда как количество электроэнергии, производимой электростанцией, составляет только одну треть от общего генерированного тепла. Было бы предпочтительным использование этой теряемой ценной энергии для других полезных целей.

Башенные охладители

Другой системой охлаждения, используемой в настоящее время, является башенный охладитель. Такая система обеспечивает охлаждение воды через теплообменник, содержащий воздух внутри испарительных вытяжных труб. Вытяжные трубы содержат резервуар для холодной воды в основании, из которого питают установку посредством насосов, которые обеспечивают циркуляцию через конденсатор установки (камеры охлаждения), тем самым передавая тепло рабочей текучей среды установки воде. Когда отходящая вода высокой температуры достигает вершины башни, она начинает спускаться тонкими струями, чтобы максимизировать площадь контакта для теплопереноса. Некоторые установки снабжены вентиляторами, либо вверху, либо на дне башни, чтобы обеспечивать циркуляцию воздуха вверх для достижения его противоточного контакта с водой. По мере падения воды, она охлаждается, и из-за испарения происходят потери тепла. Когда вода испаряется, растворенные соли опускаются обратно в резервуар с водой, тем самым их концентрация увеличивается. Следовательно, время от времени следует сбрасывать определенное количество воды, и резервуар необходимо пополнять свежей водой. Башенные охладители имеют различные проблемы, связанные с их эксплуатацией, включая высокие темпы отбора и испарение воды, высокую стоимость, ухудшение городской эстетики или эстетики ландшафта и потери увлекаемого остаточного тепла.

Существенной проблемой башенных охладителей является высокий темп отбора воды. Согласно данным научно-исследовательского института электроэнергетики (EPRI, США), для паровой электростанции, работающей на угле, темп отбора воды составляет приблизительно 2082 л/МВт·ч, и расходование воды из-за испарения составляет приблизительно 1817 л/МВт·ч. Кроме того, башенные охладители требуют частого пополнения из-за большого расходования воды, обусловленного высокими темпами испарения. Вся испаренная вода должна быть восполнена, а также время от времени определенное количество воды необходимо сбрасывать из-за увеличения концентрации минеральных веществ в резервуаре, который также необходимо пополнять. Обычно башенные охладители работают на пресной воде, что приводит к высокой стоимости эксплуатации.

Другая основная проблема башенных охладителей состоит в том, что они требуют высоких затрат на ввод в эксплуатацию, эксплуатацию и техническое обслуживание. Например, для станции мощностью 2245 МВт капитальные затраты могут достигать 600 млн. долларов.

Кроме того, башенные охладители ухудшают городскую эстетику и эстетику ландшафта. Это происходит как из-за конструкции башни, так и из-за пара, выпускаемого из башни в атмосферу. Пар портит вид ландшафта и может приводить к увлажнению мостовых, дорог и других близлежащих поверхностей. Дополнительное ограничение башенных охладителей состоит в том, что в них не используют остаточную энергию, поскольку в них сбрасывают фактически все остаточное тепло в атмосферу в виде паров воды. Соответственно, снижается общая энергетическая эффективность процесса.

Пруд-охладитель

Во многих системах охлаждения, используемых в промышленных процессах, применяют пруды-охладители. Пруды-охладители обычно включают большие объемы воды, содержащейся в пруду, из которого извлекают охлаждающую воду. После прохождения через процесс теплообмена на установке, воду (при более высокой температуре) выпускают обратно в пруд. Площадь пруда обычно зависит от производительности и эффективности установки. Пруды такого типа используют почти на пятнадцати процентах (15%) теплоэлектростанций в США, где используют уголь, другие виды ископаемого топлива, объединенный цикл, и атомных электростанций. Основными недостатками прудов-охладителей являются большие фактические площади, требующиеся для их реализации, и низкое качество воды, содержащейся в пруду.

Требование больших площадей для реализации пруда-охладителя основано на требовании поддержания низкой температуры, обычно ниже 22°С. Это связано с тем, что как только температура воды начинает подниматься, в воде пруда усиливается рост и распространение водорослей и других организмов, которые создают проблемы в системе охлаждения и в самом пруду. Таким образом, для поддержания низких температур, пруды-охладители имеют очень большие площади, до 2500 га. Учитывая возрастающий дефицит свободной земли, данное решение становится все менее целесообразным.

Другим ограничением прудов-охладителей является низкое качество воды в пруду. На некоторых установках охлаждающая вода из пруда должна подвергаться дополнительной обработке, такой как фильтрация и удаление соединений, которые разрушают оборудование. Низкое качество обусловлено быстрым распространением микроорганизмов, водорослей и оседающими частицами. Качество воды в таких прудах делает их непривлекательными для применения в рекреационных целях, и они могут представлять опасность для здоровья людей, купающихся в пруду.

Также, поскольку температура воды в пруду-охладителе не должна увеличиваться до 25-30°C или более, нагретую воду нельзя использовать для других целей, что приводит к потере ценной тепловой энергии.

Литейная промышленность

Системы водяного охлаждения могут использовать в других отраслях промышленности, таких как литейная и чугунолитейная промышленность. Литейная промышленность имеет очень большое значение, особенно при добыче ископаемых, где металлы плавят с получением других продуктов. В процессе литья образуются газы чрезвычайно высоких температур, которые необходимо охлаждать для последующего выброса или применения. В настоящее время, в большинстве отраслей литейной промышленности используют системы водяного охлаждения, либо с рециркуляцией, либо с прямоточным охлаждением.

Исходя из нужд охлаждения большинства отраслей промышленности и недостатков существующих систем охлаждения, существует потребность в модернизации систем охлаждения, которые работают при более низких затратах, в которых избегают выбросов тепла и сопутствующего теплового разрушения морских экосистем, используют меньшее количество воды, обеспечивают гибкость географического местоположения и/или используют преимущества тепловой энергии, выделяющейся в процессе охлаждения (например, в теплообменнике), для полезных целей.

В US 4254818 в общем описано предотвращение коррозии в системе охлаждения промышленного процесса посредством использования водного солевого раствора с концентрацией 20-35 масс.%. Солевой раствор циркулирует в замкнутом контуре между рабочим теплообменником и прудом-охладителем с подержанием требуемой концентрации солевого раствора, которая должна составлять от 20 до 35 масс.%. Способ охлаждения требует системы охлаждения из металла или сплава, стойкого к коррозии, вызываемой водой и водным солевым раствором, и также требует наличия охлаждающей емкости, содержащей водный солевой раствор с концентрацией от 20 до 35 масс.%, и замкнутого контура между указанной емкостью и системой охлаждения, по которому циркулирует солевой раствор. Чтобы поддерживать требуемую концентрацию солевого раствора, в способе предусмотрено пополнение воды для восполнения потерь и поддержания концентрации соли. Также предусмотрен вариант с использованием вспомогательной емкости или резервуара для осаждения карбоната кальция и сульфата кальция из воды, выходящей из операции охлаждения промышленного процесса, и транспортировки воды без солей в пруд-охладитель, с вариантом, в котором предусматривают извлечение солей.

В US 4254818 требуется применение воды с определенной концентрацией соли, 20-35 масс.%, что ограничивает тип используемой воды. Также, в данном патенте не раскрыто применение окисляющих веществ и флокулянтов или коагулянтов, также не раскрыто удаление взвешенных частиц, водорослей, бактерий, металлов и органического вещества. Кроме того, в патенте не обеспечивают экономичную систему фильтрации. Вместо этого, в патенте описано применение вспомогательных резервуаров с целью осаждения карбоната кальция и сульфата кальция, что приводит к более высоким затратам на ввод в эксплуатацию и техническое обслуживание.

Краткое описание изобретения

В этом кратком описании изложены основные принципы изобретения в упрощенной форме, которые также описаны ниже в подробном описании. Не предполагается, что данное краткое описание определяет необходимые или существенные признаки заявленного объекта изобретения. Данное краткое описание не ограничивает область защиты заявленного объекта изобретения. Настоящее изобретение может быть использовано в различных отраслях промышленности и системах охлаждения. Хотя в настоящей заявке ссылаются на конкретные производственные процессы, где могут быть использованы принципы настоящего изобретения, такие процессы представлены с целью демонстрации и не ограничивают область защиты изобретения.

Способы и системы по настоящему изобретению обеспечивают промышленный процесс охлаждающей водой высокого качества, обычно сравнимого с качеством воды плавательных бассейнов, при очень низких затратах. В некоторых воплощениях описаны согласованный способ охлаждения и система, включающая большой контейнер для хранения воды, используемой для подачи в промышленный процесс, в котором воду сначала обрабатывают и поддерживают при высоком качестве, а затем рециркулируют, обеспечивая надежную систему охлаждения в течение продолжительного периода времени. Кроме того, вода, нагретая в промышленном процессе, при необходимости может быть использована для других целей, таких как отопление жилых помещений, поставка горячей воды, термическое опреснение и обогрев парников, а также для различных других промышленных и бытовых целей. При термическом опреснении, подлежащую опреснению воду необходимо нагревать перед пропусканием ее через процессы дистилляции. Следовательно, нагретая вода из контейнера может быть использована для подогрева в процессе термического опреснения.

Также, в отраслях промышленности, в которых применяют воду или другие текучие среды при высоких температурах, можно использовать такую «предварительно нагретую» воду для получения водяных паров или пара или для повышения температуры другой текучей среды посредством теплообменника, тем самым повышая эффективность использования энергии и экономическую эффективность.

В случае систем охлаждения, используемых на электростанциях, настоящее изобретение позволяет обеспечить согласованный способ охлаждения, обладающий рядом преимуществ перед существующими системами, такими как низкая стоимость, экологичность и стабильность во времени. В настоящем изобретении используют меньше воды, чем в других системах, что позволяет размещать отрасли промышленности в невообразимых ранее местах. Кроме того, поскольку лагуна поглощает тепло процесса охлаждения, может быть создана большая лагуна умеренной температуры (например, запас тепловой энергии), которую можно использовать для большинства промышленных и рекреационных целей. Например, если бы все тепловые электростанции использовали в целях охлаждения настоящее изобретение, которое позволяет использовать иначе теряемую тепловую энергию, выбросы CO2 могли бы быть снижены на величину до 50% во всем мире.

В отличие от современных систем прямоточного охлаждения, настоящее изобретение позволяет обеспечить согласованный способ охлаждения и систему, включающую лагуну с очищенной водой, работающую в замкнутом контуре, экономически выгодным, надежным и экологичным способом. Способ и система позволяют избежать отрицательного влияния теплового загрязнения окружающей среды, связанного с отведением воды высокой температуры в море и ее влиянием на морские организмы. В конечном счете, настоящее изобретение помогает предотвратить высокую смертность водных организмов, которая может возникнуть из-за систем всасывания устройств известного уровня техники и прохождения через промышленные системы охлаждения. Кроме того, возможно размещение электростанций во множестве различных географических регионов. В некоторых случаях, возможна передислокация электростанций, чтобы обеспечить экономию энергии (например, поскольку станция может быть расположена вблизи с местом, где используют энергию, или близко к центрам потребления, при отсутствии больших расстояний между местом производства и местом потребления).

Более того, настоящее изобретение позволяет повысить эффективность теплообменников посредством использования воды очень высокого качества (например, сравнимой с водой в плавательном бассейне) при низких затратах. Например, морская вода в среднем имеет прозрачность 2 м по горизонтали, тогда как вода по настоящему изобретению имеет прозрачность в горизонтальном направлении до 40 м. Морская вода также содержит большое количество бактерий, тогда как вода по настоящему изобретению содержит значительно меньшее количество органического вещества, предпочтительно почти не содержит органического вещества после обработки. Таким образом, вода по настоящему изобретению минимизирует биологическое обрастание и предотвращает образование нежелательных наростов на трубах, снижающих теплоперенос. Охлаждающую воду по настоящему изобретению рециркулируют с минимальным пополнением, где пополнение воды в настоящем изобретении в основном необходимо из-за испарения из лагуны.

Наконец, настоящее изобретение позволяет использовать остаточную тепловую энергию, сбрасываемую из промышленного процесса. Например, повышенная температура воды, возвращаемой в охлаждающую лагуну, может быть использована для других целей, таких как отопление жилых помещений, поставка горячей воды, термическое опреснение или другое промышленное и бытовое применение.

По сравнению с башенными охладителями, в настоящем изобретении обеспечивают согласованный способ охлаждения, используемый в системе, которая требует пополнения приблизительно на 20% меньшим количеством воды, по сравнению с башенными охладителями, и происходит испарение приблизительно на 20% меньшего количества воды в атмосферу (на основании текущих оценок и температуры и влажности окружающей среды). Таким образом, настоящее изобретение более благоприятно для окружающей среды и природных источников. Большие лагуны, описанные в данной заявке, также дают преимущества, касающиеся снижения затрат, достижения экономии средств, предположительно до 50%, относительно сооружения и эксплуатации башенных охладителей. Кроме того, в настоящем изобретении обеспечивают лагуну, которая может быть использована для рекреационных целей и как туристическая достопримечательность. Например, могут быть созданы очень большие лагуны с умеренной температурой, при этом их можно использовать для рекреационных целей круглый год. И, как отмечено выше, остаточное тепло лагуны может быть использовано для других промышленных и бытовых целей. Лагуны для рекреационных или промышленных целей могут быть сгруппированы в различных конфигурациях, чтобы обеспечить несколько искусственных охлаждающих лагун в одно и то же время. Такие лагуны могут быть расположены последовательно, параллельно и путем стыковки одной лагуны с другой.

Также в настоящем изобретении обеспечивают способ и систему, имеющие ряд преимуществ по сравнению с прудами-охладителями. Прежде всего, обработанная вода в данном изобретении может достигать температур вплоть до 30°C или вплоть до 50°C или более, при подержании превосходного качества, сравнимого с водой в традиционных плавательных бассейнах. Таким образом, площадь открытой поверхности лагун, раскрытых в данной заявке, может быть по меньшей мере от 3 до 10 раз меньше, чем площадь открытой поверхности традиционных прудов-охладителей. Также, если воду поддерживают при высоких температурах, например 40°C, может быть достигнуто дополнительное снижение площади, что делает лагуны, раскрытые в данной заявке, даже более полезными. Благодаря снижению необходимой площади поверхности контейнера или искусственной лагуны, промышленные станции могут быть построены и эксплуатироваться в областях, которые были недоступны ранее. Кроме того, качество воды, обеспечиваемой в настоящем изобретении, намного превышает качество многих искусственных озер, вода имеет высокую прозрачность при температурах, которые могут составлять от приблизительно 20°C до приблизительно 50°C или выше.

В общем, в настоящем изобретении раскрыты способы и системы для обеспечения воды высокой чистоты и прозрачности из построенной искусственной лагуны или другого искусственного большого водного объекта (например, контейнера). Такую воду можно использовать в качестве передающей тепло текучей среды для охлаждения различных промышленных процессов. Воплощения настоящего изобретения относятся к применению большого количества воды для охлаждения промышленных процессов экономически выгодным и экологически безопасным способом. Контейнер или искусственная лагуна, поставляющие воду, могут действовать как поглотители тепла, поглощающие отработанное тепло промышленных процессов посредством переноса тепла в циркулирующую охлаждающую воду.

В одном воплощении способ обеспечения охлаждающей воды высокого микробиологического качества для промышленного процесса включает следующие стадии:

а) сбор поступающей воды из водного источника;

б) хранение поступающей воды в контейнере, где контейнер имеет дно, выполненное с возможностью его очистки с помощью подвижного средства всасывания;

в) в течение периодов продолжительностью 7 суток:

1) для температуры воды в контейнере вплоть до 35°C включительно поддержание ОВП (окислительно-восстановительного потенциала) воды в контейнере выше 500 мВ в течение минимального периода 1 ч на каждый градус Цельсия температуры воды в контейнере путем добавления дезинфицирующего вещества в воду в контейнере;

2) для температуры воды в контейнере более 35°C и менее 70°C поддержание ОВП воды в контейнере выше 500 мВ в течение минимального количества часов путем добавления дезинфицирующего вещества в воду контейнера, где минимальное количество часов рассчитывают по следующему уравнению:

(35 часов)-(температура воды в °C-35) = минимальное количество часов, или

3) для температуры воды в контейнере 70°C или более поддержание ОВП воды в контейнере выше 500 мВ в течение минимального периода 1 ч путем добавления дезинфицирующего вещества в воду в контейнере;

г) активацию с помощью средства согласования следующих операций:

1) введение окисляющего вещества в воду контейнера, чтобы предотвратить превышение концентрации железа и марганца 1,5 ppm;

2) введение коагулянта и/или флокулянта в воду контейнера, чтобы предотвратить превышение величины мутности 7 НЕМ;

3) всасывание воды из контейнера с помощью подвижного средства всасывания, чтобы предотвратить превышение толщины осевшего материала в среднем 100 мм;

4) фильтрацию воды контейнера, всасываемой с помощью подвижного средства всасывания, и

5) возврат отфильтрованной воды в контейнер;

д) подачу охлаждающей воды высокого микробиологического качества из контейнера в промышленный процесс с такой скоростью потока, что разность между температурой охлаждающей воды, поступающей в промышленный процесс, и температурой охлаждающей воды, выходящей из промышленного процесса, составляет по меньшей мере 3°C.

В одном воплощении система по настоящему изобретению для поставки охлаждающей воды в промышленный процесс включает следующее:

- контейнер для хранения охлаждающей воды, включающий дно для приема осевших частиц;

- линию подачи в контейнер поступающей воды;

- средство согласования для периодического активирования операций, необходимых для регулирования параметров охлаждающей воды в их заранее заданных пределах;

- средство введения химических веществ, активируемое средством согласования;

- подвижное средство всасывания для перемещения по дну контейнера и всасывания охлаждающей воды, содержащей осевшие частицы;

- движущее средство для обеспечения перемещения подвижного средства всасывания по дну контейнера;

- фильтрующее средство для фильтрации охлаждающей воды, содержащей осевшие частицы;

- коллекторную линию, соединяющую подвижное средство всасывания и фильтрующее средство;

- возвратную линию из фильтрующего средства в контейнер;

- линию впуска в теплообменник от контейнера к промышленному процессу и

- линию возврата воды из промышленного процесса в контейнер.

В системе дно контейнера обычно включает мембраны, геомембраны, мембраны из геоткани, пластмассовую облицовку, бетон, бетон с покрытием или их сочетания. Средство согласования выполнено с возможностью получения информации, обработки этой информации и активации других операций, таких как операции, выполняемые средством введения химических веществ, подвижным средством всасывания и фильтрующим средством. Средство введения химических веществ обычно включает инжекторы, пульверизаторы, ручное введение, дозаторы по массе, трубопроводы или их сочетания. Движущее средство приводит в действие подвижное средство всасывания и обычно включает рельсовую систему, кабельную систему, самоходную систему, движущую систему с ручным управлением, роботизированную систему, систему с дистанционным управлением, судно с двигателем, плавающее устройство с двигателем или их сочетание. Фильтрующее средство включает фильтры патронного типа, песчаные фильтры, микрофильтры, ультрафильтры, нанофильтры или их сочетание и обычно соединено с подвижным средством всасывания с помощью коллекторной линии, включающей гибкий шланг, жесткий шланг, трубу или их сочетание.

Настоящее изобретение направлено на решение различных проблем с загрязнением окружающей среды, возникающих в промышленных процессах охлаждения, включая тепловое загрязнение и отрицательное влияние на окружающую среду, вызванное таким тепловым загрязнением. Изобретатель новой технологии, раскрытой в данной заявке, Mr. Fernando Fischmann, разработал много новых предложений по технологии обработки воды, которые были быстро внедрены по всему миру. За короткий период времени технологии изобретателя, относящиеся к рекреационным чистым лагунам, включены в более чем 180 проектов по всему миру. Об изобретателе и его усовершенствованиях технологии обработки воды написано более 2000 статей, как можно видеть на сайте http://press.crustal-lagoons.com/. Изобретатель также удостоен важных международных наград за инновации и предпринимательство в связи с данными усовершенствованиями технологии обработки воды, и у него брали интервью основные средства массовой информации, включая CNN, ВВС, FUJI и Bloomberg's Businessweek.

Как представленное выше краткое описание изобретение, так и последующее подробное описание изобретения, снабженное примерами, носят только пояснительный характер. Соответственно, представленное выше краткое описание изобретение и последующее подробное описание изобретения не следует считать ограничивающими. Кроме того, могут быть обеспечены признаки или изменения, в дополнение к описанным в данной заявке. Например, определенные воплощения могут включать различные сочетания признаков, описанных в подробном описании изобретения.

Краткое описание чертежей

Прилагаемые чертежи, которые включены в данное описание и составляют его часть, иллюстрируют различные воплощения настоящего изобретения.

На Фиг.1 представлена зависимость, демонстрирующая увеличение выработки электроэнергии в мире, в ТВт, за период с 1993 по 2008 гг.

На Фиг.2 представлена блок-схема, демонстрирующая теплообменную систему по воплощению настоящего изобретения.

На Фиг.3 представлена блок-схема, демонстрирующая использование воды из содержащей воду конструкции, такой как лагуна, в качестве теплообменной текучей среды согласно настоящему изобретению.

На Фиг.4 представлен вид сверху содержащей воду конструкции, такой как лагуна, в воплощении настоящего изобретения.

На Фиг.5 представлена схема, демонстрирующая возможное рекреационное и промышленное использование содержащей воду конструкции, такой как лагуна, в качестве теплообменной текучей среды по настоящему изобретению.

Подробное описание изобретения

В последующем подробном описании изобретения сделаны ссылки на прилагаемы