Способ модификации аммиачного реактора с горячей стенкой, имеющего корпус с отверстием, занимающим только часть его сечения

Иллюстрации

Показать все

Изобретение относится к способу модификации аммиачного реактора с горячей стенкой, имеющего корпус с отверстием, занимающим только часть его сечения. Способ модификации аммиачного реактора с горячей стенкой, имеющего корпус с отверстием, занимающим только часть его сечения, при осуществлении которого: собирают каталитический картридж (7) из модульных элементов непосредственно внутри корпуса (2), при этом размеры модульных элементов подходят для их введения в корпус через имеющееся в корпусе отверстие (6), занимающее только часть его сечения, и каждый элемент имеет по меньшей мере одну панель (11); формируют посредством панелей (11) модульных элементов цилиндрическую наружную стенку (7а) картриджа (7) и кольцевое проточное пространство (8) между наружной стенкой картриджа и внутренней стенкой корпуса, при этом в панели (11) заранее, до их установки в корпус (2), введен теплоизолирующий слой (13). Изобретение позволяет восстановить корпус, поврежденный работой при высокой температуре в присутствии водорода и аммиака, и эксплуатировать реактор при более низкой и поэтому менее опасной температуре, а также повысить безопасность и надежность реактора. 2 н. и 5 з.п. ф-лы, 4 ил.

Реферат

Область техники

Изобретение относится к способу модификации аммиачного реактора с горячей стенкой, имеющего корпус с отверстием, занимающим только часть его сечения (далее - отверстие неполного сечения).

В настоящем описании термин "с горячей стенкой" относится к реактору, не имеющему системы обтекания корпуса (прохождения охлаждающего потока между слоем катализатора и корпусом), в котором в процессе работы температура корпуса практически достигает температуры слоя катализатора.

Под реактором с отверстием неполного сечения понимается реактор, в котором отсутствует отверстие, диаметр которого по существу равен диаметру корпуса.

Уровень техники

Хорошо известный реактор синтеза аммиака имеет по существу цилиндрический наружный корпус и картридж, содержащий катализатор (каталитический слой). Подводимая свежая смесь газовых реагентов, по существу состоящая из азота и водорода, циркулирует в кольцевом пространстве (кольцевой канал) между корпусом и картриджем, для охлаждения стенки корпуса. Такой способ известен как обтекание кольцевого канала, а реактор называется реактором с холодной стенкой. Например, аммиачный реактор с обтеканием кольцевого канала описан в US 4181701.

Охлаждение корпуса считается необходимым, поскольку стальной корпус подвергается воздействию высокоагрессивной среды. Также известны так называемые реакторы с горячей стенкой, в которых упомянутый обтекающий поток отсутствует. Их работа обеспечивается благодаря использованию высокопрочной стали, например, Cr-Мо стали с присадками ванадия. Этот материал обеспечивает, по крайней мере, номинально, работу корпуса при высокой температуре, например, примерно 450°С.

Стоимость реактора с горячей стенкой может быть меньше стоимости реактора с холодной стенкой равной производительности, поэтому такие реакторы вызывают определенный интерес. На практике, однако, было установлено, что сталь, используемая для реакторов с горячей стенкой, плохо поддается сварке. Прочность сварных швов получается ниже, чем у стандартной стали при прочих равных условиях. Эта проблема усугубляется условиями работы в атмосфере аммиака, в частности, из-за явлений высокотемпературной водородной коррозии и азотирования, которые вызывают хрупкость и повышают риск образования трещин. Эти металлургические проблемы в сочетании с высокой температурой и давлением делают условия работы корпуса особенно жесткими.

На практике, несмотря на использование упомянутых высокопрочных сталей, трещины в корпусах реакторов с горячими стенками появляются при относительно небольшой наработке. Замена корпуса в таких случаях является дорогостоящей и продолжительной процедурой, а просто ремонт не приводит к нужному результату, поскольку не устраняет причину неисправности.

Продолжение эксплуатации реактора представляет очевидную опасность из-за риска катастрофического отказа.

Более того, следует иметь в виду, что реактор с горячей стенкой известного типа выполняется с отверстием неполного сечения, что делает невозможным, например, провести модификацию реактора путем введения заранее смонтированного каталитического картриджа, при сохранении прежнего корпуса.

От упомянутых недостатков также страдают и установки, включающие два последовательно включенных реактора, а именно, первый реактор, с охлаждением обтеканием потока, и второй реактор, имеющий более простую конструкцию без таких средств. На практике, второй реактор может содержать простой каталитический слой, в котором фактически отсутствует наружный картридж, поэтому панели, окружающие каталитический слой, непосредственно связаны с внутренней стенкой корпуса или обращены к ней, без протекания охлаждающего потока. В такой конструкции корпус работает в условиях "горячей стенки", т.е. в процессе работы нагревается до той же температуры, что и каталитический слой, от 350 до 500°С, обычно примерно 450°С.

В известных установках, описанных выше, с последовательно включенными двумя реакторами, газообразные реагенты целиком подаются в первый реактор, а смесь реагентов и продуктов реакции из первого реактора полностью передается во второй реактор, обычно с промежуточным охлаждением. Второй реактор обычно имеет очень длинный цилиндрический корпус, например около 20 м, и два отверстия в нижней части для впуска и выпуска газа. Плиты верхнего и нижнего оснований приварены к цилиндрическому корпусу, при этом отсутствует отверстие полного диаметра. Как было сказано выше, до сих пор это обстоятельство не позволяло, на практике, установить внутренний картридж.

Краткое изложение сущности изобретения

В настоящем изобретении предлагается решение описанной задачи. В частности, настоящее изобретение направлено на создание предпочтительного способа восстановления работы аммиачного реактора с горячей стенкой с отверстием неполного сечения (занимающим только часть его сечения), поврежденного трещинами под действием высоких рабочих температур и водородной коррозии и (или) азотирования в условиях работы в высокоагрессивной среде. Изобретение также направлено на создание более безопасных условий работы аммиачного реактора или установки рассматриваемого здесь типа.

В основе изобретения лежит концепция модификации реактора, согласно которой режим его работы соответствует режиму работы реактора с холодной стенкой, т.е. с использованием обтекания, охлаждающего корпус, путем замены предшествующего каталитического слоя на каталитический слой в картридже.

Эта задача решается способом модификации аммиачного реактора с горячей стенкой, корпус которого имеет отверстие неполного сечения, при осуществлении которого выполняют следующие операции:

- собирают непосредственно внутри корпуса каталитический картридж с модульными элементами, размер которых совместим с их введением в корпус сквозь имеющееся отверстие в корпусе неполного сечения, и каждый из которых содержит по меньшей мере одну панель;

- посредством панелей каждого модульного элемента формируют по существу цилиндрическую наружную стенку картриджа и кольцевое проточное пространство (ля обтекающего потока) между наружной стенкой картриджа и внутренней стенкой корпуса;

- панели, перед их установкой в корпус, заранее обеспечивают соответствующим теплоизолирующим слоем.

Согласно изобретению, предусмотрено извлечение прежнего каталитического слоя и замена его упомянутым картриджем, который собирается из большого числа модульных элементов. Эти элементы вводятся в корпус с использованием имеющегося отверстия неполного сечения и собираются на месте, т.е. внутри самого корпуса. Предпочтительно, для сборки этих модульных элементов используются продольные угловые сварные швы в перекрывающихся областях между кромками двух соседних панелей.

Использование теплоизоляции является предпочтительным, поскольку из-за того, что картридж собирается внутри корпуса, отсутствует доступ для создания вокруг него изоляции. В изобретении эта задача решается подготовкой панелей с соответствующей изолирующей частью с обратной стороны. Предпочтительно, соединения выполняются так, чтобы свести к минимуму тепловые мосты, но сохранить возможность сборки панелей при отсутствии доступа к обратной стороне. Следует отметить большое значение сохранности теплоизоляции, поскольку ее повреждение создает проблемы как для процессов внутри реактора, так и для корпуса высокого давления. Например, повреждение изоляции может стать причиной: непроходимости участков прохода для газа с соответствующим ростом нагрузочных потерь реактора; излучение от картриджа в направлении корпуса, что особенно опасно в случае отключений в отсутствие обтекающего потока.

Предпочтительно, модульные элементы изготавливаются заранее, с перфорацией в соответствующих стенках, и коллектором для впуска газа в каталитический картридж, с получением, в результате, коллектора в виде раковины гребешка. Таким образом, заранее изготовленные модульные элементы выполняют три функции: осуществляют внешнюю изоляцию, образуют несущий картридж и коллектор для впуска газа, благодаря чему сводится к минимуму число и размер сварных швов, выполняемых на месте. Панель по существу является несущим элементом модуля картриджа.

В способе модификации реактора, предпочтительно, используется охлаждающий газ в обтекающем корпус потоке. В соответствии с предпочтительным вариантом выполнения, поток охлаждающего газа подается в кольцевое проточное пространство между картриджем и корпусом. В результате достигается снижение перепада давления, который должен выдерживать картридж в процессе работы, и уменьшение толщины панелей, что позволяет упростить выполнение продольных сварных швов между самими панелями.

Другая особенность изобретения состоит в следующем. В аммиачной установке, имеющей по меньшей мере один первый реактор с корпусом, охлаждаемым обтекаемым потоком, и последовательно с первым реактором включенный второй реактор, причем второй реактор является реактором с горячей стенкой и с неполным сечением отверстия корпуса, этот второй реактор может быть, предпочтительно, модифицирован сборкой внутри него каталитического картриджа, описанного выше. При этом второй реактор, работающий в термически более напряженных условиях из-за отсутствия охлаждения, начинает работать как реактор с холодной стенкой.

Это изменение, предпочтительно, также предусматривает использование трубопровода для ответвления ко второму реактору газового потока, взятого из потока реагентов, первоначально направляемого к первому реактору, и подачу этого газового потока в кольцевое проточное пространство во второй реактор. Такая схема, в сущности, подразумевает использование части подводимого к первому реактору газового потока в качестве газа для обтекающего потока во втором реакторе. По сравнению с первоначальной схемой установки, этот газ протекает в обход первого реактора. Это означает некоторые потери с точки зрения процесса, которые, однако, с лихвой компенсируются преимуществами, получаемыми благодаря продолжению эксплуатации очень дорогого корпуса второго реактора и (или) повышению его надежности.

Расход обтекающего газа, предпочтительно, рассчитывается на получение такой полной производительности двух реакторов, чтобы не требовалось увеличивать циркуляцию в контуре синтеза, и, желательно, чтобы не требовалось снижать выпуск продукта или увеличивать потребление. Этого можно достичь, в основном, путем определенных конструктивных запасов второго реактора.

Изобретение позволяет восстановить корпус, поврежденный работой при высокой температуре в присутствии водорода (водородная коррозия) и аммиака (азотирование), после проведенного ремонта, и эксплуатировать реактор при более низкой и, поэтому, менее опасной температуре. Также появляется преимущество снижения капитальных затрат и продолжительности восстановления работоспособности реактора, по сравнению с установкой нового реактора, благодаря чему сокращается время простоя, или период работы в условиях повышенной опасности с корпусом с трещинами или отремонтированным корпусом, но продолжающим работать при высокой температуре.

Изобретение также может быть использовано в реакторе, который еще не был поврежден (треснул), в том случае, когда для предосторожности требуется перевести его на менее жесткий режим работы, т.е. снизить риск внезапного отказа.

Следует заметить, что в уровне техники проводимые на месте модификации конструкции обычно выполняются у реакторов с холодной стенкой и с модификацией существующего картриджа. В настоящем изобретении, напротив, модификация проводится на месте в реакторе, в конструкции которого картридж отсутствует.

Описание чертежей

Ниже изобретение более подробно рассмотрено со ссылкой на прилагаемые чертежи, на которых:

на фиг.1 представлено поперечное сечение аммиачного реактора, модифицированного в соответствии с вариантом выполнения изобретения;

на фиг.2 схематически представлено сечение реактора в плоскости, показанной линией II на фиг.1;

на фиг.3 представлен фрагмент соединения между двумя панелями, образующими стенку картриджа реактора, показанного на фиг.1;

на фиг.4 представлена схема возможного использования изобретения в установке с двумя аммиачными реакторами, включенными последовательно.

Подробное описание осуществления изобретения

На фиг.1 показан аммиачный реактор 1, исходно смонтированный для работы в режиме с "горячей стенкой" и подвергнутый модификации, в соответствии с изобретением. Реактор 1 содержит контейнер, или корпус 2 и отверстия 2 и 3, для впуска и выпуска газа, соответственно. Плиты 4 и 5 оснований приварены к корпусу 2. Плита 4 верхнего основания в виде полусферы имеет отверстие или люк 6. В реакторе 1 отсутствуют отверстия с диаметром, равным диаметру реактора, поэтому он называется реактором с отверстием неполного сечения. Например, в аммиачных реакторах известного типа диаметр корпуса 2 составляет примерно 3000 мм, в то время как отверстие 6 имеет диаметр менее метра, например 800 мм.

Исходно в реакторе 1 находится каталитический слой, который по существу соприкасается с корпусом 2 и не обеспечивает возможности охлаждения этого корпуса 2. В описываемой далее модификации исходный каталитический слой удаляется.

Модификация реактора 1 выполняется путем сборки непосредственно внутри корпуса 2 каталитического картриджа 7. Картридж 7 сформирован из заранее изготовленных модульных элементов, которые вводятся через имеющееся отверстие 6. Размер картриджа 7 выбран так, чтобы оставалось кольцевое проточное пространство 8 между наружной стенкой и корпусом. Например, если диаметр корпуса составляет 3000 мм, то диаметр картриджа может быть 2950 мм, оставляя промежуток для обтекающего потока, равный 25 мм.

В процессе использования подвод обтекающего газа, предпочтительно, обеспечивается через отверстие 6. В рассматриваемом примере впускное отверстие 16 для обтекающего газа выполнено в глухом фланце 17, которым закрывается отверстие 6. Обтекающий газ входит в пространство (кольцевой канал) 8, охлаждая корпус 2. Проходя сквозь одно или более радиальных впускных отверстий 9, этот газ смешивается с основным потоком реагентов в центральной трубе 10, который входит через отверстие 2. В результате смешивания в трубе 10 газообразные реагенты приобретают оптимальную температуру, так как газ, входящий из впускного отверстия 2, имеет температуру выше оптимальной.

Далее поток пересекает каталитический слой в картридже, двигаясь вдоль оси и по радиусу, а продукты собираются на выпускном отверстии 3. Впуск газа в каталитический слой происходит отчасти через коллекторы в верхней части и отчасти через перфорированные стенки 14.

Как показано более подробно на фиг.2 и 3, картридж 7 имеет по существу цилиндрическую наружную стенку 7а, сформированную из криволинейных панелей 11 упомянутых выше модульных элементов. Панели 11 соединяются на месте (после введения в корпус) угловыми продольными сварными швами 12 в области перекрытия между двумя соседними панелями 11.

Каждая панель оснащена соответствующим теплоизолирующим слоем 13 так, что когда сборка картриджа 7 завершена, наружная стенка 7а оказывается окруженной наружным изолирующим слоем 13 без нарушения его непрерывности. На подробном изображении на фиг.3 также можно видеть пространство обтекающего потока, или кольцевой канал 8, между внутренней стенкой 2а корпуса 2 и наружной поверхностью картриджа и соответствующей изоляции 13. На чертеже также показаны газопроницаемые стенки 14, предпочтительно, имеющие отверстия или прорези, например просечки.

На фиг.2 также показан один из впускных коллекторов 15 для газа в форме раковины гребешка, обеспечивающий впуск газа в, по существу, осевом направлении, с верхней части картриджа 7.

Согласно предпочтительной особенности изобретения, предлагается использование потока охлаждающего газа для обтекания реактора 1, модифицированного описанным образом.

Известно, что при запитке реактора часть газа (на основном впускном отверстии) предварительно нагревается выше температуры реакции, а меньшая часть газа не нагрета и поэтому имеет более низкую температуру (т.н. охлаждающий газ). При смешивании этих двух частей получаются реагенты с нужной температурой реакции. Согласно особенности настоящего изобретения, этот поток охлаждающего газа используется как обтекающий газ в модифицированном реакторе.

Преимуществом использования охлаждающего газа является существенное снижение перепада давлений (Δp) на картридже, например, до величины существенно ниже 1 бар, до, например, всего 0,3 бар, вместо перепада давления, обычно превышающего 1 бар. В результате, уменьшаются механические воздействия, которым подвергаются в процессе работы панели 11 и соответствующие сварные швы 12. Для того чтобы выдерживать перепад давлений Δp, составляющий 2-3 бара, панели 11 обычно должны иметь толщину 20-25 мм. При наличии обтекающего потока охлаждающего газа, толщину панелей можно уменьшить примерно до 10 мм и упростить требования к сварным швам 12.

На фиг.4 приведен пример схемы последовательного соединения реактора 20, охлаждаемого обтекающим потоком (реактор с холодной стенкой), и не охлаждаемого реактора 21 (реактор с горячей стенкой). Согласно исходной конструкции, свежая смесь газов-реагентов 22 подводится только к первому реактору 20, а поток 24 реагентов/продуктов реакции, после охлаждения в теплообменнике 25, проходит к следующему реактору 21, включенному последовательно. В одном из вариантов выполнения изобретения, реактор 21 модифицирован сборкой внутреннего каталитического картриджа и созданием кольцевого канала между картриджем и корпусом, по существу, как показано на фиг.1. Более того, поток 23 забирается из потока 22 и вводится как обтекающий газ и газ-охладитель корпуса в реактор 21, в частности, в кольцевой канал, образованный в реакторе 21. Следует заметить, что поток 23 фактически проходит в обход реактора 20. Возникающее при этом сокращение в количестве подаваемых в реактор 20 реагентов компенсируется выгодами, связанными с восстановлением реактора 21 и повышением его надежности.

1. Способ модификации аммиачного реактора с горячей стенкой, имеющего корпус с отверстием, занимающим только часть его сечения, при осуществлении которого:собирают каталитический картридж (7) из модульных элементов непосредственно внутри корпуса (2), при этом размеры модульных элементов подходят для их введения в корпус через имеющееся в корпусе отверстие (6), занимающее только часть его сечения, и каждый элемент включает по меньшей мере одну панель (11);формируют из панелей (11) модульных элементов по существу цилиндрическую наружную стенку (7а) картриджа (7) и кольцевое проточное пространство (8) между наружной стенкой картриджа и внутренней стенкой корпуса;при этом панели (11) заранее, до их установки в корпус (2), снабжают теплоизолирующим слоем (13).

2. Способ модификации аммиачного реактора по п.1, в котором модульные элементы собирают внутри корпуса (2) посредством продольных угловых сварных швов (12) в перекрывающихся областях между кромками двух соседних панелей (11).

3. Способ модификации аммиачного реактора по п.1, в котором модульные элементы содержат соответствующие перфорированные стенки (14) и соответствующий коллектор для впуска газа в каталитический картридж (7).

4. Способ модификации аммиачного реактора по п.1, исходно запитываемого основным потоком нагретого газа, с подведением потока охлаждающего газа, имеющего более низкую температуру, при выполнении которого подводят по меньшей мере одну часть потока охлаждающего газа в кольцевое проточное пространство (8), образовавшееся после сборки картриджа (7), причем эта часть охлаждающего газа используется, в процессе работы, как обтекающий и охлаждающий корпус газ.

5. Способ модификации установки синтеза аммиака, содержащей по меньшей мере первый реактор (20) с корпусом, охлаждаемым обтеканием потоком, и последовательно включенный с ним второй реактор (21), представляющий собой реактор с горячей стенкой и имеющий корпус с отверстием, занимающим только часть его сечения, при осуществлении которого собирают в корпусе второго реактора (21) каталитический картридж (7) в соответствии с п.1.

6. Способ модификации установки синтеза аммиака по п.5, в котором используют трубопровод для ответвления ко второму реактору (21) газового потока (23), отбираемого из потока (22) реагентов, первоначально направляемого к первому реактору, при этом, в процессе работы, этот газовый поток подают в кольцевое проточное пространство (8), созданное во втором реакторе (21).

7. Способ модификации установки синтеза аммиака по п.6, в котором расход обтекающего газа (23) в процессе работы выбирают так, чтобы не увеличивать полный поток газа, циркулирующего в контуре синтеза.