Cообщение обратной связи и обработка связи с многими степенями детализации для предварительного кодирования в системах связи

Иллюстрации

Показать все

Изобретение относится к области радиосвязи. Технический результат - повышение ортогонализации каналов при MIMO-передаче при сохранении разумных издержек служебной информации, особенно при предварительном кодировании на основе кодовых книг. Способ в первом устройстве для сообщения информации обратной связи во второе устройство для воздействия на содержимое матрицы предварительного кодера, которая используется вторым устройством при предварительном кодировании информации, которая переносится по каналу со многими входами и многими выходами (MIMO) в первое устройство, причем способ содержит этапы, на которых: формируют состоящий из множества частей сигнал обратной связи, представляющий состоящую из множества частей матричную структуру предварительного кодера, которая связана с информацией состояния канала для MIMO-канала; и передают во второе устройство, по меньшей мере, две различные части состоящего из множества частей сигнала обратной связи с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте. 6 н. и 53 з.п. ф-лы, 13 ил.

Реферат

Данная заявка притязает на приоритет и преимущество по предварительной заявке на патент США 61/247,589, поданной 1 октября 2009 года, которая полностью содержится в данном документе по ссылке.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Эта технология относится к сообщению обратной связи и обработке с обратной связью для схем пространственного мультиплексирования, предоставляемых, например, в радиосвязи.

УРОВЕНЬ ТЕХНИКИ

В типичной системе сотовой радиосвязи беспроводные терминалы (также известные как мобильные станции и/или модули пользовательского оборудования (UE)) осуществляют связь через сеть радиодоступа (RAN) с одной или более базовых сетей. Сеть радиодоступа (RAN) покрывает географическую область, которая разделяется на области сот, при этом каждая область соты обслуживается посредством базовой станции, например, базовой радиостанции (RBS), которая в некоторых сетях также может называться, например, "узлом B" (NodeB) (UMTS) или "усовершенствованным узлом B" (eNodeB) (LTE). Сота является географической областью, в которой покрытие радиосвязью предоставляется посредством оборудования базовой радиостанции в узле базовой станции. Каждая сота идентифицируется посредством идентификационных данных в локальной области радиосвязи, которые передаются в широковещательном режиме в соте. Базовые станции осуществляют связь по радиоинтерфейсу, работающему на радиочастотах, с модулями пользовательского оборудования (UE) в пределах дальности базовых станций.

В некоторых версиях сети радиодоступа, несколько базовых станций типично подключаются (например, посредством наземных линий или микроволн) к контроллеру радиосети (RNC). Контроллер радиосети, также иногда называемый контроллером базовой станции (BSC), контролирует и координирует различные действия множества базовых станций, подключенных к нему. Контроллеры радиосети типично подключаются к одной или более базовых сетей.

Универсальная система мобильной связи (UMTS) является системой мобильной связи третьего поколения, которая является развитием глобальной системы мобильной связи (GSM). UTRAN по существу является сетью радиодоступа с использованием широкополосного множественного доступа с кодовым разделением каналов для модулей пользовательского оборудования (UE).

На форуме, известном как партнерский проект третьего поколения (3GPP), поставщики услуг связи предлагают и согласуют стандарты для сетей третьего поколения и UTRAN, в частности, и исследуют вопросы по повышенной скорости передачи данных и пропускной способности радиостанции. Партнерский проект третьего поколения (3GPP) взял на себя ответственности по дополнительному усовершенствованию технологий сетей радиодоступа на основе UTRAN и GSM. Технические требования для усовершенствованной сети универсального наземного радиодоступа (E-UTRAN) являются действующими в партнерском проекте третьего поколения (3GPP). Усовершенствованная сеть универсального наземного радиодоступа (E-UTRAN) содержит стандарт долгосрочного развития (LTE) и стандарт развития архитектуры системы (SAE).

Стандарт долгосрочного развития (LTE) является разновидностью технологии 3GPP-радиодоступа, в которой узлы базовых радиостанций подключаются к базовой сети (через шлюзы доступа, или AGW), а не к узлам контроллеров радиосети (RNC). В общем, в LTE функции узла контроллера радиосети (RNC) распределяются между узлами базовых радиостанций (усовершенствованным узлом B в LTE) и AGW. Также, сеть радиодоступа (RAN) LTE-системы имеет по существу "плоскую" архитектуру, содержащую узлы базовых радиостанций, без отправки сообщений в узлы контроллеров радиосети (RNC).

В последнее десятилетие беспроводная связь по каналам, имеющим множество передающих и множество приемных антенн, привлекает большой интерес. Технология со многими входами и многими выходами (MIMO) заключается в использовании множества антенн как в передатчике, так и в приемнике, чтобы повышать производительность связи. Многоантенные технологии могут значительно повышать скорости передачи данных и надежность системы беспроводной связи. Производительность, в частности, повышается, если как передатчик, так и приемник содержат множество антенн, что приводит к каналу связи со многими входами и многими выходами (MIMO), и такие системы и/или связанные технологии обычно упоминаются как MIMO.

Основным компонентом в LTE-стандарте является поддержка развертываний MIMO-антенн и связанных с MIMO технологий. Одной из функциональных возможностей в LTE версии 8 является поддержка схемы пространственного мультиплексирования с возможно зависимым от канала предварительным кодированием (см. работу Love, D.J, Heath, R.W., Jr., "Limited feedback unitary precoding for spatial multiplexing systems", IEEE Transactions on Information Theory, том 51, издание 8, стр. 2967-2976, август 2005 года, раскрытие сущности, которой содержится в данном документе по ссылке). Схема пространственного мультиплексирования предназначается для стандартов высокоскоростной передачи данных в предпочтительных состояниях канала. Примерная иллюстрация схемы пространственного мультиплексирования предоставляется на фиг. 1.

Как видно на фиг. 1, векторы s символов переноса информации умножаются на матрицу W N T × r предварительного кодера NTxr. Матрица зачастую выбирается так, что она соответствует характеристикам канальной MIMO-матрицы H NRxNT. Каждый из r символов в векторе s соответствует уровню, и r упоминается как ранг передачи. LTE использует мультиплексирование с ортогональным частотным разделением каналов (OFDM), и, следовательно, принимаемый вектор yk NRx1 для определенного элемента частотно-временных ресурсов с индексом k, при условии отсутствия межсотовых помех, моделируется посредством:

y k = H W N T × r s k + e k (1),

где ek является вектором шума, полученным в качестве реализации случайного процесса.

Предварительный кодер W N T × r может быть выбран из предварительно определенного и конечного множества исчисляемых предварительных кодеров, известных как для усовершенствованного узла B, так и для UE, так называемой кодовой книги. Это ограничивает усовершенствованный узел B в выборе предварительного кодера и обычно связано с сообщением обратной связи из UE, которое рекомендует предварительный кодер для усовершенствованного узла B. Другая альтернатива состоит в том, чтобы давать полную свободу усовершенствованному узлу B при определении предварительного кодера, так называемом предварительном кодировании не на основе кодовых книг. Посредством использования выделенных пилотных сигналов, также известных как специфичные для UE опорные сигналы (RS), UE не нуждается в сведениях о том, какой предварительный кодер использован в передаче, и, в отличие от предварительного кодирования на основе кодовых книг, отсутствует эффект квантования. Комбинации подходов на основе кодовых книг и не на основе кодовых книг также являются возможными. Например, сообщение обратной связи может быть основано на кодовых книгах, в то время как передача не основана на кодовых книгах посредством использования RS, специфичного для UE. Второй подход соответствует текущей работе по стандартизации для Rel-10 LTE.

Как уже упомянуто, UE, на основе измерений канала в прямой линии связи, может передавать рекомендации в базовую станцию относительно подходящего предварительного кодера для использования, включающие в себя рекомендуемый ранг передачи. В случае предварительного кодирования на основе кодовых книг UE может выполнять полный поиск по всем предварительным кодерам в кодовой книге, чтобы находить тот кодер, который дает наилучшую производительность, например, прогнозируемую пропускную способность, и затем возвращать индекс, указывающий на наилучший предварительный кодер, в усовершенствованный узел B. Один предварительный кодер, который, как предполагается, покрывает большую полосу пропускания (широкополосное предварительное кодирование), может быть сообщен по обратной связи. Также может быть преимущественным сопоставлять изменения частоты канала и вместо этого возвращать сообщение по частотно-избирательному предварительному кодированию, например, по нескольким предварительным кодерам, по одному на каждую подполосу.

Зависимое от канала предварительное кодирование, как описано выше, типично требует значительной поддержки передачи служебных сигналов, в частности, для частотно-избирательного предварительного кодирования. Требуются не только служебные сигналы обратной связи в обратной линии связи (т.е. от UE к усовершенствованному узлу B в LTE), как упомянуто выше, но типично также и служебные сигналы в прямой линии связи (т.е. от усовершенствованного узла B к UE в LTE) необходимы, чтобы указывать, какой предварительный кодер фактически использован в передаче по прямой линии связи, поскольку передатчик прямой линии связи (т.е. усовершенствованный узел B) может не быть уверен в получении корректного сообщения по предварительному кодеру из приемника (прямой линии связи) (т.е. UE).

Кодированные биты, исходящие из идентичного блока информационных битов, упоминаются как "кодовое слово". Это также является терминологией, используемой в LTE для того, чтобы описывать вывод из одного HARQ-процесса, обслуживающего конкретный транспортный блок, и содержит турбокодирование, согласование скорости, перемежение и т.д. Кодовое слово затем модулируется и распределяется по антеннам. Такое преобразованное кодовое слово зачастую также упоминается как "кодовое слово", когда отсутствует риск путаницы.

Может быть целесообразным передавать данные из нескольких кодовых слов сразу, что также известно как передача с множеством кодовых слов. Первое (модулированное) кодовое слово может, например, отображаться на первые две антенны, а второе кодовое слово - на две оставшиеся антенны в системе с четырьмя передающими антеннами. В вышеуказанном контексте предварительного кодирования кодовые слова отображаются на уровни вместо прямого отображения на физические антенны.

В области высокоскоростной многоантенной передачи, одной из самых важных характеристик состояний канала является так называемый ранг канала. Грубо говоря, ранг канала может варьироваться от одного до минимального числа передающих и приемных антенн. При рассмотрении в качестве примера системы 4x2, т.е. системы с четырьмя антеннами на стороне передатчика и двумя антеннами на стороне приемника, максимальный ранг канала равняется двум. Ранг канала варьируется во времени по мере того, как быстрое затухание изменяет канальные коэффициенты. Кроме того, он определяет то, сколько уровней и, в конечном счете, также, сколько кодовых слов может быть успешно передано одновременно. Следовательно, если ранг канала равен одному в момент передачи двух кодовых слов, отображаемых на два отдельных уровня, существует большая вероятность того, что два сигнала, соответствующие кодовым словам, создают такие сильные помехи, что оба из кодовых слов ошибочно детектируются в приемнике.

В сочетании с предварительным кодированием, адаптирование передачи к рангу канала заключает в себе использование числа уровней, равного рангу канала. В простейших из случаев каждый уровень должен соответствовать конкретной антенне. Но число кодовых слов может отличаться от числа уровней, аналогично LTE. В таком случае возникает проблема того, как отображать кодовые слова на уровни. При рассмотрении текущего рабочего допущения для случая 4 передающих антенн в LTE в качестве примера, максимальное число кодовых слов ограничивается двумя, в то время как вплоть до четырех уровней могут быть переданы. Используется фиксированное зависимое от ранга отображение согласно фиг. 2.

Схема и относительное размещение антенн имеют сильное влияние на производительность системы. Разумеется, имеется множество различных возможностей. Естественное ограничение состоит в том, чтобы сохранять полный размер матрицы как можно меньшим при поддержании хорошей производительности. Совпадающие по поляризации, близко расположенные антенны зачастую приводят к коррелированному затуханию, что упрощает достижение усиления решетки через формирование диаграммы направленности, но с другой стороны, уменьшает вероятность преимущественного использования передач с высоким рангом, которые зачастую предпочитают некоррелированное затухание.

Другой способ получать некоррелированное затухание и фактически также ограничивать помехи между уровнями при сохранении размера антенной решетки небольшим состоит в том, чтобы передавать по ортогональным поляризациям посредством использования совместно размещенной и кросс-поляризованной пары антенн. Фиг. 3 иллюстрирует, посредством вертикальных строк, восемь антенн, при этом две кросс-поляризованные антенны из пары обычно иллюстрируются посредством "X", чтобы учитывать ориентации поляризаций в ±45 градусов. Комбинация ортогональных и близко расположенных антенн является перспективным расположением решетки для случаев режима передачи 4 и 8. Как также проиллюстрировано на фиг. 3, посредством использования пар кросс-поляризованных антенн близко друг к другу (порядка 0,5-1 длины волны), размер матрицы сохраняется небольшим, в то время как, по меньшей мере, вплоть до передач для ранга 2 хорошо собирается посредством передачи по ортогональным поляризациям, тогда как достижение усиления решетки упрощается посредством небольшого расстояния между кросс-полюсами.

В конкретном примере по фиг. 3 два общих опорных сигнала (CRS), например, CRS#1 и CRS#2, могут использоваться для ортогональных поляризаций, так что оценка канала упрощается в приемнике прямой линии связи. Но опорные сигналы могут, при доступности, конечно, также отображаться другими способами на антенной решетке. Например, если восемь опорных сигналов доступны, они могут подключаться к отдельной антенне. В Rel-10 LTE это может быть общим сценарием, поскольку в таком случае предусмотрена поддержка до восьми специфичных для соты антенных портов и их соответствующих опорных сигналов.

В случае традиционной обратной связи предварительного кодера размер кодовой книги непосредственно определяет объем издержек служебной информации. Следовательно, желательно стремиться к максимально возможно небольшой кодовой книге. С другой стороны, небольшая кодовая книга обычно подразумевает более низкую производительность. Эта проблема становится более явной по мере того, как число передающих антенн увеличивается вследствие необходимости в большей кодовой книге для того, чтобы покрывать увеличение количества степеней свободы, которые могут использоваться для передачи. Издержки служебной информации являются, в частности, большими, когда частотно-избирательное предварительное кодирование используется, и тем самым несколько предварительных кодеров, покрывающих полосу пропускания, сообщаются по обратной связи. Такой тип предварительного кодирования типично требуется, чтобы отслеживать затухание по частоте, чтобы обеспечивать то, что передаваемые сигналы конструктивно суммируются на стороне приемника и также ортогонализируют канал для хорошего разделения уровней.

Следствием большой кодовой книги и/или частотно-избирательного предварительного кодирования также является высокая вычислительная сложность для выбора предварительного кодера, который выполняется на стороне UE для обратной связи предварительного кодера, который должен использоваться для передач по нисходящей линии связи или на стороне усовершенствованного узла B в случае предварительно кодированных передач из UE в восходящей линии связи или в случае предварительного кодирования не на основе кодовых книг. Возникает сопутствующий существенный и растущий объем сложных математических расчетов по мере того, как матрицы предварительного кодера растут.

Процедура определения кодовой книги или предварительного кодера также может плохо выполняться для конкретного расположения антенной решетки. Согласование свойств предварительного кодера с конкретным расположением антенн, следовательно, важно, поскольку оно позволяет поддерживать высокую производительность, при этом одновременно уменьшать издержки служебной информации. Чтобы повышать преимущества многоранговой передачи и уменьшать обязательные требования к усовершенствованным приемникам, ортогонализация канала играет важную роль. Тем не менее, при обычном предварительном кодировании на основе кодовых книг, аналогично настоящему LTE версии 8, эффект ортогонализации пренебрежимо мал вследствие очень небольшого числа предварительных кодеров в ранге 2 для передачи в режиме 2 Tx и в ранге 2, 3 и 4 для передачи в режиме 4 Tx. В то же время, оно считается подходящим для того, чтобы поддерживать разумные издержки служебной информации.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Технология, раскрытая в данном документе, уменьшает проблемы, к примеру, описанные выше, посредством введения структуры в матрицы предварительного кодера, причем различные части структуры могут быть обновлены с различными степенями детализации во времени и/или по частоте на основе обратной связи, соответствующей различным упомянутым частям. В случае предварительного кодирования на основе кодовых книг служебные сигналы с обратной связью могут непосредственно соответствовать различным частям предварительного кодера. Аналогично, такая передача служебных сигналов с многими степенями детализации также может применяться к потенциальной передаче служебных сигналов по прямой линии связи в первое устройство, например, в беспроводной терминал или беспроводной терминал (UE).

В одном из аспектов, технология, раскрытая в данном документе, относится к способу работы первого устройства, которое сообщает информацию обратной связи во второе устройство. Первое устройство является устройством такого типа, которое принимает информацию, которая предварительно кодирована во втором устройстве до передачи из второго устройства по каналу со многими входами и многими выходами (MIMO) в первое устройство. В примерных вариантах осуществления и режимах, способ содержит формирование состоящего из множества частей сигнала обратной связи, представляющего состоящую из множества частей матричную структуру, которая связана с информацией состояния канала для канала; и передачу во второе устройство, по меньшей мере, двух различных частей состоящего из множества частей сигнала обратной связи с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте.

В другом из аспектов, технология, раскрытая в данном документе, относится к способу работы сети связи, которая содержит первое устройство и второе устройство. В примерных вариантах осуществления и режимах, способ содержит передачу информации, которая предварительно кодирована во втором устройстве, по каналу с многими выходами (MIMO) в первое устройство; в первом устройстве, формирование состоящего из множества частей сигнала обратной связи, представляющего состоящую из множества частей матричную структуру, которая связана с информацией состояния канала для канала; передачу посредством первого устройства во второе устройство, по меньшей мере, двух различных частей состоящего из множества частей сигнала обратной связи с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте; и использование состоящего из множества частей сигнала обратной связи во втором устройстве, чтобы влиять на предварительное кодирование информации, передаваемой по каналу в первое устройство.

В другом из аспектов, технология, раскрытая в данном документе, относится к способу работы узла связи. В примерных вариантах осуществления и режимах, способ содержит использование предварительного кодера для того, чтобы преобразовывать информацию, которая передается по каналу со многими входами и многими выходами (MIMO) в устройство-получатель; прием состоящего из множества частей сигнала обратной связи из устройства-получателя, причем сигнал обратной связи представляет состоящую из множества частей матричную структуру, связанную с информацией состояния канала для канала, при этом, по меньшей мере, две различные части состоящего из множества частей сигнала обратной связи принимаются с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте; использование состоящего из множества частей сигнала обратной связи во втором устройстве, чтобы влиять на предварительное кодирование дополнительной информации, передаваемой по каналу в устройство-получатель. В примерной реализации, способ дополнительно содержит отправку команды формата обратной связи в устройство-получатель, причем команда формата сконфигурирована, чтобы указывать соответствующие различные степени детализации передачи.

Согласно примерным вариантам осуществления либо режимам или реализациям одного или более способов, раскрытых в данном документе, различные части состоящего из множества частей сигнала обратной связи соответствуют различным матрицам. Состоящая из множества частей матричная структура включает в себя, по меньшей мере, составляющие матрицы.

Согласно примерным вариантам осуществления либо режимам или реализациям одного или более способов, раскрытых в данном документе, состоящая из множества частей матричная структура содержит матричную структуру предварительного кодера для предварительного кодера, который извлекается из информации состояния канала. В качестве неограничивающей примерной реализации, по меньшей мере, одна часть состоящей из множества частей матричной структуры является частью или представляет, по меньшей мере, часть кодовой книги. В некоторых таких реализациях, матрица предварительного кодера может быть получена в качестве кронекерова произведения двух матриц, содержащих состоящую из множества частей матричную структуру, например, кронекерова произведения поляризационной матрицы и вектора формирования диаграммы направленности. Например, матрица, используемая посредством второго устройства для ранга r передачи и NT передающих антенн, может представляться как кронекерово произведение W ( r ) = W pol ( r ) ⊗ w BF , при этом матрица W pol ( r ) поляризационного предварительного кодера 2 × r регулирует относительные фазы между двумя ортогональными поляризациями, тогда как вектор w BF формирования диаграммы направленности N T 2 × 1 регулирует относительные фазы в каждой из двух групп близко расположенных совпадающих по поляризации антенн.

Согласно примерным вариантам осуществления либо режимам или реализациям одного или более способов, раскрытых в данном документе, состоящая из множества частей матричная структура содержит канальную корреляционную матрицу. В некоторых примерных реализациях, канальная корреляционная матрица содержит блочно-диагональную матрицу, и первая составляющая матрица канальной корреляционной матрицы представляет, по меньшей мере, один блок, а вторая составляющая матрица канальной корреляционной матрицы представляет относительные фазы и амплитуду блоков.

В одном из аспектов, технология, раскрытая в данном документе, относится к устройству, которое сообщает информацию обратной связи во второе устройство с использованием состоящего из множества частей сигнала обратной связи, представляющего состоящую из множества частей матричную структуру, которая связана с информацией состояния канала для канала со многими входами и многими выходами (MIMO), при этом, по меньшей мере, две различные части состоящего из множества частей сигнала обратной связи передаются во второе устройство с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте. В примерном варианте осуществления и реализации, первое устройство содержит приемник, сконфигурированный, чтобы принимать информацию, которая предварительно кодирована во втором устройстве до передачи из второго устройства по каналу в первое устройство; формирователь, сконфигурированный, чтобы формировать состоящий из множества частей сигнал обратной связи; и передатчик, который передает во второе устройство, по меньшей мере, две различные части состоящего из множества частей сигнала обратной связи с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте.

В другом из аспектов, технология, раскрытая в данном документе, относится к сети связи, которая содержит первое устройство и второе устройство. Первое устройство сконфигурировано, чтобы сообщать информацию обратной связи во второе устройство с использованием состоящего из множества частей сигнала обратной связи, представляющего состоящую из множества частей матричную структуру, которая связана с информацией состояния канала для канала со многими входами и многими выходами (MIMO), при этом, по меньшей мере, две различные части состоящего из множества частей сигнала обратной связи передаются во второе устройство с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте. Второе устройство сконфигурировано, чтобы использовать состоящий из множества частей сигнал обратной связи, чтобы влиять на предварительное кодирование дополнительной информации, передаваемой по каналу в первое устройство. В примерном варианте осуществления и реализации, второе устройство содержит предварительный кодер, сконфигурированный, чтобы преобразовывать информацию, которая должна быть передана во второе устройство; и передатчик второго устройства, который передает предварительно кодированную информацию по каналу в первое устройство. Первое устройство содержит приемник, сконфигурированный, чтобы принимать предварительно кодированную информацию по каналу из первого устройства; формирователь, сконфигурированный, чтобы формировать состоящий из множества частей сигнал обратной связи; и передатчик первого устройства, который передает во второе устройство, по меньшей мере, две различные части состоящего из множества частей сигнала обратной связи с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте. Второе устройство дополнительно содержит контроллер предварительного кодера, сконфигурированный, чтобы использовать состоящий из множества частей сигнал обратной связи, чтобы влиять на предварительное кодирование дополнительной информации, передаваемой по каналу в первое устройство.

В другом из аспектов, технология, раскрытая в данном документе, относится к узлу связи, который принимает состоящий из множества частей сигнал обратной связи из устройства-получателя. Сигнал обратной связи представляет состоящую из множества частей матричную структуру, связанную с информацией состояния канала для канала со многими входами и многими выходами (MIMO), по которому узел передает предварительно кодированную информацию в устройство-получатель. По меньшей мере, две различные части состоящего из множества частей сигнала обратной связи принимаются с двумя соответствующими различными степенями детализации передачи во времени и/или по частоте. Узел использует состоящий из множества частей сигнал обратной связи, чтобы влиять на предварительное кодирование дополнительной информации, передаваемой по каналу в устройство-получатель. В примерном варианте осуществления и реализации, узел содержит предварительный кодер, сконфигурированный, чтобы преобразовывать информацию, которая передается по каналу в устройство-получатель; приемник, который принимает состоящий из множества частей сигнал обратной связи; и контроллер предварительного кодера, сконфигурированный, чтобы использовать состоящий из множества частей сигнал обратной связи во втором устройстве, чтобы влиять на предварительное кодирование дополнительной информации, передаваемой по каналу в устройство-получатель. В примерном варианте осуществления, контроллер предварительного кодера дополнительно сконфигурирован, чтобы формировать команду формата обратной связи в устройство-получатель, причем команда формата сконфигурирована, чтобы указывать соответствующие различные степени детализации передачи.

В одном или более вариантах осуществления, описанных в данном документе, состоящая из множества частей матричная структура содержит матричную структуру предварительного кодера для предварительного кодера, который извлекается из информации состояния канала. В одном или более вариантов осуществления, описанных в данном документе, по меньшей мере, одна часть состоящей из множества частей матричной структуры является частью или представляет, по меньшей мере, часть кодовой книги. В некоторых таких реализациях, матрица предварительного кодера может быть получена в качестве кронекерова произведения двух матриц, содержащих состоящую из множества частей матричную структуру, например, кронекерова произведения поляризационной матрицы и вектора формирования диаграммы направленности. Например, матрица, используемая посредством второго устройства для ранга r передачи и NT передающих антенн, может представляться как кронекерово произведение W ( r ) = W pol ( r ) ⊗ w BF , при этом матрица W pol ( r ) поляризационного предварительного кодера 2 × r регулирует относительные фазы между двумя ортогональными поляризациями, тогда как вектор w BF формирования диаграммы направленности N T 2 × 1 регулирует относительные фазы в каждой из двух групп близко расположенных совпадающих по поляризации антенн.

В одном или более вариантов осуществления, описанных в данном документе, состоящая из множества частей матричная структура содержит канальную корреляционную матрицу. В некоторых примерных реализациях, канальная корреляционная матрица содержит блочно-диагональную матрицу, и первая составляющая матрица канальной корреляционной матрицы представляет, по меньшей мере, один блок, а вторая составляющая матрица канальной корреляционной матрицы представляет относительные фазы и амплитуду блоков.

В определенных вариантах осуществления и режимах, первое устройство является беспроводным терминалом, а второе устройство является узлом базовой станции. В другом примерном варианте осуществления и режиме, первое устройство и второе устройство являются беспроводными терминалами, которые поддерживают связь (например, произвольно организующуюся ближнюю связь) друг с другом.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Вышеприведенные и другие цели, признаки и преимущества изобретения должны быть очевидными из нижеследующего более подробного описания предпочтительных вариантов осуществления, как проиллюстрировано на прилагаемых чертежах, на которых ссылки с номером означают идентичные части на различных представлениях. Чертежи необязательно начерчены в масштабе, вместо этого акцент делается на понятности иллюстрирования принципов изобретения.

Фиг. 1 является схематичным видом структуры передачи схемы предварительно кодированного пространственного мультиплексирования в стандарте долгосрочного развития (LTE).

Фиг. 2 является схематическим видом, показывающим отображение кодовых слов на уровни для четырехантенной системы с предварительным кодированием.

Фиг. 3 является схематическим видом, иллюстрирующим расположение кросс-поляризованных антенн для примера восьми передающих антенн.

Фиг. 4A является схематичным видом системы связи, показывающим передачу состоящего из множества частей сигнала обратной связи из первого устройства во второе устройство.

Фиг. 4B является схематичным видом системы связи, показывающим подробнее выбранные компоненты первого устройства и второго устройства, при этом первое устройство передает состоящий из множества частей сигнал обратной связи во второе устройство.

Фиг. 5 является схематическим видом, показывающим примерный формат состоящего из множества частей сигнала обратной связи согласно примерному варианту осуществления.

Фиг. 6 является схематичным видом системы связи, показывающим передачу состоящего из множества частей сигнала обратной связи из первого устройства во второе устройство, а также передачу конфигурационного сообщения из второго устройства в первое устройство.

Фиг. 7A является схематическим видом, иллюстрирующим примерный сценарий различной степени детализации передачи во времени различных частей состоящего из множества частей сигнала обратной связи.

Фиг. 7B является схематическим видом, иллюстрирующим примерный сценарий различной степени детализации передачи различных частей состоящего из множества частей сигнала обратной связи относительно подполос частот.

Фиг. 8 является схематическим видом, иллюстрирующим использование общего состоящего из множества частей сигнала обратной связи для воздействия на содержимое двух различных частей матрицы предварительного кодера.

Фиг. 9 является схематическим видом, показывающим индексы, которые предоставляют значения для различных частей предварительного кодера.

Фиг. 10 является схематическим видом, иллюстрирующим использование состоящего из множества частей сигнала обратной связи для воздействия на содержимое части матрицы поляризационного предварительного кодера и части вектора модуля формирования диаграммы направленности матрицы предварительного кодера на основе кодовых книг.

Фиг. 11 является схематическим видом, иллюстрирующим использование состоящего из множества частей сигнала обратной связи для оценки канала для воздействия на содержимое части матрицы поляризационного предварительного кодера и части вектора модуля формирования диаграммы направленности матрицы предварительного кодера не на основе кодовых