Способ получения пористых материалов на основе полимочевин
Иллюстрации
Показать всеИзобретение относится к способу получения пористого материала и его применению. Способ получения пористого материала заключается в том, что проводят взаимодействие, (а1) по меньшей мере, одного многофункционального изоцианата, (а2) по меньшей мере, одного многофункционального замещенного ароматического амина, и (а3) воды в присутствии растворителя. Многофункциональный замещенный ароматический амин соответствует общей формуле I:
где R1 и R2 могут быть одинаковыми или разными и независимо друг от друга их выбирают из атома водорода и линейных или разветвленных алкильных групп с числом атомов углерода от одного до шести. Все заместители от Q1 до Q5 и от Q1′ до Q5′ являются одинаковыми или разными, и независимо друг от друга их выбирают из водорода, первичной аминогруппы и линейной или разветвленной алкильной группы с числом атомов углерода от одного до двенадцати. При этом алкильная группа может нести другие функциональные группы при условии, что соответствующее общей формуле I соединение содержит, по меньшей мере, две первичные аминогруппы. По меньшей мере, один из заместителей Q1, Q3 и Q5 является первичной аминогруппой, и по меньшей мере, один из заместителей Q1′, Q3′ и Q5′ является первичной аминогруппой. Заместители Q2, Q4, Q2′ и Q4′ выбирают так, что соответствующее общей формуле I соединение в α-положении к, по меньшей мере, одной связанной с ароматическим ядром первичной аминогруппе содержит, по меньшей мере, одну линейную или разветвленную алкильную группу с числом атомов углерода от одного до двенадцати, которая может нести дополнительные функциональные группы. Реакцию взаимодействия компонентов (а1), (а2), (а3) можно осуществить, при необходимости, в присутствии, по меньшей мере, одного катализатора и, по меньшей мере, одного многофункционального ароматического амина, отличающегося от амина общей формулы I. Пористый материал применяют в качестве изолирующего материала и в вакуумных изолирующих панелях. Изобретение позволяет получить материал с высокой пористостью и низкой плотностью, повысить его механическую прочность и теплопроводность в вакууме. 2 н. и 13 з.п. ф-лы, 9 пр.
Реферат
Изобретение относится к способу получения пористых материалов, который включает взаимодействие не менее чем одного многофункционального изоцианата с аминной компонентой, представляющей собой не менее чем один многофункациональный замещенный ароматический амин, и с водой в присутствии растворителя.
Кроме того, изобретение относится к получаемым этим способом пористым материалам, а также к применению этих пористых материалов в качестве изоляционного материала и в вакуумных изоляционных панелях.
По теоретическим соображениям пористые материалы, например, полимерные пены с размерами пор в области нескольких микрометров или значительно меньше и с высокой пористостью не менее 70%, представляют собой исключительно хорошие материалы для теплоизоляции.
Такие пористые материалы с небольшим средним диаметром пор могут быть представлены, например, органическими ксерогелями. В специальной литературе понятие ксерогеля не всегда имеет одинаковый смысл. В общем случае понятие ксерогеля относится к пористому материалу, который образуется в золь-гель процессе, путем удаления жидкой фазы из геля с помощью сушки при температуре ниже критической и давлении ниже критического для жидкой фазы (при докритических параметрах). В отличие от этого аэрогелями называют материалы, получаемые путем удаления из геля жидкой фазы при сверхкритических для жидкой фазы условиях.
При реализации золь-гель процесса сначала получают золь на основе реакционноспособного исходного органического соединения и после этого переводят его в гель в реакции, протекающей с образованием сетчатой структуры. Для получения из геля пористого материала, например ксерогеля, нужно удалить жидкость. Эта стадия для простоты далее будет называться сушкой.
В WO 95/02009 представлены основанные на изоцианатах ксерогели, которые, в частности, находят применение в области вакуумной изоляции. В этой публикации представлен также основанный на золь-гель процессе способ получения ксерогелей, в соответствии с которым используют известные, в том числе и ароматические полиизоцианаты, а также нереакционноспособный растворитель. В качестве других соединений с активными атомами водорода используют алифатические или ароматические полиамины или полиолы. Представленные в этой публикации примеры включают процессы, в которых протекает взаимодействие полиизоцианата и диаминодиэтилтолуола. Получаемые при этом ксерогели в общем случае имеют средний размер пор около 50 мкм. В одном из примеров представлен средний размер пор, равный 10 мкм.
В соответствии с WO 2008/138978 получают ксерогели, содержащие от 30 до 90 масс.% не менее чем одного многофункционального изоцианата и от 10 до 70 масс.% не менее чем одного многофункционального ароматического амина, при этом ксерогели имеют приведенные к объему средние диаметры пор не более 5 микрометров.
В неопубликованной заявке на Европейский патент №А 09178783.8 представлены пористые материалы на основе многофункциональных изоцианатов и многофункциональных ароматических аминов, при этом аминная компонента содержит многофункциональные замешенные ароматические амины. Получение названных пористых материалов основано на взаимодействии изоцианатов с соответствующим количеством амина в растворителе, который инертен по отношению к изоцианатам. При этом образование мочевинных соединяющих структурных элементов протекает исключительно по реакции изоцианатных групп с используемыми аминными группами.
Однако свойства материалов, в частности механическая прочность и/или прочность на сжатие и теплопроводность известных пористых материалов на основе полимочевин, оказываются недостаточно хорошими для разных областей применения. Кроме того, положенные в их основу составы при сушке подвергаются усадке с уменьшением пористости и с повышением плотности. Кроме того, требуемое для процесса гелеобразования время, то есть время, требуемое для образования геля из исходных соединений, часто оказывается слишком продолжительным.
Особой проблемой, которая возникает в случае известных из уровня техники составов на основе изоцианатов и аминов, являются так называемые дефекты смешивания. Дефекты смешивания проявляются как следствие высокой скорости реакции между изоцианатными и аминными группами, поскольку еще до полного промешивания реакция с образованием геля протекает уже достаточно далеко. Дефекты смешивания приводят к пористым материалам, свойства которых недостаточно хороши из-за гетерогенности. В соответствии с этим в общем случае существует необходимость в минимизации феномена, связанного с дефектами смешивания.
В соответствии с этим существовала задача по преодолению названных выше недостатков или по сведению их к минимуму. В частности, задача состояла в разработке пористого материала, у которого названные недостатки отсутствуют или проявляются лишь в незначительной мере. Пористые материалы должны иметь улучшенные показатели по теплопроводности в вакууме в сравнении с уровнем техники. Кроме того, пористые гели при давлениях выше области вакуумных значений, в частности в области давлений от примерно 1 мбара до примерно 100 мбар, должны также иметь невысокую термическую проводимость. Это желательно, поскольку в вакуумных панелях в течение времени происходит повышение давления. Кроме того, пористый материал должен одновременно иметь высокую пористость, низкую плотность и достаточно высокую механическую прочность.
И, наконец, в пористых материалах, которые образуются при взаимодействии изоцианатов с аминами, в структуре материала и в свойствах материала должны отсутствовать дефекты смешивания и связанная с этим гетерогенность.
В соответствии с этим был разработан соответствующий изобретению способ и получены соответствующие пористые материалы.
Соответствующий изобретению способ получения пористого материала включает взаимодействие представленных далее компонент (a1), (a2) и (a3), при этом
(a1) представляет собой не менее чем один многофункциональный изоцианат,
(a2) представляет собой не менее чем один многофункциональный замещенный ароматический амин (a2-s), соответствующий общей формуле I
,
где
R1 и R2 могут быть одинаковыми или разными, при этом независимо друг от друга их выбирают из атома водорода и линейных или разветвленных алкильных групп с числом атомов углерода от одного до шести, а все заместители от Q1 до Q5 и от Q1' до Q5', одинаковые или разные, независимо друг от друга выбирают из атома водорода, первичной аминогруппы и линейной или разветвленной алкильной группы с числом атомов углерода от одного до двенадцати, при этом алкильная группа может иметь другие функциональные группы, при условии что
в соответствующем общей формуле I соединении есть не менее чем две первичные аминогруппы и не менее чем один из заместителей Q1, Q3 и Q5 представлен первичной аминогруппой и не менее чем один из заместителей Q1', Q3' и Q5' также представлен первичной аминогруппой, и
Q2, Q4, Q2' и Q4' выбирают так, чтобы в соответствующем общей формуле I соединении имелась по крайней мере одна линейная или разветвленная алкильная группа с числом атомов углерода от одного до двенадцати, при этом такая алкильная группа может нести другие функциональные группы, и чтобы эта группа находилась в α-положении к не менее чем одной связанной с ароматическим ядром первичной аминогруппой,
и
в соответствующем случае в ее составе есть не менее чем один дополнительный многофункциональный ароматический амин (a2-u), отличающийся от соответствующих общей формуле I аминов (a2-s),
(a3) представляет собой воду,
при этом взаимодействие протекает в присутствии растворителя (В) и в случае необходимости в присутствии катализатора (a4) с образованием соответствующих изобретению пористых материалов.
Предпочтительные варианты реализации представлены в формуле изобретения и в описании. Комбинирование предпочтительных вариантов реализации не выходит за рамки данного изобретения. Далее следует описание предпочтительных вариантов и используемых компонент.
Многофункциональные изоцианаты (a1) далее все вместе будут обозначаться как компонента (a1). В соответствии с этим многофункциональные амины (a2) далее все вместе будут обозначаться как компонента (a2). Специалисту понятно, что названные мономерные компоненты находятся в пористом материале в виде продуктов их превращений.
Если говорится о функциональности соединения, то в рамках настоящего изобретения это понятие относится к числу реагирующих групп в молекуле. В случае мономерной компоненты (a1) функциональности соответствует число изоцианатных групп в молекуле. Если речь идет об аминогруппах мономерной компоненты (a2), то понятие функциональности относится к числу реагирующих аминных групп в молекуле. При этом многофункциональное соединение имеет функциональность не менее 2.
В случае когда использующиеся компоненты (a1) или соответственно (a2) представляют собой смеси соединений с различной функциональностью, функциональность таких компонент в каждом отдельном случае рассчитывается как приведенная к массе функциональность отдельных соединений. Молекула многофункционального соединения включает не менее двух названных выше функциональных групп.
Компонента (a1)
В соответствующем изобретению способе в качестве компоненты (a1) в реакцию вступает не менее чем один многофункциональный изоцианат.
В рамках соответствующего изобретению способа используемое количество компоненты (a1) в предпочтительном случае составляет от 40 до 99,8 масс.%, в частности от 55 до 99,3 масс.%, в особо предпочтительном случае от 68 до 97,5 масс.% в каждом отдельном случае из расчета на общую массу компонент (a1), (a2) и (a3), которая составляет 100 масс.%.
В качестве многофункциональных изоцианатов могут найти применение ароматические, алифатические, циклоалифатические и/или аралифатические изоцианаты. Такие многофункциональные изоцианаты известны, или же они могут быть получены известными способами. Многофункциональные изоцианаты могут быть, в частности, использованы и в виде смесей, и тогда компонента (a1) содержит различные многофункциональные изоцианаты. Рассматриваемые в качестве мономерных структурных единиц (a1) многофункциональные изоцианаты содержат две изоцианатные группы (они далее будут называться диизоцианатами), или они содержат более двух изоцианатных групп в молекуле этой мономерной компоненты.
В частности, могут найти применение 2,2'-, 2,4'- и/или 4,4'-дифенилметандиизоцианат, 1,5-нафтилендиизоцианат, 2,4- и/или 2,6-толуилендиизоцианат, 3,3'-диметилдифенил-диизоцианат, 1,2-дифенилэтандиизоцианат и/или и-фенилендиизоцианат, три-, тетра-, пента-, гекса-, гепта- и/или октаметилендиизоцианаты, 2-метилпентаметилен-1,5-диизоцианат, 2-этилбутилен-1,4-диизоцианат, пентаметилен-1,5-диизоцианат, бутилен-1,4-диизоцианат 1-изоцианато-3,3,5-триметил-5-изоцианатометилциклогексан(изофорондиизоцианат), 1,4- и/или 1,3-бис-(изоцианатометил)циклогексан, 1,4-циклогександиизоцианат, 1-метил-2,4- и/или -2,6-циклогександиизоцианат и 4,4'-, 2,4'- и/или 2,2'-дициклогексилметандиизоцианат.
В качестве многофункциональных изоцианатов (a1) предпочтительны ароматические изоцианаты. Особенно предпочтительны в качестве многофункциональных изоцианатов в составе компоненты (a1) представленные далее варианты:
i) многофункциональные изоцианаты на основе толуилендиизоцианата, в частности 2,4- или 2,6-толуилендиизоцианат или же смеси 2,4 и 2,6-толуилендиизоцианата;
ii) многофункциональные изоцианаты на основе дифенилметандиизоцианата, в частности 2,2'-дифенилметандиизоцианат или 2,4'-дифенилметандиизоцианат или же 4,4'-дифенилметандиизоцианат, а также олигомерный дифенилметандиизоцианат, называемый также полифенилполиметиленизоцианатом, или же смеси двух или трех названных выше дифенилметандиизоцианатов или также сырой дифенилметандиизоцианат, который образуется при получении дифенилметандиизоцианата, или же смеси, состоящие из не менее чем одного олигомера дифенилметандиизоцианата и не менее чем одного из названных выше низкомолекулярных производных дифенилметандиизоцианата;
iii) смеси, состоящие из не менее чем одного ароматического изоцианата в соответствии с первым вариантом i) и не менее чем одного ароматического изоцианата в соответствии со вторым вариантом ii).
В качестве многофункционального изоцианата особо предпочтителен олигомерный дифенилметандиизоцианат. Олигомерный дифенилметандиизоцианат (далее он будет называться олигомерный МДИ) представляет собой олигомерный продукт конденсации или смесь нескольких олигомерных продуктов конденсации, которые представляют собой производные дифенилметандиизоцианата. Многофункциональные изоцианаты в предпочтительном случае могут быть также представлены смесями мономерных ароматических диизоцианатов и олигомерного дифенилметандиизоцианата.
Олигомерный дифенилметандиизоцианат содержит один многоядерный продукт конденсации или несколько многоядерных продуктов конденсации дифенилметандиизоцианата с функциональностью более 2, в частности с функциональностью 3 или 4 или же 5. Олигомерный дифенилметандиизоцианат известен, его также часто называют полифенилполиметиленизоцианатом или также полимерным дифенилметандиизоцианатом. Олигомерный дифенилметандиизоцианат обычно представляет собой смесь изоцианатов с различной функциональностью, основанных на дифенилметандиизоцианате. Олигомерный дифенилметандиизоцианат используют обычно в виде смеси с мономерным дифенилметандиизоцианатом.
Функциональность (средняя) изоцианата, содержащего олигомерный дифенилметан-диизоцианат, может изменяться в пределах от примерно 2,2 до примерно 5, в частности от 2,4 до 3,5, в частности от 2,5 до 3. Такая смесь основанных на дифенилметандиизоцианате многофункциональных изоцианатов с различной функциональностью представлена, в частности, сырым дифенилметандиизоцианатом, который образуется при получении дифенилметандиизоцианата.
Многофункциональные изоцианаты или смеси нескольких многофункциональных изоцианатов на основе дифенилметандиизоцианата известны, они поставляются, например, компанией BASF Polyurethanes GmBH под названием Lupranat®.
В предпочтительном случае функциональность компоненты (a1) составляет не менее 2, в частности не менее 2,2 и в особо предпочтительном случае не мене 2,5. Предпочтительно, когда функциональность компоненты (a1) составляет от 2,2 до 4 и в особо предпочтительном случае от 2,5 до 3.
В предпочтительном случае содержание изоцианатных групп в компоненте (a1) составляет от 5 до 10 ммоль/г, в частности от 6 до 9 ммоль/г, в особо предпочтительном случае от 7 до 8,5 ммоль/г. Специалисту известно, что содержание изоцианатных групп в миллимолях на грамм и так называемая эквивалентная масса в граммах на эквивалент находятся в обратно пропорциональной зависимости. Содержание изоцианатных групп в миллимолях на грамм рассчитывается исходя из их содержания в процентах массы в соответствии с ASTM D-5155-96A.
В предпочтительном варианте компонента a1) состоит из не менее чем одного многофункционального изоцианата, выбираемого из дифенилметан-4,4'-диизоцианата, дифенилметан-2,4'-диизоцианата и дифенилметан-2,2'-диизоцианата, а также олигомерного дифенилметандиизоцианата. В рамках предпочтительного варианта наиболее целесообразно, когда компонента (a1) содержит олигомерный дифенилметандиизоцианат и имеет функциональность не менее 2,5.
Вязкость используемой компоненты (a1) может изменяться в широких пределах. В предпочтительном случае компонента (a1) имеет вязкость от 100 до 3000 мПа·с, в особо предпочтительном случае от 200 до 2500 мПа·с.
Компонента (a2)
В соответствии с изобретением в составе компоненты (a2) в реакцию вступает не менее чем один многофункциональный замещенный ароматический амин (a2-s), соответствующий общей формуле I
,
где
R1 и R2 могут быть одинаковыми или разными, при этом независимо друг от друга их выбирают из атома водорода и линейных или разветвленных алкильных групп с числом атомов углерода от одного до шести, а
все заместители от Q1 до Q5 и от Q1' до Q5', одинаковые или разные, независимо друг от друга выбирают из атома водорода, первичной аминогруппы и линейной или разветвленной алкильной группы с числом атомов углерода от одного до двенадцати, при этом алкильная группа может иметь другие функциональные группы, при условии что
в соответствующем общей формуле I соединении есть не менее чем две первичные аминогруппы и не менее чем один из заместителей Q1, Q3 и Q5 представлен первичной аминогруппой и не менее чем один из заместителей Q1', Q3' и Q5' также представлен первичной аминогруппой, и
Q2, Q4, Q2' и Q4' выбирают так, чтобы в соответствующем общей формуле I соединении имелась по крайней мере одна линейная или разветвленная алкильная группа с числом атомов углерода от одного до двенадцати, при этом такая алкильная группа может иметь другие функциональные группы, и чтобы эта алкильная группа находилась в α-положении к не менее чем одной связанной с ароматическим ядром первичной аминогруппе, и
в соответствующем случае в реакцию вступает не менее чем один дополнительный многофункциональный ароматический амин (a2-u), отличающийся от соответствующих общей формуле I аминов (a2-s).
Компонента (a2) в соответствии с этим состоит из многофункциональных ароматических аминов, при этом в их состав входят многофункциональные ароматические амины (a2-s), соответствующие общей формуле I.
Понятие многофункциональных аминов относится к таким аминам, в молекуле которых есть по крайней мере две реагирующие с изоцианатами аминогруппы. При этом с изоцианатами могут реагировать первичные и вторичные аминогруппы и реакционная способность первичных аминогрупп в общем случае значительно превосходит реакционную способность вторичных аминогрупп.
В предпочтительном случае используемое количество компоненты (a2) составляет от 0,1 до 30 масс.%, в частности от 0,5 до 20 масс.%, в особо предпочтительном случае от 2 до 12 масс.% в каждом отдельном случае из расчета на общую массу компонент (a1), (a2) и (a3), составляющих 100 масс.%.
В соответствии с изобретением в рамках формулы I R1 и R2, одинаковые или разные, независимо друг от друга выбирают из атома водорода, первичной аминогруппы и линейной или разветвленной алкильной группы с числом атомов углерода от одного до шести. Предпочтительно, когда R1 и R2 выбирают из атома водорода и метильной группы. В особо предпочтительном случае R1 и R2 означают атом водорода.
В предпочтительном случае Q2, Q4, Q2' и Q4' выбирают так, чтобы в замещенном ароматическом амине (a2-s) имелись по крайней мере две первичные аминогруппы, в каждом отдельном случае одна или две находящиеся в α-положении линейные или разветвленные алкильные группы с числом атомов углерода от одного до двенадцати, при этом такие алкильные группы могут нести другие функциональные группы. Если одна или несколько групп Q2, Q4, Q2' и Q4' выбраны так, чтобы они представляли собой линейные или разветвленные алкильные группы с числом атомов углерода от одного до двенадцати, в структуре которых есть другие функциональные группы, то тогда предпочтительно, чтобы такие функциональные группы были представлены аминогруппами, и/или гидроксильными группами, и/или атомами галогенов.
Предпочтительно, когда алкильные группы, представляющие собой соответствующие общей формуле I заместители Q, выбирают из метильной, этильной, н-пропильной, изопропильной, н-бутильной, втор-бутильной и трет-бутильной групп.
В предпочтительном случае амины (a2-s) выбирают из группы, состоящей из 3,3',5,5'-тетраалкил-4,4'-диаминодифенилметана, 3,3',5,5'-тетраалкил-2,2'-диаминодифенил-метана и 3,3',5,5'-тетраалкил-2,4'-диаминодифенилметана, при этом алкильные группы в положении 3, 3', 5 и 5' могут быть одинаковыми или разными, а выбирают их независимо друг от друга из линейных или разветвленных алкильных групп с числом атомов углерода от одного до двенадцати, в структуре которых могут быть другие функциональные группы. Предпочтительно, когда названные выше алкильные группы представлены метильной, этильной, н-пропильной, изопропильной, н-бутильной, втор-бутильной или трет-бутильной группами (в каждом отдельном случае эти группы не имеют заместителей).
В одном из вариантов способа один, несколько или все атомы водорода одной или нескольких алкильных групп, представляющих собой заместители Q, могут быть замещены атомами галогенов, в частности атомами хлора. В альтернативном случае один, несколько или все атомы водорода одной или нескольких алкильных групп, представляющих собой заместители Q, могут быть замещены аминогруппами или гидроксильными группами. Тем не менее предпочтительно, когда алкильные группы в общей формуле I построены из атомов углерода и водорода.
В особо предпочтительном варианте компонента (a2) содержит 3,3',5,5'-тетраалкил-4,4'-диаминодифенилметан, при этом алкильные группы могут быть одинаковыми или разными и независимо друг от друга их выбирают из линейных или разветвленных алкильных групп с числом атомов углерода от одного до двенадцати, при этом в соответствующих случаях они также могут нести функциональные группы. Предпочтительно, когда названные выше алкильные группы выбирают из незамещенных алкильных групп, в частности метильной, этильной, н-пропильной, изопропильной, н-бутильной, втор-бутильной или трет-бутильной групп, в особо предпочтительном случае из метильной и этильной групп.Особое предпочтение отдается 3,3',5,5'-тетраэтил-4,4'-диаминодифенилметану и/или 3,3',5,5'-тетраметил-4,4'-диаминодифенилметану.
Названные выше многофункциональные амины типа (a2-s) известны специалисту, или они могут быть получены известными способами. Одним из известных способов является взаимодействие анилина или производных анилина с формальдегидом в присутствии кислых катализаторов, в частности это реакции с участием 2,4- или 2,6-диалкиланилина.
В случае необходимости компонента (a2) может также содержать другие многофункциональные ароматические амины (a2-u), отличающиеся от аминов структуры (a2-s). Ароматические амины (a2-u) в предпочтительном случае имеют только связанные с ароматическими остатками аминные группы, однако они могут также содержать реакционноспособные аминные группы, которые связаны как с (цикло)алифатическими, так и с ароматическими остатками.
Подходящие многофункциональные ароматические амины (a2-u) представлены, в частности, изомерами и производными диаминодифенилметана. В качестве компоненты (a2) предпочтительными изомерами и производными диаминодифенилметана являются, в частности 4,4'-диаминодифенилметан, 2,4'-диаминодифенилметан и 2,2'-диаминодифенилметан, а также олигомерный диаминодифенилметан.
Кроме того, подходящими многофункциональными ароматическими аминами (a2-u) являются, в частности, изомеры и производные толуилендиамина. В составе компоненты (a2) предпочтительные изомеры и производные толуилендиамина представлены, в частности, толуилен-2,4-диамином и/или толуилен-2,6-диамином, и диэтилтолуилендиамином, в частности 3,5-диэтилтолуилен-2,4-диамином и/или 3,5-диэтилтолуилен-2,6-диамином.
В первом наиболее предпочтительном варианте способа компонента (a2) состоит исключительно из многофункциональных ароматических аминов типа (a2-s). Во втором предпочтительном варианте компонента (a2) состоит из многофункциональных ароматических аминов типов (a2-s) и (a2-u). В рамках названного последним второго предпочтительного варианта предпочтительно, когда компонента (a2) содержит по крайней мере один многофункциональный ароматический амин (a2-u), при этом не менее чем один из этих аминов выбирают из изомеров и производных диаминодифенилметана.
В рамках второго предпочтительного варианта особо предпочтительно, когда компонента (a2) содержит соответственно по крайней мере один многофункциональный амин (a2-u), который выбирают из 4,4'-диаминодифенилметана, 2,4'-диаминодифенилметана, 2,2'-диаминодифенилметана и олигомерного диаминодифенилметана.
Олигомерный диаминодифенилметан содержит один или несколько многоядерных продуктов конденсации с метиленовьми мостиками, образующихся из анилина и формальдегида. Олигомерный диаминодифенилметан содержит не менее чем один олигомерный диаминодифенилметан, однако в общем случае их несколько, при этом их функциональность составляет более двух, в частности 3 или 4, или 5. Олигомерный диаминодифенилметан известен или он может быть получен известными способами.
Обычно олигомерный диаминодифенилметан используют в виде смесей с мономерным диаминодифенилметаном.
Функциональность (средняя) многофункционального амина (a2-u), который содержит олигомерный диаминодифенилметан, может изменяться в пределах от примерно 2,3 до примерно 5, в частности от 2,3 до 3,5 или, в частности, от 2,3 до 3. Такая смесь основанных на диаминодифенилметане многофункциональных аминов с различной функциональностью представлена, в частности, сырым диаминодифенилметаном, который образуется, в частности, при конденсации анилина с формальдегидом, катализируемой обычно соляной кислотой; он представляет собой промежуточный продукт при получении сырого дифенилметандиизоцианата.
В рамках представленного предпочтительного второго варианта способа наиболее предпочтительно, когда компонента (a2) содержит в качестве соединения (a2-u) олигомерный диаминодифенилметан, а общая функциональность смеси составляет по крайней мере 2,1.
Содержание соответствующих общей формуле I аминов типа (a2-s) в общей массе всех многофункциональных аминов компоненты (a2), которая в сумме составляет 100 масс.%, в предпочтительном случае лежит в пределах от 10 до 100 масс.%, в частности от 30 до 100 масс.%, в наиболее предпочтительном случае от 50 до 100 масс.%, в частности от 80 до 100 масс.%.
Содержание многофункциональных ароматических аминов типа (a2-u), которые отличаются от аминов типа (a2-s), в общей массе всех многофункциональных аминов компоненты (a2) в предпочтительном случае составляет от 0 до 90 масс.%, в частности от 0 до 70 масс.%, в наиболее предпочтительном случае от 0 до 50 масс.%, в частности от 0 до 20 масс.%.
Компонентой (a3) является вода. Используемое в предпочтительном случае количество воды составляет от 0,1 до 30 масс.%, в частности от 0,2 до 25 масс.%, в особо предпочтительном случае от 0,5 до 20 масс.% в каждом отдельном случае из расчета на общую массу компонент (a1), (a2) и (a3), которая составляет 100 масс.%.
В этих пределах предпочтительное количество воды зависит от того, использовался ли катализатор (a4) или нет.
В первом варианте взаимодействие компонент (a1), (a2) и (a3) протекает без участия катализатора (a4). В этом первом варианте оказалось целесообразным использование от 5 до 30 масс.%, в частности от 6 до 25 масс.%, в особо предпочтительном случае от 8 до 20 масс.% воды в качестве компоненты (a3) в каждом отдельном случае из расчета на общую массу компонент (a1), (a2) и (a3), которая составляет 100 масс.%.
Предпочтительно, когда в рамках этого первого варианта названные выше компоненты (a1), (a2) и (a3) используют в представленном далее соотношении: от 40 до 94,9 масс.%, в частности от 55 до 93,5 масс.%, в особо предпочтительном случае от 68 до 90 масс.% компоненты (a1), от 0,1 до 30 масс.%, в частности от 0,5 до 20 масс.%, в особо предпочтительном случае от 2 до 12 масс.% компоненты (a2) и от 5 до 30 масс.%, в частности от 6 до 25 масс.%, в особо предпочтительном случае от 8 до 20 масс.% компоненты (a3) в каждом отдельном случае из расчета на общую массу компонент (a1), (a2) и (a3), которая составляет 100 масс.%.
Исходя из содержания воды и содержания реакционноспособных изоцианатных групп компоненты (a1) можно получить расчетное содержание аминогрупп, при этом предполагается, что взаимодействие воды с изоцианатными группами компоненты (a1) протекает полностью с образованием соответствующего количества аминогрупп, это содержание суммируют с их содержанием в компоненте (a2) и получают общее содержание nамин. Полученное исходя из этого начальное соотношение расчетного количества остаточных изоцианатных групп nNCO к расчетному количеству образовавшихся и добавленных аминогрупп далее будет обозначаться как расчетное соотношение в загрузке nNCO/nамин, оно представляет собой соотношение эквивалентов, то есть молярное соотношение соответствующих функциональных групп.
В рамках представленного выше первого варианта реализации способа расчетное соотношение в загрузке (соотношение эквивалентов) nNCO/nамин можно изменять в широких пределах, в частности оно может составлять от 0,6 до 5. В предпочтительном случае nNCO/nамин составляет от 1 до 1,6, в частности от 1,1 до 1,4.
Вода реагирует с изоцианатными группами с образованием аминогрупп и с выделением диоксида углерода. Следствием этого становится образование многофункциональных аминов, которые частично становятся исходными продуктами, образовавшимися in situ. Далее по ходу превращения они реагируют с изоцианатными группами с образованием мочевинных соединительных структурных элементов. Следствием образования аминов в качестве промежуточных продуктов становится получение пористых материалов с особенно высокой механической прочностью и с низкой теплопроводностью. Однако образующийся диоксид углерода не должен слишком сильно влиять на формирование геля, то есть он не должен оказывать отрицательное влияние на структуру образующегося пористого материала. Это определяет указанную выше предпочтительную верхнюю границу для содержания воды из расчета на общую массу компонент (a1), (a2) и (a3), в предпочтительном случае оно составляет не более 30 масс.%, в особо предпочтительном случае не более 25 масс.%, в частности не более 20 масс.%. Содержание воды в этих пределах дает также определенное преимущество, заключающееся в том, что после завершения процесса образования геля нет необходимости в удалении какого-то количества остаточной воды путем дополнительной сушки.
Во втором предпочтительном варианте взаимодействие компонент (a1), (a2) и (a3) протекает в присутствии катализатора (a4). В этом втором варианте оказалось целесообразным использование от 0,1 до 15 масс.%, в частности от 0,2 до 15 масс.%, в особо предпочтительном случае от 0,5 до 12 масс.% воды в качестве компоненты (a3) в каждом отдельном случае из расчета на общую массу компонент (a1), (a2) и (a3), которая в сумме составляет 100 масс.%. В названных выше пределах происходит образование пористых материалов с особенно хорошими механическими свойствами, что является следствием образования особо благоприятной сетчатой структуры. Увеличенное количество воды оказывает отрицательное влияние на сетчатую структуру и становится нежелательным в том, что относится к конечным свойствам пористого материала.
В рамках предпочтительного второго варианта способа названные выше компоненты (a1), (a2) и (a3) желательно использовать в представленных далее соотношениях: от 55 до 99,8 масс.%, в частности от 65 до 99,3 масс.%, в особо предпочтительном случае от 76 до 97,5 масс.% для компоненты (a1), от 0,1 до 30 масс.%, в частности от 0,5 до 20 масс.%, в особо предпочтительном случае от 2 до 12 масс.% для компоненты (a2) и от 0,1 до 15 масс.%, в частности от 0,2 до 15 масс.%, в особо предпочтительном случае от 0,5 до 12 масс.% для компоненты (a3) в каждом отдельном случае из расчета на общую массу компонент (a1) (a2) и (a3), которая в сумме составляет 100 масс.%.
В соответствии с представленным выше вторым вариантом реализации способа расчетное соотношение в загрузке nNCO/nамин (соотношение эквивалентов) в предпочтительном случае составляет от 1,01 до 5. В особо предпочтительном случае названное соотношение эквивалентов составляет от 1,1 до 3, в частности от 1,1 до 2. При удалении растворителя избыток nNCO по отношению к nамин в этом варианте приводит к уменьшению усадки в пористом материале, в частности в ксерогеле, а синергизм при взаимодействии с катализатором (a4) обеспечивает образование улучшенной сетчатой структуры материала и сопровождается улучшением конечных характеристик образующегося пористого материала.
Компоненты (a1) и (a2) вместе далее будут обозначаться как органическая исходная составляющая геля (А). Специалисту понятно, что частичное взаимодействие компоненты (a1) с компонентой (a3) приводит к образованию именно этой исходной составляющей геля (А), которая далее реагирует с образованием геля.
Катализатор (a4)
Предпочтительно, когда соответствующий изобретению способ реализуют в присутствии не менее чем одного катализатора, представляющего собой компоненту (a4).
В принципе на роль катализаторов подходят все известные специалисту катализаторы, которые ускоряют тримеризацию изоцианатов (так называемые катализаторы тримеризации), и/или ускоряют взаимодействие изоцианатов с аминогруппами (так называемые катализаторы реакции гелеобразования), и/или ускоряют взаимодействие изоцианатов с водой (так называемые катализаторы вспенивания).
Соответствующие катализаторы известны; в соответствии с представленными выше тремя реакциями они имеют разные профили активности. В этой связи в зависимости от профиля активности они могут быть отнесены к одному или к нескольким из названных выше типов. Специалисту также известно, что возможно протекание и таких реакций, которые отличаются от представленных выше.
Соответствующие катализаторы могут также характеризоваться и присущим им отношением способности к образованию геля и к вспениванию, это известно, например, по монографии Polyurethane, 3-е Издание, G. Oertel, Hanser Verlag, Мюнхен, 1993.
Предпочтительные катализаторы (a4) имеют сбалансированное отношение способности к образованию геля и к вспениванию, и в соответствии с этим реакция компоненты (a1) с водой ускоряется не очень сильно и это не оказывает отрицательного влияния на образование сетчатой структуры при одновременном сокращении времени на образование геля; в соответствии с этим эффективно сокращается время до извлечения изделия из формы. В то же время предпочтительные катализаторы характеризуются заметной активностью по отношению к реакции тримеризации. Это оказывает положительное влияние на гомогенность пространственной сетчатой структуры, что приводит к особенно благоприятному сочетанию механических свойств.
Катализаторы могут входить в состав мономерных структурных единиц (встроенные катализаторы), или же они могут быть невстроенными в их структуру.
Целесообразно, когда компоненту (a4) используют в минимальном эффективном количестве. Предпочтение отдается применению компоненты (a4) в количестве от 0,01 до 5 частей массы, в частности от 0,1 до 3 частей массы, в особо предпочтительном случае от 0,2 до 2,5 частей массы из расчета на все 100 частей массы компонент (a1), (a2)и(a3).
В составе компоненты (a4) предпочтительные катализаторы выбирают из группы, состоящей из первичных, вторичных и третичных аминов, триазиновых производных, металлорганических соединений, хелатных соединений металлов, солей четвертичного аммония, гидроксидов аммония, а также гидроксидов, алкоксидов и карбоксилатов щелочных и щелочноземельных металлов.
Подходящими катализаторами являются, например, такие сильные основания, как гидроксиды четвертичного аммония, например гидроксиды тетраалкиламмония с числом атомов углерода в алкильном остатке от одного до четырех и гидроксид бензилтриметиламмония, такие гидроксиды щелочных металлов, как, например, гидроксид калия или натрия, и такие алкоксиды щелочных металлов, как, например, метилат натрия, этилат калия и натрия, изопропилат калия.
Кроме того, подходящими катализаторами являются, в частности, соли щелочных металлов и карбоновых кислот, например формиат калия, ацетат натрия, ацетат калия, 2-этилгексаноат калия, адипинат калия и бензоат натрия, соли щелочных металлов длинноцепочечных жирных кислот с числом атомов углерода от восьми до двадцати, в частности от десяти до двадцати, в состав которых может входить гидроксильная групп