Получение высокопрочного титана

Иллюстрации

Показать все

Изобретение относится к способу получения титановых сплавов. Способ термомеханической обработки титанового сплава включает обработку титанового сплава давлением, включающую пластическое деформирование при температуре в области альфа-бета фаз до эквивалентной пластической деформации с по меньшей мере 25%-ным уменьшением площади поперечного сечения, после чего температура титанового сплава не достигает и не превышает температуры бета-перехода титанового сплава. Далее проводят одноступенчатую термообработку при температуре, меньшей или равной температуре бета-перехода минус 11,1°C. Полученные сплавы обладают высокими характеристиками прочности и ударной вязкости. 3 н. и 38 з.п. ф-лы, 7 ил., 3 табл., 4 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к способам получения титановых сплавов, обладающих высокой прочностью и высокой вязкостью разрушения. В способах по настоящему изобретению не требуются многостадийные термообработки, используемые в некоторых существующих способах производства титановых сплавов.

ОПИСАНИЕ СУЩЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

[0002] Титановые сплавы, как правило, обладают высоким соотношением прочности и веса, сопротивлением ползучести при умеренно высоких температурах и устойчивы к коррозии. Поэтому титановые сплавы используются в аэрокосмической и авиационной промышленности, включая, например, важные конструкционные детали, такие как элементы шасси и рамы двигателей. Титановые сплавы используются также в реактивных двигателях для таких деталей, как роторы, лопатки компрессоров, детали гидравлической системы и кабины.

[0003] Чистый титан испытывает аллотропное фазовое превращение при температуре примерно 882°C. Ниже этой температуры титан принимает гексагональную плотноупакованную кристаллическую структуру, называемую α-фазой. Выше этой температуры титан имеет объемно-центрированную кубическую решетку, называемую β-фазой. Температура, при которой происходит превращение α-фазы в β-фазу, называется температурой бета-перехода (Тβ). На температуру бета-перехода влияют элементы внедрения и замещения и поэтому она зависит от примесных и, что еще более важно, от легирующих элементов.

[0004] В титановых сплавах легирующие элементы подразделяются на элементы, стабилизирующие α-фазу, или элементы, стабилизирующие β-фазу. Легирование титана элементами, стабилизирующими α-фазу («α-стабилизаторами»), увеличивает температуру бета-перехода. Алюминий, например, является элементом замещения для титана и α-стабилизатором. Легирующие элементы внедрения для титана, которые являются α-стабилизаторами, включают, например, кислород, азот и углерод.

[0005] Легирование титана элементами, стабилизирующими β-фазу, понижает температуру бета-перехода. Элементами, стабилизирующими β-фазу, могут быть β-изоморфные элементы или β-эвтектоидные элементы, в зависимости от результирующих диаграмм состояния. Примерами β-изоморфных легирующих элементов для титана являются ванадий, молибден и ниобий. Путем легирования при достаточной концентрации этими β-изоморфными легирующими элементами можно понизить температуру бета-перехода до комнатной температуры или ниже нее. Примерами β-эвтектоидных легирующих элементов являются хром и железо. Кроме того, другие элементы, такие как, например, кремний, цирконий и гафний, являются нейтральными в том смысле, что эти элементы оказывают небольшое влияние на температуру бета-перехода титана или титановых сплавов.

[0006] На ФИГ. 1А представлена схематичная диаграмма состояния, показывающая влияние добавки к титану α-стабилизатора. По мере увеличения содержания α-стабилизатора температура бета-перехода также возрастает, что видно по положительному наклону линии 10 температуры бета-перехода. Область 12 бета-фазы лежит выше линии 10 температуры бета-перехода и является областью диаграммы состояния, где в титановом сплаве присутствует только β-фаза. На ФИГ. 1А ниже линии 10 температуры бета-перехода лежит область 14 альфа-бета-фаз, которая представляет собой область на диаграмме состояния, где в титановом сплаве присутствуют α-фаза и β-фаза (α+β). Ниже области 14 альфа-бета-фаз находится область 16 альфа-фазы, где в титановом сплаве присутствует только α-фаза.

[0007] На ФИГ. 1В представлена схематичная диаграмма состояния, показывающая влияние добавки к титану изоморфного β-стабилизатора. При повышенном содержании β-стабилизатора понижается температура бета-перехода, на что указывает отрицательный наклон кривой линии 10 температуры бета-перехода. Выше линии 10 температуры бета-перехода находится область 12 бета-фазы. Область 14 альфа-бета-фаз и область 16 альфа-фазы также присутствуют на схематичной диаграмме состояния титана с изоморфным β-стабилизатором по ФИГ. 1В.

[0008] На ФИГ. 1С представлена схематичная диаграмма состояния, показывающая влияние добавки к титану эвтектоидного β-стабилизатора. На фазовой диаграмме показана область 12 бета-фазы, линия 10 температуры бета-перехода, область 14 альфа-бета-фаз и область 16 альфа-фазы. Кроме того, на диаграмме состояния, показанной на ФИГ. 1С, существуют две дополнительные двухфазные области, которые содержат либо α-фазу, либо β-фазу вместе с продуктом реакции титана и эвтектоидной β-стабилизирующей легирующей добавки (Z).

[0009] Титановые сплавы, как правило, классифицируют по их химическому составу и их микроструктуре при комнатной температуре. Технически чистый (ТЧ) титан и титановые сплавы, которые содержат только α-стабилизаторы, такие как алюминий, относят к альфа-сплавам. Это преимущественно однофазные сплавы, состоящие, по существу, из α-фазы. Однако, ТЧ титан и другие альфа-сплавы после отжига ниже температуры бета-перехода главным образом содержат примерно 2-5 объемных процентов β-фазы, которая обычно стабилизирована примесями железа в титановом альфа-сплаве. Небольшой объем β-фазы в сплаве является полезным для контроля размера зерен рекристаллизованной α-фазы.

[0010] Псевдо-альфа-титановые сплавы имеют небольшое количество β-фазы, обычно менее 10 объемных процентов, что приводит к увеличению предела прочности при комнатной температуре и увеличению сопротивления ползучести при температурах использования выше 400°C по сравнению с альфа-сплавами. Примерный псевдо-альфа-титановый сплав может содержать примерно 1 весового процента молибдена.

[0011] Альфа/бета (α+β) титановые сплавы, такие как сплав Ti-6Al-4V (Ti 6-4) и сплав Ti-6Al-2Sn-4Zr-2Mo (Ti 6-2-4-2), содержат обе фазы, альфа и бета и широко используются в аэрокосмической и авиационной промышленности. Микроструктура и свойства альфа/бета-сплавов могут изменяться посредством термообработок и термомеханической обработки.

[0012] Стабильные бета-титановые сплавы, метастабильные бета-титановые сплавы и псевдо-бета-титановые сплавы, вместе классифицируемые как «бета-сплавы», содержат значительно больше β-стабилизирующих элементов, чем альфа/бета-сплавы. Псевдо-бета-титановые сплавы, такие как сплав Ti-10V-2Fe-3Al, содержат достаточные количества β-стабилизирующих элементов, чтобы сохранить полностью β-фазную структуру при закалке в воде, но не при закалке на воздухе. Метастабильные бета-титановые сплавы, такие как, например, сплав Ti-15Мо, содержат более высокие уровни β-стабилизаторов и сохраняют полностью β-фазную структуру при охлаждении на воздухе, но могут быть состарены с выделением α-фазы для упрочнения. Стабильные бета-титановые сплавы, такие как, например, сплав Ti-30Мо, сохраняют полностью β-фазную микроструктуру при охлаждении, но не могут быть состарены с выделением α-фазы.

[0013] Известно, что альфа/бета-сплавы чувствительны к скоростям охлаждения при охлаждении от температур выше температуры бета-перехода. Выделение α-фазы по границам зерен в процессе охлаждения уменьшает вязкость разрушения этих сплавов. В настоящее время при производстве титановых сплавов, обладающих высокой прочностью и высокой вязкостью разрушения, требуется использование сочетания высокотемпературных деформаций с последующей сложной многостадийной термообработкой, которая включает тщательно контролируемые скорости нагревания и непосредственное старение. Например, в публикации заявки на патент США №2004/0250932 А1 раскрыты формование титанового сплава, содержащего по меньшей мере 5% молибдена, до подходящей формы при первой температуре выше температуры бета-перехода или термообработка титанового сплава при первой температуре выше температуры бета-перехода с последующим контролируемым охлаждением со скоростью, не превышающей 5°F (2,8°C) в минуту, до второй температуры ниже температуры бета-перехода. Титановый сплав также может подвергаться термообработке при третьей температуре.

[0014] Схематичный график зависимости температуры от времени, типичный для известного из уровня техники способа получения высокопрочных титановых сплавов с высокой вязкостью разрушения, приведен на ФИГ. 2. Способ, как правило, включает этап деформации при повышенной температуре, проводимой ниже температуры бета-перехода, и этап термообработки, включающей нагрев выше температуры бета-перехода с последующим контролируемым охлаждением. Этапы термомеханической обработки уровня техники, используемые для получения титановых сплавов, обладающих высокой прочностью и высокой вязкостью разрушения, дорогостоящие, и в настоящее время лишь ограниченное число производителей в состоянии проводить эти этапы. Соответственно, было бы предпочтительным создать улучшенный процесс для увеличения прочности и/или вязкости разрушения титановых сплавов.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0015] В соответствии с одним из аспектов настоящего изобретения неограничительный вариант воплощения способа увеличения прочности и вязкости разрушения титанового сплава включает пластическое деформирование титанового сплава при температуре в области альфа-бета-фаз титанового сплава до эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади. После пластического деформирования титанового сплава при температуре в области альфа-бета-фаз титановый сплав не нагревают до температуры на уровне или выше температуры бета-перехода титанового сплава. Затем, в соответствии с неограничительным вариантом воплощения, после пластического деформирования титанового сплава, этот титановый сплав подвергают термообработке при температуре термообработки, меньшей или равной температуре бета-перехода минус 20°F (11,1°C), в течение времени термообработки, достаточного для получения термообработанного сплава, имеющего трещиностойкость (KIc), которая связана с пределом текучести (ПТ) согласно уравнению KIc≥173-(0,9)ПТ. В другом неограничительном варианте воплощения титановый сплав может подвергаться термообработке после пластической деформации при температуре в области альфа-бета-фаз до эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади при температуре термообработки, меньшей или равной температуре бета-перехода минус 20°F (11,1°C), в течение времени термообработки, достаточного для получения термообработанного сплава, имеющего трещиностойкость (KIc), которая связана с пределом текучести (ПТ) согласно уравнению KIc≥217,6-(0,9)ПТ.

[0016] Согласно другому аспекту настоящего изобретения неограничительный способ термомеханической обработки титанового сплава включает в себя обработку титанового сплава давлением в температурном диапазоне обработки давлением от 200°F (111°C) выше температуры бета-перехода титанового сплава до 400°F (222°C) ниже температуры бета-перехода. В неограничительном варианте воплощения, при завершении этапа обработки давлением может происходить эквивалентная пластическая деформация с по меньшей мере 25%-ым уменьшением площади в области альфа-бета-фаз титанового сплава, и титановый сплав не нагревают выше температуры бета-перехода после эквивалентной пластической деформации в области альфа-бета-фаз титанового сплава с по меньшей мере 25%-ым уменьшением площади. В соответствии с одним неограничительным вариантом воплощения, после обработки титанового сплава давлением, этот сплав может подвергаться термообработке в температурном диапазоне термообработки между 1500°F (816°C) и 900°F (482°C) в течение времени термообработки от 0,5 до 24 часов. Титановый сплав может подвергаться термообработке в температурном диапазоне термообработки между 1500°F (816°C) и 900°F (482°C) в течение времени термообработки, достаточного для получения термообработанного сплава, имеющего трещиностойкость (KIc), которая связана с пределом текучести (ПТ) термообработанного сплава согласно уравнению KIc≥173-(0,9)ПТ или в другом неограничительном варианте воплощения, согласно уравнению KIc≥217,6-(0,9)ПТ.

[0017] В соответствии с еще одним аспектом настоящего изобретения неограничительный вариант воплощения способа обработки титанового сплава включает в себя обработку титанового сплава давлением в области альфа-бета-фаз титанового сплава для обеспечения эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади титанового сплава. В одном неограничительном варианте воплощения способа титановый сплав способен сохранять бета-фазу при комнатной температуре. В неограничительном варианте воплощения, после обработки титанового сплава давлением титановый сплав может подвергаться термообработке при температуре термообработки, не большей температуры бета-перехода минус 20°F (11,1°C), в течение времени термообработки, достаточного для обеспечения титанового сплава со средним пределом прочности на растяжение по меньшей мере 150 ksi (т.е. килофунты на квадратный дюйм) (1 ksi=6,894757 МПа) и трещиностойкостью KIc по меньшей мере 70 ksi·дюйм1/2 (1 ksi·дюйм1/2=1,098845 МПа·м1/2). В неограничительном варианте воплощения время термообработки лежит в диапазоне от 0,5 часа до 24 часов.

[0018] Еще один аспект настоящего изобретения касается титанового сплава, который был обработан в соответствии со способом, раскрытым в настоящем изобретении. Один неограничительный вариант воплощения касается сплава Ti-5Al-5V-5Mo-3Cr, который был обработан способом в соответствии с настоящим изобретением, включающим этапы пластического деформирования и термообработки титанового сплава, причем термообработанный сплав имеет трещиностойкость (KIc), которая связана с пределом текучести (ПТ) термообработанного сплава согласно уравнению KIc≥217,6-(0,9)ПТ. Как известно в уровне техники, сплав Ti-5Al-5V-5Mo-3Cr, называемый также сплавом Ti-5553 или сплавом Ti 5-5-5-3, содержит номинально 5 весовых процентов алюминия, 5 весовых процентов ванадия, 5 весовых процентов молибдена, 3 весовых процента хрома, а остальное - титан и неизбежные примеси. В одном неограничительном варианте воплощения титановый сплав подвергается пластическому деформированию при температуре в области альфа-бета-фаз титанового сплава до эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади. После пластического деформирования титанового сплава при температуре в области альфа-бета-фаз титановый сплав не нагревают до температуры на уровне или выше температуры бета-перехода титанового сплава. Кроме того, в соответствии с неограничительным вариантом воплощения, титановый сплав подвергают термообработке при температуре термообработки, меньшей или равной температуре бета-перехода минус 20°F (11,1°C), в течение времени термообработки, достаточного для получения термообработанного сплава, имеющего трещиностойкость (KIc), которая связана с пределом текучести (ПТ) согласно уравнению KIc≥217,6-(0,9)ПТ.

[0019] Еще один аспект в соответствии с настоящим изобретением направлен на изделие, подходящее для использования в по меньшей мере одной из отраслей авиационной и аэрокосмической промышленности и содержащее сплав Ti-5Al-5V-5Mo-3Cr, который был обработан способом, включающим пластическое деформирование и термообработку титанового сплава по режиму, достаточному для того, чтобы трещиностойкость (KIc) термообработанного сплава была связана с пределом текучести (ПТ) термообработанного сплава согласно уравнению KIc≥217,6-(0,9)ПТ. В неограничительном варианте воплощения титановый сплав может подвергаться пластическому деформированию при температуре в области альфа-бета-фаз титанового сплава до эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади. После пластического деформирования титанового сплава при температуре в области альфа-бета-фаз титановый сплав не нагревают до температуры на уровне или выше температуры бета-перехода титанового сплава. В неограничительном варианте воплощения титановый сплав может подвергаться термообработке при температуре термообработки, меньшей или равной (т.е. не большей) температуре бета-перехода минус 20°F (11,1°C), в течение времени термообработки, достаточного для получения термообработанного сплава, имеющего трещиностойкость (KIc), которая связана с пределом текучести (ПТ) термообработанного сплава согласно уравнению KIc≥217,6-(0,9)ПТ.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0020] Признаки и преимущества описанных здесь способов можно лучше понять при обращении к прилагаемым чертежам, на которых:

[0021] ФИГ. 1А - пример диаграммы состояния для титана, легированного элементом, стабилизирующим альфа-фазу;

[0022] ФИГ. 1В - пример диаграммы состояния для титана, легированного изоморфным элементом, стабилизирующим бета-фазу;

[0023] ФИГ. 1С - пример диаграммы состояния для титана, легированного эвтектоидным элементом, стабилизирующим бета-фазу;

[0024] ФИГ. 2 - схематическое представление термомеханической обработки уровня техники для получения высокопрочных титановых сплавов с высокой вязкостью разрушения;

[0025] ФИГ. 3 - диаграмма время-температура неограничительного варианта воплощения способа по настоящему изобретению, включающего практически полностью альфа-бета-фазную пластическую деформацию;

[0026] ФИГ. 4 - диаграмма время-температура другого неограничительного варианта воплощения способа по настоящему изобретению, включающего пластическую деформацию «через бета-переход»;

[0027] ФИГ. 5 - график зависимости трещиностойкости KIc от предела текучести для различных титановых сплавов, термообработанных согласно техпроцессам уровня техники;

[0028] ФИГ. 6 - график зависимости трещиностойкости KIc от предела текучести для титановых сплавов, подвергнутых пластической деформации и термообработке согласно неограничительным вариантам воплощения способа по настоящему изобретению, и сравнение этих вариантов воплощения со сплавами, термообработанными согласно техпроцессам уровня техники;

[0029] ФИГ. 7А - микрофотография сплава Ti 5-5-5-3 в продольном направлении после прокатки и термообработки при 1250°F (677°C) в течение 4 часов; и

[0030] ФИГ. 7В - микрофотография сплава Ti 5-5-5-3 в поперечном направлении после прокатки и термообработки при 1250°F (677°C) в течение 4 часов.

[0031] Читатель по достоинству оценит вышеизложенные, а также другие подробности при рассмотрении нижеследующего подробного описания некоторых неограничительных вариантов воплощения способов по настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ НЕКОТОРЫХ НЕОГРАНИЧИТЕЛЬНЫХ ВАРИАНТОВ ВОПЛОЩЕНИЯ

[0032] В настоящем описании неограничительных вариантов воплощения, кроме рабочих примеров или если не указано иное, все числа, выражающие количества или характеристики, следует понимать как модифицированные во всех случаях термином «примерно». Итак, если не указано обратное, любые числовые параметры, изложенные в следующем описании, являются приблизительными значениями, которые могут изменяться в зависимости от тех желательных свойств, которые пытаются получить в способах получения высокопрочных титановых сплавов с высокой вязкостью разрушения в соответствии с настоящим изобретением. По крайней мере, а не как попытка ограничить применение доктрины эквивалентов к объему формулы изобретения, каждый числовой параметр должен по меньшей мере толковаться в свете количества сообщенных значащих цифр, применяя обычные методы округления.

[0033] Любой патент, публикация или другой раскрывающий материал, который указан включенным, в целом или частично, посредством ссылки в настоящий документ, включен в него только в той степени, в которой включенный материал не противоречит существующим определениям, заявлениям или другому раскрытому материалу, изложенному в настоящем изобретении. Таким образом, по мере необходимости, раскрытие, изложенное в настоящем документе, заменяет собой любые противоречащие материалы, включенные в настоящий документ по ссылке. Любой материал или его часть, указанные включенными посредством ссылки в настоящий документ, но противоречащие существующим определениям, заявлениям или другим раскрытым материалам, изложенным в настоящем документе, включен только в той мере, в какой не возникают противоречия между включенным материалом и существующим в раскрытии материалом.

[0034] Некоторые неограничительные варианты воплощения согласно настоящему изобретению направлены на способы термомеханической обработки для получения высокопрочных титановых сплавов с высокой вязкостью разрушения, которые не нуждаются в использовании сложных, многостадийных термообработок. Удивительно, но в отличие от сложных способов термомеханической обработки, используемых в настоящее время и исторически для титановых сплавов, некоторые неограничительные варианты воплощения раскрытых здесь способов термомеханической обработки включают только этап высокотемпературной деформации с последующей одностадийной термообработкой для придания титановым сплавам сочетаний прочности на растяжение, пластичности и вязкости разрушения (трещиностойкости), требуемых в определенных аэрокосмических и авиационных материалах. Ожидается, что варианты воплощения термомеханической обработки в рамках настоящего изобретения могут выполняться на любом предприятии, достаточно хорошо оснащенном для осуществления термомеханической и термической обработки титана. Эти варианты воплощения отличаются от традиционных приемов термообработки для придания титановым сплавам высокой прочности и высокой вязкости разрушения, обычно требующих сложного оборудования для тщательно контролирования скоростей охлаждения сплава.

[0035] Ссылаясь на схематичный график зависимости температуры от времени на ФИГ. 3, один неограничительный способ 20 по настоящему изобретению увеличения прочности и вязкости разрушения титанового сплава включает в себя пластическое деформирование 22 титанового сплава при температуре в области альфа-бета-фаз титанового сплава до эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади. (См. ФИГ. 1А-1С и приведенные выше рассуждения относительно области альфа-бета-фаз титанового сплава). Эквивалентная 25%-ая пластическая деформация в области альфа-бета-фаз задействует конечную температуру 24 пластической деформации в области альфа-бета-фаз. Термин «конечная температура пластической деформации» определен в настоящем документе как температура титанового сплава при окончании пластического деформирования титанового сплава и перед его старением. Как показано далее на ФИГ. 3, в ходе способа 20 после пластической деформации 22 титановый сплав не нагревают выше температуры бета-перехода (Тβ) титанового сплава. В некоторых неограничительных вариантах воплощения и как показано на ФИГ. 3, после пластической деформации при конечной температуре 24 пластической деформации титановый сплав подвергают термообработке 26 при температуре ниже температуры бета-перехода в течение времени, достаточного для придания титановому сплаву высокой прочности и высокой вязкости разрушения. В неограничительном варианте воплощения термообработка 26 может выполняться при температуре по меньшей мере на 20°F (11,1°C) ниже температуры бета-перехода. В другом неограничительном варианте воплощения термообработка 26 может выполняться при температуре по меньшей мере на 50°F (27,8°C) ниже температуры бета-перехода. В некоторых неограничительных вариантах воплощения температура термообработки 26 может быть ниже конечной температуры 24 пластической деформации. В других неограничительных вариантах воплощения, не показанных на ФИГ. 3, с целью дополнительного увеличения вязкости разрушения титанового сплава температура термообработки может быть выше конечной температуры пластической деформации, но меньше температуры бета-перехода. Должно быть понятно, что хотя на ФИГ. 3 показана постоянная температура для пластической деформации 22 и термообработки 26, в других неограничительных вариантах воплощения способа по настоящему изобретению температура пластической деформации 22 и/или термообработки 26 может изменяться. Например, естественное уменьшение температуры заготовки из титанового сплава, возникающее в процессе пластической деформации, находится в рамках объема раскрытых в настоящем документе вариантов воплощения. Схематичный график температура-время на ФИГ. 3 иллюстрирует, что некоторые варианты воплощения раскрытых здесь способов термообработки титановых сплавов для придания им высокой прочности и высокой вязкости разрушения отличаются от традиционных приемов термообработки для придания титановым сплавам высокой прочности и высокой вязкости разрушения. Например, традиционные приемы термообработки, как правило, требуют многостадийных термообработок и сложного оборудования для тщательного контролирования скоростей охлаждения сплава и поэтому дорогостоящи и не могут осуществляться на всем оборудовании для термообработки. Вместе с тем, варианты воплощения обработки, иллюстрируемые на ФИГ. 3, не задействуют многостадийную термообработку и могут выполняться с применением традиционного оборудования для термообработки.

[0036] В общем, конкретный состав титановых сплавов определяет сочетание времен(и) термообработки и температур(ы) термообработки, которые придадут желаемые механические свойства при использовании способов по настоящему изобретению. Кроме того, времена и температуры термообработки могут регулироваться для получения конкретного желаемого баланса прочности и вязкости разрушения для конкретного состава сплава. В некоторых раскрытых здесь неограничительных вариантах воплощения, например, при регулировании времен и температур термообработки, используемых для обработки сплава Ti-5Al-5V-5Mo-3Cr (Ti 5-5-5-3) способом в соответствии с настоящим изобретением, были достигнуты пределы прочности на растяжение от 140 ksi до 180 ksi в сочетании с уровнями трещиностойкости KIc от 60 ksi·дюйм1/2 до 100 ksi·дюйм1/2. Рассматривая настоящее изобретение, специалист без труда может определить конкретное(ые) сочетание(я) времени и температуры термообработки, которые будут придавать оптимальные свойства прочности и вязкости разрушения конкретному титановому сплаву для предусмотренного ему применения.

[0037] Термин «пластическая деформация», используемый в настоящем документе, означает неупругую деформацию материала при приложенном напряжении или напряжениях, которая вызывает остаточную деформацию материала сверх его предела упругости.

[0038] Термин «уменьшение площади», используемый в настоящем документе, означает разность между площадью поперечного сечения образца титанового сплава перед пластической деформацией и площадью поперечного сечения образца титанового сплава после пластической деформации, причем поперечное сечение выбирается в эквивалентном положении. Образец титанового сплава, используемый для оценки уменьшения площади, может быть, но не ограничен ими, любым из круглой заготовки (биллета), прутка, плиты, стержня, проволоки, листа, прокатанного профиля и прессованного профиля.

[0039] Далее приведен вариант расчета уменьшения площади при пластическом деформировании круглой заготовки из титанового сплава диаметром 5 дюймов (127 мм) путем прокатки заготовки до круглого прутка диаметром 2,5 дюйма (63,5 мм). Площадь поперечного сечения круглой заготовки диаметром 5 дюймов составляет π (пи), умноженное на квадрат радиуса, или приблизительно (3,1415)×(2,5 дюйм)2, или 19,625 дюйм2. Площадь поперечного сечения круглого прутка диаметром 2,5 дюйма составляет приблизительно (3,1415)×(1,25)2, или 4,91 дюйма2. Отношение площади поперечного сечения исходной заготовки к площади поперечного сечения прутка после прокатки составляет 4,91/19,625, или 25%. Уменьшение площади составляет 100%-25%, т.е. 75%-ное уменьшение площади.

[0040] Термин «эквивалентная пластическая деформация», используемый в настоящем документе, означает неупругую деформацию материала при приложенных напряжениях, которые вызывают деформацию материала сверх его предела упругости. Эквивалентная пластическая деформация может задействовать напряжения, которые могли бы приводить к определенному уменьшению площади, полученному при одноосной деформации, но происходит так, что размеры образца сплава после деформации незначительно отличаются от размеров образца сплава до деформации. Например и без ограничения, для того чтобы подвергнуть штампованную осадкой заготовку из титанового сплава значительной пластической деформации, может использоваться многоосная (всесторонняя) ковка, вносящая в сплав дислокации, но без существенного изменения конечных размеров заготовки. В неограничительном варианте воплощения, при котором эквивалентная пластическая деформация составляет по меньшей мере 25%, действительное уменьшение площади может быть 5% или менее. В неограничительном варианте воплощения, при котором эквивалентная пластическая деформация составляет по меньшей мере 25%, действительное уменьшение площади может быть 1% или менее. Многоосная (всесторонняя) ковка - это метод, известный обычному специалисту в данной области техники, и поэтому в дальнейшем здесь не описывается.

[0041] В некоторых неограничительных вариантах воплощения согласно настоящему изобретению титановый сплав может подвергаться пластическому деформированию до эквивалентной пластической деформации с более чем 25%-ым уменьшением площади и вплоть до 99%-го уменьшения площади. В некоторых неограничительных вариантах воплощения, в которых эквивалентная пластическая деформация составляет больше 25%-го уменьшения площади, по меньшей мере эквивалентная пластическая деформация с 25%-ым уменьшением площади в области альфа-бета-фаз происходит при окончании пластической деформации, и после пластической деформации титановый сплав не нагревают выше температуры бета-перехода (Тβ) титанового сплава.

[0042] В одном неограничительном варианте воплощения способа по настоящему изобретению, и как в общих чертах показано на ФИГ. 3, пластическое деформирование титанового сплава включает пластическое деформирование титанового сплава таким образом, что вся эквивалентная пластическая деформация происходит в области альфа-бета-фаз. Хотя на ФИГ. 3 показана постоянная температура пластической деформации в области альфа-бета-фаз, в рамках объема описанных здесь вариантов воплощения находится и то, что эквивалентная пластическая деформация с по меньшей мере 25%-ым уменьшением площади в области альфа-бета-фаз происходит при изменяющихся температурах. Например, титановый сплав может обрабатываться давлением в области альфа-бета-фаз в то время как температура сплава постепенно уменьшается. Также в рамках объема описанных здесь вариантов воплощения находится нагрев титанового сплава в процессе эквивалентной пластической деформации с по меньшей мере 25%-ым уменьшением площади в области альфа-бета-фаз так, чтобы поддерживалась постоянная или почти постоянная температура, или ограниченное снижение температуры титанового сплава, при условии, что титановый сплав не нагревают до температуры бета-перехода титанового сплава или выше нее. В неограничительном варианте воплощения пластическое деформирование титанового сплава в области альфа-бета-фаз включает пластическое деформирование сплава в температурном диапазоне пластической деформации от чуть ниже температуры бета-перехода, или примерно 18°F (10°C) ниже температуры бета-перехода, до 400°F (222°C) ниже температуры бета-перехода. В другом неограничительном варианте воплощения пластическое деформирование титанового сплава в области альфа-бета-фаз включает пластическое деформирование сплава в температурном диапазоне пластической деформации от 400°F (222°C) ниже температуры бета-перехода до 20°F (11,1°C) ниже температуры бета-перехода. В следующем неограничительном варианте воплощения пластическое деформирование титанового сплава в области альфа-бета-фаз включает пластическое деформирование сплава в температурном диапазоне пластической деформации от 50°F (27,8°C) ниже температуры бета-перехода до 400°F (222°C) ниже температуры бета-перехода.

[0043] Ссылаясь на схематичный график зависимости температуры от времени на ФИГ. 4, другой неограничительный способ 30 по настоящему изобретению включает в себя признак, называемый в данном документе обработкой «через бета-переход». В неограничительных вариантах воплощения, которые включают в себя обработку через бета-переход, пластическая деформация (также называемая здесь «обработкой давлением») начинается с температуры титанового сплава при температуре бета-перехода (Тβ) титанового сплава или выше нее. Кроме того, при обработке через бета-переход пластическая деформация 32 включает пластическое деформирование титанового сплава от температуры 34, которая находится на уровне или выше температуры бета-перехода, до конечной температуры 24 пластической деформации, которая находится в области альфа-бета-фаз титанового сплава. Таким образом, температура титанового сплава проходит «через» температуру бета-перехода в процессе пластической деформации 32. Кроме того, при обработке через бета-переход эквивалентная по меньшей мере 25%-ному уменьшению площади пластическая деформация происходит в области альфа-бета-фаз, и титановый сплав не нагревают до температуры на уровне или выше температуры бета-перехода (Тβ) титанового сплава после пластического деформирования титанового сплава в области альфа-бета-фаз. Схематичный график температура-время на ФИГ. 4 иллюстрирует, что неограничительные варианты воплощения раскрытых здесь способов термообработки титановых сплавов для придания им высокой прочности и высокой вязкости разрушения отличаются от традиционных приемов термообработки для придания титановым сплавам высокой прочности и высокой вязкости разрушения. Например, традиционные приемы термообработки, как правило, требуют многостадийных термообработок и сложного оборудования для тщательного контролирования скоростей охлаждения сплава и поэтому дорогостоящи и не могут осуществляться на всем оборудовании для термообработки. Вместе с тем, варианты воплощения обработки, иллюстрируемые на ФИГ. 4, не задействуют многостадийную термообработку и могут выполняться с использованием традиционного оборудования для термообработки.

[0044] В некоторых неограничительных вариантах воплощения способа по настоящему изобретению пластическое деформирование титанового сплава при обработке через бета-переход включает пластическое деформирование титанового сплава в температурном диапазоне от 200°F (111°С) выше температуры бета-перехода титанового сплава до 400°F (222°C) ниже температуры бета-перехода, проходя через температуру бета-перехода в процессе пластической деформации. Автор изобретения определил, что этот температурный диапазон эффективен при условии, что (i) эквивалентная по меньшей мере 25%-му уменьшению площади пластическая деформация происходит в области альфа-бета-фаз и (ii) титановый сплав не нагревают до температуры на уровне или выше температуры бета-перехода после пластической деформации в области альфа-бета-фаз.

[0045] В вариантах воплощения согласно настоящему изобретению титановый сплав может пластически деформироваться различными методами, включая, но не ограничиваясь ими, ковку, ротационную ковку, объемную штамповку, многоосную (всестороннюю) ковку, периодическую прокатку, прокатку листового материала и прессование (выдавливанием), или сочетание двух или нескольких из этих методов. Пластическая деформация может быть реализована любым подходящим технологическим методом обработки, известным сейчас или в дальнейшем обычному специалисту в данной области техники, при условии, что используемый метод обработки дает возможность пластического деформирования заготовки из титанового сплава в области альфа-бета-фаз по меньшей мере до эквивалентного 25%-ному уменьшению площади.

[0046] Как указано ранее, в некоторых неограничительных вариантах воплощения способа по настоящему изобретению пластическая деформация титанового сплава по меньшей мере до эквивалентной 25%-му уменьшению площади, происходящая в области альфа-бета-фаз, существенно не изменяет конечные размеры титанового сплава. Этого можно