Сенсорная система, содержащее ее сенсорное устройство и содержащее ее устройство для обработки молочного скота

Иллюстрации

Показать все

Сенсорная система с сенсорным устройством содержит проточную ячейку для жидкости, детекторное устройство для измерения свойства жидкости в ячейке и формирования связанного с этим сигнала детектора, блок управления сенсорами для анализа сигнала детектора. Блок управления сенсорами выполнен с возможностью обнаруживать переход между двумя различными жидкостями в ячейке, когда изменение (в единицу времени) в сигнале детектора больше, чем пороговое значение. В случае обнаружения такого перехода блок управления сенсорами выдает сигнал оповещения. Сенсорное устройство содержит проточную ячейку, детекторное устройство, блок управления сенсорами, который выполнен с возможностью анализа сигнала детектора, в котором проточная ячейка содержит трубку из светоизлучающего материала, а детекторное устройство содержит несколько светочувствительных датчиков. Устройство для обработки молочного скота содержит устройство обнаружения соска, устройство обработки соска, манипулятор с управляющим устройством и сенсорную систему. Использование данной группы изобретений позволяет создать устройство для обработки молочного скота с сенсорной системой, имеющее высокую степень надежности. 3 н. и 17 з.п. ф-лы, 6 ил.

Реферат

Настоящее изобретение относится к сенсорной системе с сенсорным устройством, содержащим проточную ячейку, имеющую отверстие для подачи жидкости и отверстие для выдачи жидкости, причем проточная ячейка выполнена с возможностью протекания через нее жидкости; детекторное устройство, которое выполнено с возможностью измерения свойства жидкости в ячейке и формирования связанного с этим сигнала детектора; и блок управления сенсорами, который выполнен с возможностью анализировать сигнал детектора.

Такие сенсорные системы сами по себе в общем известны. Они используются, например, во время доения для определения свойств молока, которое было получено, чтобы таким образом выполнить качественное измерение. С этой целью обратимся, например, к патентному документу DE2759126, в котором описано отделение молока в случае обнаружения другого цвета и направление потока молока обратно к главному резервуару, как только поток молока снова показывает «правильный» цвет. Патентный документ EP1000535 раскрывает способ мониторинга качества молока с помощью пропускания через него света различных цветов и оценки относительного пропускания.

Недостатком вышеупомянутых систем является то, что они не гарантируют правильную оценку жидкости при всех условиях.

Задача настоящего изобретения состоит в улучшении системы того вида, который упомянут в преамбуле, в частности в создании дополнительной или альтернативной системы, которая может обнаружить изменения в жидкости, которая может находиться в большем количестве условий, или по меньшей мере в отличающихся условиях, с высокой степенью надежности.

Вышеупомянутая задача решается с помощью сенсорной системы по пункту 1 формулы изобретения, которая характеризуется тем фактом, что блок управления сенсорами выполнен с возможностью обнаружения перехода между двумя различными жидкостями в проточной ячейке, когда изменение сигнала детектора в единицу времени и/или изменение сигнала детектора становится больше, чем заданное пороговое значение изменения или чем заданное пороговое значение соответственно, в котором блок управления сенсорами выполнен с возможностью формирования сигнала оповещения, если блок управления сенсорами обнаруживает такой переход между жидкостями.

Настоящее изобретение основано на понимании того, что если происходит изменение в жидкости, всегда возможно обнаружить промежуточный переход. Таким образом, переход между жидкостями обычно имеет место тогда, когда постоянно или временно изменяется такое свойство, как цвет, удельная электропроводность и т.д. Следует отметить, что известные системы обычно сравнивают значение параметра с абсолютным значением. В результате этого постепенные изменения, которые тем не менее приводят к изменениям значения измеряемого параметра одной и той же жидкости, могут привести к ложноположительным сигналам оповещения. Настоящее изобретение ограничивает эти ложноположительные сигналы за счет того, что учитывается степень и/или скорость изменения упомянутого значения параметра.

Путем формирования сигнала оповещения при обнаружении перехода между жидкостями система управления или оператор могут при желании принять меры, например, если такой переход не должен произойти в соответствии с действиями, которые уже были выполнены. В качестве примера, который будет объяснен более подробно позже, может быть упомянута подача жидкости для специальной обработки, в частности животного, при которой объявляется тревога, если обнаруживается переход между жидкостями. В конце концов, может оказаться так, что случайно подана неправильная жидкость, что может иметь нежелательные, угрожающие здоровью последствия. Очевидно, таким образом возможно также уменьшить риски повреждения или неправильной обработки механизмов и других продуктов.

Настоящее изобретение также относится к сенсорному устройству как таковому, которое является подходящим для использования в сенсорной системе в соответствии с настоящим изобретением, как описано в пункте 24 формулы изобретения.

Конкретные варианты осуществления сенсорной системы и сенсорного устройства являются предметом зависимых пунктов формулы изобретения. В этом случае все конкретные признаки, которые были упомянуты в связи с сенсорным устройством, в принципе одинаково применимы к сенсорной системе и наоборот, если текст явным образом не указывает противоположное.

В частности, сенсорное устройство содержит механизм обнаружения присутствия жидкости, который выполнен с возможностью подавать сигнал присутствия жидкости, если жидкость присутствует в ячейке. Такой механизм обнаружения присутствия жидкости предотвращает истолкование сигнала, который измеряется детектором во время перехода к отсутствию жидкости, как сигнала о переходе между жидкостями, так как это во многих случаях произвело бы ничем не оправданный сигнал оповещения. Механизм обнаружения присутствия жидкости основан, например, на измерении удельной электропроводности в проточной ячейке. Основание для этого заключается в том, что обычно жидкости имеют намного большую удельную электропроводность, чем воздух. Как только жидкость исчезнет, измеренное значение удельной электропроводности значительно понизится до величины ниже порогового значения, которое может быть выбрано в достаточно широких пределах. Точное определение, следовательно, не является необходимым. Другой возможностью является, например, датчик веса в ячейке или оптический детектор уровня жидкости и т.п. Ссылка делается на предшествующее для альтернатив, которые известны по существу.

Следует отметить, что в некоторых случаях может быть полезным производить сигнал оповещения при отсутствии жидкости, например, если жидкость всегда должна присутствовать. Можно рассмотреть, например, случай машинного масла в двигателе. В частности, однако, блок управления сенсорами выполнен с возможностью игнорировать сигнал детектора, когда сигнал присутствия жидкости отсутствует. Таким образом гарантируется, что вещества, которые сравниваются, действительно являются жидкостями.

В вариантах осуществления изменение содержит по меньшей мере один пик или спад в сигнале детектора, причем пик или спад имеют по меньшей мере заданную величину. В этом случае пик, как обычно, характеризуется увеличением, за которым следует уменьшение, а спад характеризуется уменьшением, за которым следует увеличение. Когда самое маленькое значение для уменьшения и связанного увеличения имеет по меньшей мере заданную величину, связанный спад или пик по меньшей мере имеет упомянутую заданную величину. Случаи, когда только уменьшение или увеличение достигают упомянутой величины, указывают на стадию, а не пик или спад. Заданная величина может быть выбрана, например, на основе практических тестов и практически во всех случаях зависит от фактического параметра, который будет измеряться. Таким образом, зашумленный параметр приведет к относительно большой заданной величине для значимого пика/спада. В противном случае незначащие шумовые колебания привели бы к ложноположительному обнаружению перехода между жидкостями. С другой стороны, если бы значение было чрезмерным, малый пик/спад в параметре, который в остальном не изменяется, или изменяется очень медленно, мог бы быть неоправданно пропущен (ложноотрицательный результат). Специалист в данной области техники может легко определить такие подходящие величины на практике после выбора параметра (параметров). Этот выбор зависит в известной степени от желания не формировать слишком много ложноположительных результатов (чрезмерная чувствительность) или, напротив, слишком много ложноотрицательных результатов (чрезмерная нечувствительность).

Когда такой пик или спад обнаруживается, это с большой вероятностью является результатом граничной поверхности между двумя жидкостями, и таким образом перехода от одной жидкости к другой. В конце концов, такой переход часто характеризуется изменением в устойчивых значениях переменной, такой как цвет или удельная электропроводность, которое зависит не только от действительных свойств соответствующих жидкостей, но также и от любых последствий реакций и т.п. на поверхности между двумя жидкостями. Эта граничная поверхность, или скорее граничная область, может тогда отличаться и от первой, и от второй жидкости.

В частности пик и/или спад чаще всего имеют заданную длину. Эта мера служит для предотвращения того, чтобы значительные, но очень медленные изменения, такие как вызванные, например, постепенным нагреванием и остыванием жидкости, например, при суточном колебании температуры, были расценены как переход между жидкостями. Заданная длина (или во многих случаях интервал времени) может быть выбрана на основе варианта осуществления сенсорного устройства. Она может, например, составлять от нескольких десятых секунды до приблизительно пяти секунд. Некоторыми переменными, которые могут быть приняты во внимание, являются:

- ожидаемая средняя скорость потока. При большей скорости граничная или переходная зона жидкости также пройдет более быстро. Длина/интервал времени может быть короче;

- расстояние от источника жидкости до датчика. При относительно большом расстоянии может произойти более сильное смешивание между граничной областью и соответствующими жидкостями, и любой пик/спад расширится. Длина/интервал времени должна быть более длинной;

- скорость работы детекторного устройства, которая должна быть достаточно высокой для того, чтобы измерить проходящий переход между жидкостями.

- внутренний диаметр жидкостной линии/проточной ячейки. Чем меньше внутренний диаметр линии или ячейки, тем более затруднительным становится образование смеси. Длина/интервал времени может быть короче.

Следует отметить, что обнаружение пика или спада, то есть временного, относительно большого и быстрого изменения, в параметре может хорошо указывать на граничную область или переход между жидкостями. Зачастую это является более точным, чем постепенное изменение. В конце концов, если рассматривается только тот факт, превышается ли пороговое значение в абсолютном смысле, это постепенное изменение значения может быть вызвано в самой жидкости, например, механизмами, такими как нагревание или старение. Даже в таких случаях, часто или фактически всегда будет возможно указать определенную граничную область, в которой значение параметра имеет пик или спад. Поэтому в общем смысле было бы выгодно, если бы сенсорное устройство было выполнено с возможностью обнаружения перехода между жидкостями, когда изменение сигнала детектора в единицу времени больше, чем заданное пороговое значение изменения. Если, кроме того, значение самого параметра изменяется больше чем пороговое значение, это является еще более ясным указанием на переход между жидкостями. Поэтому было бы еще более выгодно, если бы сенсорное устройство было выполнено с возможностью обнаружения перехода между жидкостями, когда, в дополнение к этому, изменение сигнала детектора превышает заданное пороговое значение. В дополнение к этому, еще более точное обнаружение может быть достигнуто, если превышается абсолютное значение параметра. Поэтому было бы еще более выгодно, если бы сенсорное устройство было выполнено с возможностью обнаружения перехода между жидкостями, когда сигнал детектора, в дополнение к этому, превышает заданное абсолютное значение.

В частности, пороговое значение изменения и/или пороговое значение являются функцией сигнала детектора в течение заданного интервала времени. Таким образом, пороговое значение (изменения) может быть, при желании, подстроено динамическим образом к значению сигнала детектора, чтобы можно было, например, принять во внимание дрейф и т.п., который бессмыслен для обнаружения сам по себе. Более конкретно, пороговое значение изменения и/или пороговое значение являются функцией дисперсии и/или среднеквадратичного отклонения или максимального изменения сигнала детектора в течение упомянутого интервала времени.

В вариантах осуществления свойство содержит оптическое свойство жидкости. Преимуществом выбора оптического свойства является тот факт, что оно во многих случаях может быть определено очень быстро и точно, и, кроме того, обычно неинвазивно, то есть не воздействуя на жидкость или воздействуя только в очень малой степени.

В вариантах осуществления сенсорная система, или сенсорное устройство, содержит источник света, который выполнен с возможностью пропускать оптическое излучение через ячейку, где детектор содержит оптический детектор, который выполнен с возможностью улавливать и обнаруживать испускаемое оптическое излучение, которое прошло через жидкость. Посредством использования света таким образом могут быть достигнуты вышеупомянутые преимущества использования оптического свойства, заключающиеся в точном и быстром измерении. Предпочтительно источник света выполнен с возможностью испускать оптическое излучение в форме луча. Это не только облегчает манипуляцию оптическим излучением, но также и ограничивает область, которая взаимодействует с жидкостью. Другим важным преимуществом является тот факт, что область взаимодействия может быть выбрана, например, на дне проточной ячейки, где жидкость будет присутствовать чаще всего. Предпочтительно детектор содержит несколько оптических детекторов, более предпочтительно устройства CCD (прибор с зарядовой связью, ПЗС) или CMOS (комплементарная МОП-структура), еще более предпочтительно схему детектора RGB-сигнала. Таким образом обеспечивается относительно недорогой детектор, который может уловить несколько сигналов одновременно, не только с различными длинами волн, то есть красный, зеленый и синий, но, при желании, также и под различными углами, в особенности если схема является относительно большой.

В частности, свойство является по меньшей мере одним из поглощения оптического излучения, преломления оптического излучения, рассеяния оптического излучения и отражения оптического излучения. Все эти переменные, и в особенности также их комбинация, могут формировать полезные параметры для того, чтобы обнаружить переход между жидкостями. Таким образом, поглощение света одной жидкостью может быть намного больше или меньше, чем поглощение света другой жидкостью, приводя к существенному изменению в сигнале при переходе между жидкостями. В случае взаимно реагирующих жидкостей также возможно протекание химической реакции, что приводит к мутности или осаждению продуктов реакции. В этом случае, даже с изначально чистыми жидкостями, может образоваться пиковый сигнал в поглощении света, что может иметь место также и для рассеяния света. Осаждение также может присутствовать, например, из-за осадка и т.п., всасываемого со дна сосуда. Является ли он механическим осадком или химическим осадком, в обоих случаях будет выдан сигнал оповещения. Также возможно, даже с изначально чистыми жидкостями, что их показатель преломления будет различаться, что может быть относительно легко определено, используя оптический луч. Основываясь на вышеперечисленном, специалист в данной области техники может с легкостью вывести другие возможности или комбинации. Кроме того, эквивалентные или дополнительные переменные, такие как пропускание в случае поглощения, также покрываются охватом защиты.

В вариантах осуществления источник света содержит несколько частичных источников света, которые испускают оптическое излучение с различными длинами волн. Таким образом, альтернативно или дополнительно возможно измерить одно, или предпочтительно больше, значение параметра для различных длин волн так, чтобы могло быть получено больше информации о жидкости и переходах в ней. В этом контексте термин ″различные″ в частности понимается, как означающий, что диапазоны длин волн не перекрываются в пределах FWHM (полной ширины полосы длин волн на уровне половины максимума). Преимущественно по меньшей мере часть источников света являются монохроматическими, в частности имеющими диапазон длин волн не более 50 нм, такими как светоизлучающие диоды (LED) или лазеры. В случае перекрывающихся диапазонов длин волн нежелательное перекрытие сигнала может быть предотвращено поочередным включением. Альтернативно, один или более частичных источников света могут испускать широкополосное излучение, такое как ″белый″ свет, когда, например, один или более датчиков снабжены фильтром для выбора излучения.

В вариантах осуществления возможно измерить изменение в значении по меньшей мере одного основного параметра до и после периода неустойчивости в качестве сигнала детектора для того, чтобы определить переход между жидкостями. Когда изменение в значении превышает положительное или отрицательное пороговое значение, предполагается, что произошел переход между жидкостями. В этом случае период неустойчивости определяется как период времени, в котором изменение по меньшей мере в одном параметре мониторинга неустойчивости превышает пороговое значение неустойчивости. В этом случае изменение снова может содержать «абсолютное изменение значения», при необходимости в единицу времени, «относительное изменение значения», при необходимости в единицу времени, абсолютное или относительное среднеквадратичное отклонение за заданный период выборки и т.д. Параметр (параметры) неустойчивости может в этом случае быть идентичным главному параметру (параметрам) или накладываться на него, или может также содержать по меньшей мере один другой параметр. Понимание, лежащее в основе этих вариантов осуществления, является тем фактом, что один параметр является очень подходящим в качестве индикации того, что может происходить изменение, то есть действовать в качестве тревожного параметра (параметра мониторинга неустойчивости), в то время как другой параметр может дать более точную информацию о типе жидкости (жидкостей), например, для того, чтобы оценить, могут ли действительно отчетливо различные жидкости быть обнаружены до и после фазы неустойчивости. В конце концов, возможно, что началась новая партия той же самой жидкости. Тогда действительно может быть различие в жидкостях из-за различия в температуре, старении, различия в концентрации и т.п., то есть переход между жидкостями, но это, возможно, не является существенным. Тогда использование параметра, который более релевантен этому определению, помогает предотвратить ложные сигналы тревоги. Например, соотношение между измеренным оптическим излучением на двух (или больше) длинах волн выбирается в качестве параметра мониторинга неустойчивости, и полное значение интенсивности на упомянутых длинах волн и/или даже по всему спектру выбирается в качестве главного параметра. В этом случае период неустойчивости начинается или заканчивается, соответственно, когда (абсолютное или предпочтительно относительное) среднеквадратичное отклонение упомянутого соотношения (при желании суммы соотношений в различных парах длин волн) становится выше порогового значения, а затем снова понижается ниже порогового значения. Значение (значения) главного параметра, измеренное непосредственно перед периодом неустойчивости, формирует тогда начальное значение, а значение (значения) главного параметра, измеренное непосредственно после фазы неустойчивости, формирует тогда конечное значение. Только в том случае, если конечное значение (значения) и начальное значение (значения) отличаются от друг друга на величину большую, чем пороговое значение изменения, делается фактическое предположение о том, что произошел переход между жидкостями. Выбор в данном случае цветового соотношения основывается на том факте, что, как установили изобретатели, воздушные пузырьки имеют лишь небольшое влияние на цветовое соотношение, но большое влияние на значение интенсивности. В результате этого воздушные пузырьки, которые уносятся вперед, не будут приводить к периоду неустойчивости, как это происходит, например, при фактическом переходе между жидкостями, а фактические изменения в цветовом соотношении будут приводить к периоду неустойчивости. Эти варианты осуществления гарантируют, что не будет слишком много случаев, когда будет обнаружен период неустойчивости, который не является фактически переходом между жидкостями. Это не только экономит вычислительные мощности, но также и уменьшает риск ложных тревог. Между прочим, этот способ определения перехода между жидкостями может использоваться параллельно или в дополнение к другому способу (способам), или скорее как дополнительный критерий.

В частности, в ячейке предусматриваются источник света и/или по меньшей мере один частичный источник света и/или по меньшей мере один оптический детектор. Это предотвращает влияние на оптическое излучение со стороны стенки ячейки, например, за счет царапин или изменения цвета.

Альтернативно или дополнительно к этому, источник света и/или по меньшей мере один частичный источник света и/или по меньшей мере один оптический детектор предусматриваются вокруг ячейки, причем ячейка является светопропускающей или прозрачной, по меньшей мере в том месте, где находится упомянутый источник света или частичный источник света. Таким образом (частичный) источник света не может подвергнуться влиянию жидкости, что является значительным преимуществом, например, в случае агрессивных жидкостей. Кроме того, это облегчает замену, ремонт и т.п. (частичного) источника света. При желании светопропускающая или прозрачная часть ячейки в месте расположения (частичного) источника света или оптического детектора может быть сформирована окном, которое может быть сделано из подходящего материала, который, например, совместим с жидкостью. Ячейка также может быть полностью сделана из такого материала, как, например, трубка из светоизлучающего материала, такого как полисульфон или поликарбонат, или предпочтительно из стекла, такого как боросиликатное стекло, для высокой стойкости к царапинам и к воздействию химикатов.

Предпочтительно проточная ячейка является цилиндрической и изготовлена из светоизлучающего материала, и (частичный) источник света располагается снаружи проточной ячейки, оптический детектор располагается на пути испускаемого луча света, а угол испускания луча источником света, показатель преломления светоизлучающего материала проточной ячейки и поперечное сечение проточной ячейки адаптируется друг к другу таким образом, что если проточная ячейка заполнена желаемой жидкостью, по меньшей мере половина, и предпочтительно все испускаемые лучи попадают на оптический детектор, в то время как если в проточной ячейке жидкость отсутствует, меньше половины, и предпочтительно не более приблизительно 0,2 испускаемых лучей попадают на оптический детектор. Приведенные здесь числа относятся к непоглощенной и нерассеянной части луча. Упомянутая мера обеспечивает то преимущество, что присутствие жидкости, и в частности желаемой жидкости, может быть показано очень простым образом. Жидкость в ячейке тогда действует как выпуклая линза, которая направляет луч на противоположный детектор. Без жидкости луч будет продолжать рассеиваться. Это вызывает (очень) значительное различие в яркости между ячейкой с жидкостью и ячейкой без жидкости. Даже с поглощающими, но не чрезвычайно поглощающими жидкостями, сигнал при наличии жидкости все еще может быть более сильным, чем сигнал в отсутствие жидкости. Следовательно, такая конструкция может также служить детектором присутствия жидкости.

В одном варианте осуществления источник света или по меньшей мере один частичный источник света выполнен с возможностью испускания луча света, и детектор располагается и конфигурируется так, чтобы обнаруживать испускаемый луч, который прошел через проточную ячейку. Если излучение испускается в форме луча, становится возможным, как было обозначено выше для источника света в целом, управлять оптическим излучением, а также ограничивать область, которая взаимодействует с жидкостью, при желании по-разному для каждого частичного источника света. Еще одним важным преимуществом является тот факт, что область взаимодействия может быть выбрана, например, на дне проточной ячейки, где жидкость будет присутствовать чаще всего. Преимущественно имеется несколько, например два, три или четыре, частичных источников света, каждый из которых испускает луч света, и имеется несколько детекторов, например два, три или четыре, чтобы обнаружить множество лучей света. Частичные источники света могут содержать свет ограниченного диапазона длин волн (монохроматический или узкополосный свет). Они могут также, и даже предпочтительно, излучать белый свет или широкополосный свет, включая, при желании, (ближний) инфракрасный. Детекторы могут соответственно быть чувствительными к монохроматическому, узкополосному или широкополосному свету, такими как частичные сенсоры датчика RGB. Эта чувствительность может быть изначальной, либо также может быть вызвана фильтрацией света, который падает на датчик. Таким образом, благодаря особенно высокой яркости, которая может быть в частности достигнута с белым светом и которая кроме того доступна для многих различных свойств и датчиков, могут быть обнаружены и измерены различные эффекты, такие как пропускание, отражение и поглощение, причем в различных условиях, например для различных углов, различных расстояний через жидкость, различных длин волн и т.д., и в особенности также для комбинаций этих свойств. Именно это последнее свойство, способность измерить несколько свойств одновременно, является значительным преимуществом настоящей сенсорной системы, поскольку таким образом возможно обнаружить переход между жидкостями более надежным образом. Всегда будет возможно обнаружить переход между жидкостями, в частности переход между жидкостями от желаемой и известной жидкости к любой другой, нежелательной жидкости, если заранее известно, какое свойство изменяется. Однако это не может быть заранее известно. Поэтому существующая система может измерять множество свойств так, чтобы чистое изменение свойства, а еще лучше, значительное и одновременное изменение по меньшей мере двух свойств, могло указать на переход к другой, нежелательной жидкости надежным образом.

Таким образом, в одном варианте осуществления сенсорная система содержит измеритель удельной электропроводности или сопротивления для того, чтобы измерить удельную электропроводность или сопротивление жидкости в ячейке. Удельная электропроводность является ценным параметром для описания жидкости. Очень предпочтительно, чтобы проточная ячейка содержала патрубок для шланга на каждом из своих концов. Патрубки предназначаются для того, чтобы соединять ячейку с входной и выходной линиями. В этом случае патрубки для шлангов предпочтительно конфигурируются как электроды для измерителя сопротивления или удельной электропроводности. Такая конструкция имеет значительное преимущество, которое заключается в том, что не требуется отдельных вставных электродов в проточной ячейке, так что не создаются условия для образования протечек. В дополнение к этому, производство такой конструкции является намного более простым. Более того, в такой конструкции доступна большая электродная поверхность, так что измерение намного менее чувствительно к воздушным пузырям, загрязнению и т.п. Кроме того, электроды не выступают из стенок в поток жидкости, так что дополнительные препятствия потоку жидкости не создаются. Все это, однако, требует электрической изоляции между патрубками для шлангов. Это может быть обеспечено изоляционным материалом между патрубками для шлангов и проточной ячейкой и/или самой проточной ячейкой, которая изготовлена из изоляционного материала, такого как пластмасса или, предпочтительно, стекло.

Предпочтительно блок управления сенсорами выполнен с возможностью обнаружения перехода между жидкостями, если сигнал детектора изменяется больше, чем заданное пороговое изменение, в течение заданного интервала времени. Как было уже обозначено ранее, при достаточно большом изменении, в частности в единицу времени, одной или более измеряемых переменных, существует вероятность того, что происходит переход между жидкостями, и в любом случае это достаточно вероятно для выдачи сигнала оповещения.

Варианты осуществления могут содержать индикатор скорости, который выполнен с возможностью обеспечивать сигнал скорости жидкости для сенсорного управления, который указывает на скорость жидкости в проточной ячейке, причем заданный интервал времени зависит от скорости жидкости. Таким образом, сенсорное устройство может эффективно учесть скорость, с которой жидкость протекает через ячейку. В конце концов, если жидкость течет, например, очень медленно, то даже постепенное изменение в сигнале может уже быть причиной сигнала оповещения, тогда как если жидкость течет очень быстро, то короткий пик в сигнале может означать больше, чем просто случайный шум. Принятие во внимание скорости потока жидкости помогает в правильной интерпретации измеренных значений и их изменений.

В альтернативной или дополнительной мере источник света выполнен с возможностью испускать луч света через проточную ячейку, и в этом случае устройство содержит оптический датчик, который выполнен с возможностью обнаружения на оптическом датчике положения обнаружения луча света, который прошел через проточную ячейку. Предпочтительно это свойство содержит положение обнаружения, в частности изменение в упомянутом положении обнаружения. Альтернативно или дополнительно к этому, свойство содержит величину или изменение величины луча на детекторе, которое может само по себе, конечно, состоять из изменений в положении крайностей луча. Эти варианты осуществления основаны на той находке, что когда жидкость остается той же самой, положение, в котором такой луч света, проходящий через жидкость, принимается на детекторе, также останется тем же самым. Если жидкость меняется, это становится очевидным, например, с помощью различных показателей преломления, и таким образом различных положений на датчике. Следует отметить, что это будет иметь место в особенности для луча, проходящего через жидкость под углом, когда угол преломления входящего луча изменится. Если будет выбран очень пологий угол падения, предпочтительно 60° или больше относительно нормали, на жидкость или на проточную ячейку в том месте, где падает свет, даже небольшое изменение в показателе преломления вызовет относительно большое изменение в положении. Аналогично, очень пологое, предпочтительно существенно касательное, падение света на оптический датчик при небольших изменениях в показателе преломления будет приводить к большим изменениям в положении. В этом случае в настоящей заявке очень пологий угол падения является углом, меньшим чем 30° к поверхности датчика, а существенно касательный угол падения является углом не более 10° к поверхности датчика, однако, другие углы, конечно, тоже не исключаются. Следует отметить, что такой оптический датчик может также действовать в качестве детектора присутствия жидкости, поскольку положение луча в результате его преломления воздухом будет абсолютно отличаться от его положения после преломления любой жидкостью в ячейке. Кроме того, сенсорная система или соответствующее сенсорное устройство могут использоваться в качестве точного абсолютного определителя показателя преломления.

В частности переход характеризуется (перемешивающими) вихрями и/или локальным увеличением температуры. Вышеупомянутое изменение положения в особенности относится к более или менее устойчивому положению луча до и после прохождения перехода между жидкостями. Как уже было обозначено выше, на поверхности раздела двух различных жидкостей возможно также протекание реакции, приводящей к образованию различных веществ, которые могут, конечно, только локально вызвать различный показатель преломления. Таким образом, даже если две различные жидкости имеют один и тот же показатель преломления, все равно возможно, что это не так в граничной области между ними. Временное изменение положения обнаружения является в этом случае надежным индикатором перехода между жидкостями. Следовательно, возможно, что связанное со временем пороговое значение изменения может также относиться к изменению положения: когда оно превышено, очень вероятно, что был обнаружен переход между жидкостями. Блок управления сенсорами тогда может соответственно быть выполнен с возможностью обнаружения последнего.

Другая причина, по которой временное изменение в положении обнаружения на оптическом датчике также может быть важным, заключается в том, что луч может быть отражен на граничной поверхности между двумя жидкостями, опять же благодаря различию в показателе преломления. В теории, и при самом простом подходе, упомянутая граничная поверхность является плоскостью, перпендикулярной к стенке проточной ячейки, разделяющей несмешивающиеся и нереагирующие друг с другом жидкости. Следует отметить, что в этом случае предпочтительно иметь луч света, который падает на жидкость под углом, но скорее под большим углом к нормали, то есть под малым углом, и предпочтительно касательно, к упомянутой граничной поверхности. В результате небольшая разница в показателе преломления будет вызывать большое отражение. Однако на практике граничная поверхность зачастую будет состоять из вихрей. В этом случае относительно беспорядочный сигнал положения будет обнаружен на оптическом датчике для каждого направления луча. Поэтому блок управления сенсорами предпочтительно выполнен с возможностью обнаружения временного изменения обнаруженного положения на оптическом датчике, преимущественно для того, чтобы обнаружить переход между жидкостями, если упомянутое временное изменение превышает заданное пороговое значение. Следует отметить, что временное изменение в этом случае предпочтительно рассматривается как совокупная сумма абсолютных изменений, другими словами изменение туда и сюда считается как сумма абсолютной величины изменения туда и абсолютной величины изменения обратно. Тем не менее, возможно также обнаруживать максимальное изменение в положении, такое как, например, амплитуда периодического изменения, в качестве перехода между жидкостями.

Конкретные варианты осуществления сенсорной системы или сенсорного устройства характеризуются тем фактом, что они содержат устройство записи изображения, такое как видеокамера, которое выполнено с возможностью записи изображения жидкости в проточной ячейке, и в котором блок управления сенсорами содержит программное обеспечение обработки изображения для обработки изображение, а также выполнено с возможностью обнаружения перехода между жидкостями в том случае, если изображение показывает заданное минимальное изменение во времени. Изображение, зарегистрированное устройством записи изображения, таким как ПЗС или КМОП-камера, которое, очевидно, должно быть динамическим изображением или по меньшей мере многократно записываемым изображением, в этом случае анализируется программным обеспечением для обработки изображения. Это программное обеспечение сравнивает изображения друг с другом либо путем сравнения последовательных изображений, либо сравнивая каждое новое изображение с конкретным стандартом, таким как скользящее среднее значение последних x изображений, и определяет степень его изменения. Изменение содержит, например, попиксельное изменение в информации об изображении, суммированное для всех пикселей изображения. В теории для абсолютно гомогенной жидкости не будет происходить никаких изменений, тогда как если через ячейку проходит граничная поверхность, в изображении произойдут очень существенные изменения. Следует отметить, что в частности луч, который является видимым на изображении, и его яркость, положение и цвет определяют значительную часть информации об изображении. Преломление, изменение цвета, местное помутнение из-за проду