Сверхпроводящее электромагнитное устройство, магнитный подвес и транспортное средство, снабженные таким устройством

Иллюстрации

Показать все

Группа изобретений относится к магнитным подвесам для транспортных средств. Электромагнитное устройство содержит электрические обмотки, ориентированные друг относительно друга таким образом, что магнитные моменты соседних обмоток не коллинеарны. По меньшей мере, часть обмоток размещена в емкости с охлаждающей жидкостью, обеспечивающей сверхпроводимость обмоток. Магнитный подвес содержит, по меньшей мере, одно электромагнитное устройство. Транспортное средство, перемещающееся с использованием магнитной левитации относительно путепровода с ферромагнитной направляющей и проводящей поверхностью, имеет в своем составе магнитный подвес. Технический результат заключается в наиболее эффективном распределении магнитного поля. 3 н. и 5 з.п. ф-лы, 10 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к области электрофизики, электротехники, в частности к электромагнитным устройствам и в некоторых аспектах к транспортным системам, в которых применяются электромагнитные устройства в виде электромагнитного подвеса.

Уровень техники

В авторском свидетельстве SU 645880 представлен электромагнитный подвес транспортного средства, в котором применяются сверхпроводящая катушка (обмотка). Указанная катушка, как показано на фигуре в указанном авторском свидетельстве, помещена в емкость с охлаждающей жидкостью (в частности, жидким азотом) и содержит U-образный сердечник. Средняя часть сердечника расположена параллельно путепроводу, к которому притягивается магнитный подвес (это направление в изображенной конструкции является горизонтальным; оно совпадает с направлением линий и/или магнитного момента электромагнита). U-образный сердечник загнут вверх, по направлению к ферромагнитной направляющей (рельсу, балке), входящей в состав путепровода. Указанная ферромагнитная направляющая и полюса магнитного подвеса, образованные загнутыми концами сердечника, расположены таким образом, чтобы между ними был воздушный промежуток, через который замыкается поток магнитного поля, обеспечивающий притяжение магнитного подвеса к путепроводу. Величина зазора между полюсами регулируется электромагнитной силой, которая зависит от величины электрического тока, протекающего в обмотке электромагнита.

Для обеспечения левитации транспортного средства, весящего несколько тонн или десятков тонн, требуется весьма сильное магнитное поле. Однако уровень магнитного поля в зазоре ограничен степенью насыщения стали U-образного сердечника. Кроме того, поскольку средняя часть U-образного сердечника находится в емкости с охлаждающей жидкости, а концы сердечника находятся вне этой емкости, то на поддержание низкой температуры сверхпроводимости требуются повышенные энергозатраты ввиду высокой теплопроводности сердечника, передающего тепло с концов сердечника в среднюю часть. С другой стороны, помещение сердечника полностью в емкость с охлаждающей жидкостью привело бы к значительному увеличению размеров этой емкости, а значит и площади стенок емкости, передающих тепло, и объема охлаждающей жидкости, что нивелировало бы улучшения, достигнутые благодаря размещению сердечника полностью в охлаждающей жидкости.

Раскрытие изобретения

Настоящее изобретение направлено на устранение недостатков уровня техники, в частности, на более эффективное распределение магнитного поля, уменьшение полей рассеяния вне рабочей зоны и уменьшение его воздействия на грузы и пассажиров. Задачей изобретения также является устранение тепловых утечек и снижение энергозатрат на поддержание температур, необходимых для получения эффекта сверхпроводимости, и устранение ограничений на величину магнитного поля.

Далее будем использовать известные определения.

1) Выражение [a×b] обозначает векторное произведение двух векторов a=(ax,ay,az) и b=(bx,by,bz). Здесь и далее вектора выделяются полужирным шрифтом. Векторное произведение [a×b] есть вектор c=(cx,cy,cz) компоненты которого равны cx=aybz-azby, cy=azbx-axbz, cz=axby-aybx. Вектор c перпендикулярен плоскости, в которой лежат a и b.

2) Магнитный момент токонесущей катушки электромагнита произвольной формы, m, в общем случае объемных проводников равен , где V - объем проводника, dV - элемент объема, характеризуемого радиус-вектором r, j - вектор плотности электрического тока. Если намотку электромагнита представлять в виде тонкого замкнутого контура, то где I - полный ток, dl - элемент контура. Для плоских контуров последнее выражение дает m=ISn, где S - площадь, n - единичный вектор нормали к плоскости контура, направленный в соответствии с правилом буравчика (если вращать ручку буравчика в направлении тока, то направление магнитного момента будет совпадать с направлением поступательного движения буравчика). Магнитный момент является характеристикой электромагнита (обмотки, катушки) в выбранной системе координат (И.Е. Тамм "Основы теории электричества", Μ: Наука, 1989).

3) Центр электромагнита, r0, определяется как где L - полная длина контура намотки (в т.ч. для случая многовитковой и/или многослойной намотки), dl - элемент контура. В случае, если контур симметричен, данное определение совпадает с центром симметрии.

4) Поперечная плоскость электромагнита в общем случае - плоскость, проходящая через его центр перпендикулярно вектору магнитного момента. Если электромагнит состоит из одного плоского витка, поперечная плоскость совпадает с плоскостью витка. Если катушка плоская, поперечная плоскость совпадает с плоскостью среднего витка.

5) Направление максимальной асимметрии магнитного поля - это направление, вдоль которого должна быть обеспечена максимальная разница значений модуля магнитного поля в точках наблюдения, расположенных симметрично по разные стороны электромагнитного устройства. Поскольку для транспортных средств на магнитном подвесе это направление обычно определяется силой тяжести и совпадает с вертикальной осью транспортного средства, здесь и далее это направление для краткости называется вертикальным.

6) Горизонтальная плоскость - плоскость, перпендикулярная вертикальному направлению.

7) Электромагнитное устройство состоит из двух, трех, четырех или более электромагнитов, центры которых смещены друг относительно друга в некотором направлении (далее для краткости называемом продольным направлением). Продольное направление можно вычислить как прямую линию в горизонтальной плоскости, наименее уклоняющуюся от центров электромагнитов, например, методом наименьших квадратов (Линник Ю.В., Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений. M., 1962). Электромагниты в продольном направлении образуют последовательность, позволяющую определить понятие «соседний электромагнит». У крайних электромагнитов один сосед, у остальных - по два.

8) Для определенности далее используется следующая система координат. Выберем произвольным образом начало координат O. Из него проведем в продольном направлении ось X, а в вертикальном направлении - ось Z. Ось Υ направим перпендикулярно вертикальной плоскости ΧΟΖ. Эти обозначения используются на нескольких чертежах, прилагаемых к настоящему описанию. В том случае, если устройство или его компоненты ориентировано по-другому, оно может быть приведено к принятым обозначениям осей и плоскостей путем поворота (действительного или воображаемого) или же могут быть переориентированы оси и плоскости. В последнем случае характеризующие названия осей и плоскостей, если они использованы, могут быть изменены (например, вертикальная плоскость может оказаться горизонтальной, если устройство повернуто на 90° вокруг продольной оси).

Задача изобретения решается с помощью электромагнитного устройства, содержащее (две или более) электрические обмотки, ориентированные друг относительно друга таким образом, что магнитные моменты соседних электрических обмоток не коллинеарны. В соответствии с настоящим изобретением, по меньшей мере, часть обмоток размещена в емкости с охлаждающей жидкостью, обеспечивающей сверхпроводимость обмоток.

В предпочтительном варианте устройство содержит, по меньшей мере, три обмотки, которые преимущественно установлены, например, в продольном направлении со взаимным смещением друг относительно друга. Векторные произведения магнитных моментов двух соседних обмоток в соответствии с изобретением направлены в одну и ту же сторону от вертикальной плоскости (вертикальная плоскость может задаваться, например, магнитными моментами какой-либо пары соседних обмоток).

Радиус кривизны внутренних витков одной или множества обмоток в преимущественном варианте выполнения составляет не менее 10%, 20%, 30%, 40% или 50% от характерного размера замкнутой кривой, описывающей внутренние витки обмотки. Длина емкости с охлаждающей жидкостью в продольном направлении преимущественно значительно (в пять, семь, десять или более раз) больше высоты емкости, определяемой в направлении, перпендикулярном продольному направлению и находящемся в плоскости, задаваемой магнитными моментами какой-либо пары соседних обмоток. По меньшей мере, часть обмоток в предпочтительном варианте могут иметь вытянутую форму в проекции на горизонтальную плоскость.

Задача изобретения также решается с помощью магнитного подвеса транспортного средства, перемещающегося с использованием магнитной левитации относительно путепровода с ферромагнитной направляющей и проводящей поверхностью. Такой подвес содержит, по меньшей мере, одно электромагнитное устройство по любому из вышеописанных вариантов.

Задача изобретения также решается с помощью транспортного средства, предназначенного для перемещения по путепроводу с использованием магнитной левитации. Транспортное средство должно иметь в своем составе магнитный подвес, содержащий, по меньшей мере, одно электромагнитное устройство по любому из вышеописанных вариантов. Кроме того, путепровод может содержать ферромагнитную направляющую и/или проводящую поверхность для транспортных средств с электромагнитным подвесом (ЭМП) или электродинамическим подвесом (ЭДП), соответственно.

Благодаря настоящему изобретению достигаются такие технические результаты, как формирование магнитного поля по заданной площади с обеспечением того, что электромагнитное устройство формирует магнитное поле преимущественно по одну сторону от устройства, а значит, все магнитное поле используется более эффективно и уменьшаются поля рассеяния в других областях вне рабочей зоны. Кроме того, снижен вес устройства. Кроме того, устройством в соответствии с настоящим изобретением обеспечивается возможность создания сильных магнитных полей, распределенных по площади, причем само устройство может иметь компактные размеры в виде плоской структуры из минимального количества обмоток, то есть без излишних коммуникаций, подводящих сильные токи. Также устраняются тепловые утечки и благодаря этому снижаются затраты на поддержание низких температур, обеспечивающих сверхпроводимость катушек. Кроме того, устранено ограничение величины магнитного поля насыщением материала сердечника путем устранения самого сердечника при одновременном обеспечении асимметрии магнитного поля.

Краткое описание чертежей

На фиг. 1 показан первый возможный вариант конфигурации устройства в соответствии с настоящим изобретением.

На фиг. 2 показан второй возможный вариант конфигурации устройства в соответствии с настоящим изобретением.

На фиг. 3 показан третий возможный вариант конфигурации устройства в соответствии с настоящим изобретением.

На фиг. 4 показан возможный вариант конфигурации электромагнитного устройства из трех электромагнитов в соответствии с настоящим изобретением.

На фиг. 5 показано распределение магнитного поля вдоль двух параллельных прямых, симметрично расположенных выше и ниже сборки из трех электромагнитов относительно линии их центров.

На фиг. 6 показан еще один возможный вариант конфигурации устройства в соответствии с настоящим изобретением.

На фиг. 7 показан дополнительный возможный вариант конфигурации устройства в соответствии с настоящим изобретением.

На фиг. 8 показан вид в разрезе возможного варианта электромагнитного устройства в соответствии с настоящим изобретением над проводящей поверхностью.

На фиг. 9 показан вид сверху возможного варианта электромагнитного устройства в соответствии с настоящим изобретением, представленного на фиг. 8, над проводящей поверхностью.

На фиг. 10 показана схема магнитного подвеса с магнитным устройством из обмоток, формирующих несимметричное магнитное поле с возможностью электрического (электронного) изменения ориентации магнитного поля.

Осуществление изобретения

Распределение поля магнитного подвеса с конструкцией, изображенной в авторском свидетельстве SU 645880, может быть обеспечено, в частности, путем увеличения площади поперечного сечения полюсов. Однако это приводит к повышению расхода материала на изготовление полюсов ферромагнитной направляющей и сердечника электромагнита, что также сказывается на увеличении веса магнитного подвеса и транспортного средства в целом, что снижает эффективность системы. Кроме того, в таком варианте по-прежнему остается обязательным использование сердечника.

Для уменьшения расхода материала на полюсы сердечника и, в пределе, отказаться от применения сердечника, можно установить дополнительную катушку (обмотку) электромагнита так, чтобы магнитный момент или силовые линии электромагнита были, по существу, перпендикулярны ферромагнитной направляющей путепровода. В таком случае обеспечивается, с одной стороны, распределение магнитного поля по площади, не меньшей чем площадь внутри обмотки электромагнита, а с другой стороны, вес электромагнита не только не увеличивается, но и снижается. Кроме того, сердечник может быть исключен из электромагнита, поскольку обычно катушки электромагнитов располагаются достаточно близко к ферромагнитной направляющей, чтобы уменьшить рассеяние магнитного поля.

Также необходимо отметить, что при указанном в авторском свидетельстве SU 645880 расположении электромагнита с U-образным сердечником появляется возможность использования такого подвеса не только в схеме ЭМП (с притяжением к ферромагнитной направляющей), но и в схеме ЭДП (с отталкиванием от проводящей поверхности, выполненной из немагнитного электропроводящего материала, например, меди, алюминия и т.п.), путем переустановки полюсов U-образного сердечника вниз. Однако, переключение между схемами с ЭМП и ЭДП в ходе движения невозможно.

Недостатком конфигурации по авторскому свидетельству с дополнительной катушкой является то, что магнитное поле по одну сторону от электромагнита не участвует во взаимодействии с ферромагнитной направляющей (или проводящей поверхностью), что приводит к недостаточно эффективному использованию энергии электромагнитного поля в рабочей зоне и появлению значительных полей рассеяния в других областях вне рабочей зоны. Это приводит к необходимости применения увеличенного количества электромагнитов или электромагнитов увеличенного размера и массы для формирования магнитного поля требуемой величины, что также приводит к снижению полезной нагрузки, перевозимой транспортным средством, для создания левитации в которых применяется электромагнит с подобной ориентацией.

Для более эффективного использования энергии магнитного поля в рабочей зоне и уменьшения паразитных полей рассеяния в других областях вне рабочей зоны возможно использовать электромагнитное устройство (сборку электромагнитов с «поворачивающимся» вектором магнитного момента) в соответствии с настоящим изобретением.

Электромагнитным устройством согласно настоящему изобретению является сборка трех или более электромагнитов, в которой выполнены условия:

(1) Векторы магнитных моментов какой-либо пары соседних электромагнитов не коллинеарны, то есть не параллельны (иначе, их векторное произведение не равно нулю);

(2) проекции векторов магнитных моментов на вертикальную плоскость XOZ последовательности электромагнитов монотонно поворачивается при перемещении точки наблюдения от центра одного магнита к центру другого в одном направлении (по или против часовой стрелки). Причем углы поворота меньше 180°. Другими словами, все векторные произведения магнитных моментов двух последовательных электромагнитов находятся в одном полупространстве относительно вертикальной плоскости XOZ (такая плоскость задается осями OX и OZ) (либо в полупространстве Y>0, либо Υ<0).

Обмотка в предельном случае может состоять из одного витка, однако в предпочтительном варианте исполнения каждая обмотка, входящая в состав электромагнитного устройства согласно настоящему изобретению, обычно содержит несколько витков, поскольку это обеспечивает оптимальную величину тока питания.

Форма витка или обмотки в целом в поперечной плоскости может быть любой. Однако в преимущественном варианте витки и обмотки выполнены в форме гладких линий не содержащих изгибов, поскольку в случае протекания в обмотках токов большой величины, необходимых для создания сильных магнитных полей, на изгибах будут создаваться предпосылки для выхода обмоток из строя. В показанных на фиг. 1 и 2 вариантах устройства обмотки 11, 13 и 21, 23 выполнены в виде круглых колец. Обмотки 12 и 22 на фиг. 1 и 2 имеют форму, отличающуюся от круглой и могут иметь углы. Однако в преимущественном варианте радиусы кривизны (закруглений) изгибов обмоток и витков в соответствии с настоящим изобретением имеют величину не менее 10%, 20%, 30% или 40% от внутреннего поперечного размера обмотки, а предпочтительно не менее 50%.

На фиг. 1 и 2 показаны магнитные моменты m11, m13 и m21, m23 обмоток 11, 13 и 21, 23 соответственно. Эти магнитные моменты на чертежах показаны противонаправленными и параллельными. Однако указанные обмотки не являются соседними, поскольку существуют обмотки 12 и 22 в указанных устройствах, соответственно. Магнитные моменты этих обмоток не показаны для того, чтобы не загромождать чертеж. В то же время они исходят преимущественно из центров этих обмоток и направлены от обмотки 11 и обмотке 13 и от обмотки 21 к обмотке 23, соответственно. В соответствии с этим магнитные моменты соседних обмоток не коллинеарны и благодаря этому формируется магнитное поле с асимметрией между верхней и нижней сторонами.

Разность между устройствами на фиг. 1 и 2 заключается в том, что обмотка 12 расположена внутри емкости 14 с охлаждающей жидкостью, а обмотка 22 поверх емкости 24 с охлаждающей жидкостью. Это означает, что для получения асимметричного магнитного поля не обязательно, чтобы все обмотки были расположены в емкости с охлаждающей жидкостью, обеспечивающей эффект сверхпроводимости, а значит, и сильные магнитные поля. В том случае, если часть обмоток располагается снаружи емкости, то асимметричное магнитное поле также будет получено. В то же время для получения магнитного поля той же величины, что и с использованием сверхпроводящего эффекта, потребуются обмотки другой конфигурации, обеспечивающие необходимые величины магнитных полей, например, за счет повышенного количества витков обмотки.

В представленных на чертежах устройствах не показаны подводящие провода или проводники в целях удобства иллюстрирования изобретения. В то же время необходимо учитывать, что электромагнитное устройство в соответствии с настоящим изобретением может осуществлять свои функции при пропускании электрического тока через обмотки (или при наличии в них электрического тока), который и создает необходимое магнитное поле. В связи с этим при осуществлении устройства на практике оно будет иметь соединительные провода или проводники, подводящие электрический ток. Ток может подводиться к каждой обмотке по отдельности, и в этом случае обеспечивается возможность изменения силы и/или направления тока в обмотках по отдельности, что дает гибкость в коммутации обмоток и возможность создания разнообразных конфигураций магнитного поля около устройства в зависимости от токов в обмотках.

В других вариантах обмотки могут быть соединены между собой - некоторые или все. Это уменьшает количество проводов, подводящих ток, и упрощает управление конфигурацией магнитного поля, создаваемого устройством. В то же время это снижает гибкость в обеспечении различных конфигураций магнитного поля. Например, если все обмотки соединены между собой, то есть через все обмотки протекает один и тот же ток, то конфигурация магнитного поля будет предпочтительно оставаться одной и той же независимо от изменений тока, а будет меняться лишь напряженность магнитного поля и/или его направление. В компромиссном варианте обмотки могут быть разделены на комплексы обмоток и соединяться между собой в комплексах (то есть в одной группе обмоток течет один и тот же ток), а путем изменения токов в различных комплексах обмоток возможно изменять конфигурацию магнитного поля. Группы обмоток, описываемые далее, могут иметь соединения обмоток внутри групп или между группами, или же в указанных группах каждая обмотка может коммутироваться отдельно - таким образом, комплексы обмоток и группы обмоток в целом различающиеся понятия, хотя в некоторых случаях они могут и совпадать.

На фиг. 1, 2, 6, 7 показаны контуры (ребра) 14, 24, 68, 77 емкостей с охлаждающей жидкостью. На этих фигурах показаны лишь контуры емкостей для того, чтобы стенки емкостей не закрывали на фигурах обмотки (катушки), расположенные внутри, и возможность отображения расположения внутренних элементов электромагнитного устройства в соответствии с настоящим изобретением, в состав которого помимо обмоток входят и емкости для/с охлаждающей жидкостью, упрощает пояснение конструкции и принципа действия вариантов выполнения настоящих устройств. На остальных фигурах емкости (или их контуры/ребра) не показаны, однако подразумевается, что изображенные наборы обмоток располагаются в таких емкостях с охлаждающей жидкостью, обеспечивающей сверхпроводящий эффект. На всех чертежах также не показаны устройства и коммуникации, необходимые для обеспечения низкой температуры сверхпроводимости ввиду того, что такое оборудование известно в уровне техники и может быть позаимствовано с имеющихся, изготавливаемых или проектируемых сверхпроводящих устройств.

Электромагнитное устройство в соответствии с настоящим изобретением предназначено для формирования магнитного поля, взаимодействующего с внешним по отношению к электромагнитному устройству объектом. Это значит, что объект, с которым взаимодействует электромагнитное устройство, не охватывается устройством. Иными словами, объект, для магнитного взаимодействия с которым предназначено электромагнитное устройство, находится вне объема, ограничиваемого любыми прямолинейно соединенными крайними точками, линиями или поверхностями. Взаимодействие устройства с внешним объектом осуществляется предпочтительно в ближней зоне. Расстояния, на которых магнитное поле спадает до несущественных величин, может составлять одно или несколько (2, 3, 4, 5, 7, 10) линейных размеров обмоток, входящих в устройство (например, их поперечных или продольных размеров).

Кроме того, электромагнитное устройство в соответствии с настоящим изобретением создает асимметричное магнитное поле, преимущественно формируемое лишь с одной из сторон, причем обеспечивается такая возможность без необходимости использования сердечников в катушках/обмотках. Это позволяет усилить магнитное взаимодействие при той же массе и/или токах. Соответственно, объект, для взаимодействия с которым предназначено электромагнитное устройство, преимущественно находится стой стороны, где формируется магнитное поле (предпочтительно максимальное по величине). Преимуществом изобретения является то, что обеспечивается распределенное магнитное поле, величина которого может корректироваться изменением электрического тока, пропускаемого через обмотки. Путем изменения направления тока в части или во всех обмотках (электромагнитах) также возможно менять сторону, в которой создается магнитное поле без механических перемещений или поворотов.

Помимо того, что магнитное поле распределено, по меньшей мере, по площади внутри обмотки (при этом сердечник может и отсутствовать, что снижает массу и удешевляет сборку в целом в связи с отсутствием расхода на материал сердечника, например, стали и снимает ограничение на нелинейность системы, накладываемое степенью насыщения ферромагнитного материала сердечника), оно также распределено и в продольном направлении за счет нескольких обмоток первой группы, располагающихся вдоль этого направления. Для того, чтобы поле было распределено и в направлении, перпендикулярном продольному и пролегающему в плоскости, в которой расположены электромагниты, параллельный на фиг. 1 и 2 горизонтальной плоскости XOY, возможно располагать рядом несколько рядов подобных сборок обмоток. Однако такая конфигурация может создавать дополнительные сложности с коммутацией подводящих проводов/кабелей. Кроме того, в случае круглых электромагнитов (обмоток), как показано на фиг. 1 и 2, будет наблюдаться неплотная упаковка, а применение квадратных, прямоугольных, ромбических электромагнитов (обмоток) или других видов форм со значительными изгибами ограничивает величину магнитных полей, которые могут формировать эти электромагниты (обмотки), поскольку изгибы проволоки, из которой формируются обмотки, на углах квадратных электромагнитов подвержены эффекту расплющивания сечения, что может привести к разрушению или повышенному электрическому сопротивлению обмотки.

Для устранения необходимости применения множеств параллельных сборок обмоток в соответствии с изобретением и избегания проблем с коммутацией и разводкой коммуникацией, подводящих токи, а также для обеспечения возможности создания сильных магнитных полей, по меньшей мере, часть обмоток устройства может иметь в поперечном направлении по оси OY, перпендикулярном вертикальной плоскости XOZ на фиг. 1 и 2, вытянутую форму. На фиг. 3 это направление соответствует оси OY, вдоль которой обмотки 31-35 вытянуты (показанная форма обмоток обычно называется рейстрековой). При этом на краях подобных вытянутых электромагнитов обмотки могут иметь закругленную форму, вследствие чего в обмотках подобных электромагнитов отсутствуют изломы и обеспечена возможность беспрепятственного пропускания больших токов, которые могут формировать сильные магнитные поля, распределенные в сборке по площади.

Как показано на фиг. 3, в электромагнитном устройстве с такими вытянутыми обмотками 131-135 магнитные моменты m31-m35, расположены так, чтобы образовывалось электромагнитное устройство в соответствии с настоящим изобретением вдоль продольного направления, задаваемого осью OX. По оси OY показанное устройство содержит одну обмотку, однако в некоторых случаях могут формироваться и двумерные устройства в соответствии с настоящим изобретением, когда обмотки устанавливаются так, чтобы магнитные моменты обмоток формировали требуемое распределение (расположение) по двум направлениям.

Для пояснения принципа работы устройства в соответствии с настоящим изобретением обратимся к фиг. 4, на котором показан один из возможных вариантов электромагнитного устройства в соответствии с настоящим. Сборка содержит, по меньшей мере, три обмотки 41, 42 и 43. Поперечные плоскости соседних обмоток - это такие пары обмоток, как 41 и 42, а также 42 и 43 - расположены под углом друг к другу (то есть не находятся в одной плоскости, не коллинеарны, иными словами, углы между поперечными плоскостями обмоток составляют величины больше 0° и меньше 180°, например, от 1° до 179°). Те обмотки, которые не являются соседними, то есть их разделяет (например, при развороте одной из обмоток на место другой), по меньшей мере, одна промежуточная обмотка, могут лежать в одной плоскости, то есть углы между поперечными плоскостями таких обмоток могут иметь значение 0° или 180°, хотя это и не обязательно. Например, обмотки 41 и 43 на фиг. 4 не являются соседними, т.к. их разделяет обмотка 42. Переход от обмотки 41 к обмотке 42 осуществляется поворотом обмотки 41 (ее поперечной плоскости, в которой лежат витки) на угол 90°; аналогично совершается переход от обмотки 42 к обмотке 43. В то же время обмотки 41 и 43 могут находиться в одной плоскости (на фиг. 4 она параллельна горизонтальной (продольной) плоскости XOY). Все обмотки 41-43 (их поперечные плоскости, в которых располагаются витки обмоток) на фиг. 4 расположены перпендикулярно вертикальной плоскости XOZ.

Для того, чтобы электромагнитное устройство создавало магнитное поле преимущественно с одной стороны, обмотки устройства должны быть расположены так, и быть запитаны токами так, чтобы результаты векторных произведений магнитных моментов соседних обмоток были направлены в одну и ту же сторону от плоскости, составленной какой-либо (или, в некоторых случаях, любой) парой магнитных моментов обмоток, входящих в состав электромагнитного устройства. Другими словами, результаты векторных произведений магнитных моментов соседних обмоток находятся в одном и том же полупространстве, получаемом делением пространства плоскостью, составленной какой-либо парой магнитных моментов обмоток, входящих в состав электромагнитного устройства.

Необходимо учитывать тот факт, что для настоящего изобретения имеет значение направление векторного произведения, а не его длина. В связи с этим в упрощенном способе определения направления векторного произведения может оказаться достаточным построение вектора, создающего правую тройку векторов с магнитными моментами соседних обмоток - в соответствии с настоящим изобретением, два таких построенных векторных произведения для двух или более пар магнитных моментов соседних обмоток должны быть направлены (расположены) с одной стороны плоскости, построенной по одной паре магнитных моментов соседних обмоток (или с одной стороны нескольких таких плоскостей, построенных по парам магнитных моментов соседних обмоток).

Кроме того, возможен вариант определения необходимых направлений магнитных моментов обмоток и без определения векторного произведения и построения какого либо дополнительного вектора. Для этого по двум магнитным моментам создается плоскость и далее при наблюдении электромагнитного устройства с одной и той же стороны этой плоскости (из одного и того же полупространства, на которые плоскость делит пространства) кратчайший поворот магнитных моментов обмоток, входящих в устройство, совершается либо всегда против часовой стрелки, либо всегда по часовой стрелке. Например, на фиг. 4 магнитными моментами m41, m42 и m43 обмоток 41-43 образуется вертикальная на фиг. 4 плоскость XOZ. При наблюдении обмоток 41-43 с ближайшей стороны от плоскости XOZ (по оси OY от точки O по направлению вдоль стрелки Y, то есть с той стороны, с которой мы смотрим на фигуру) кратчайший поворот магнитного момента m41 к моменту m42 осуществляется против часовой стрелки, также как и кратчайший поворот магнитного момента m42 к моменту m43 - это означает, что обмотки 41-43 (сборка этих обмоток) образуют электромагнитное устройство в соответствии с настоящим изобретением.

Соседство обмоток определяется по их расположению в сборке обмоток, составляющей устройство. Для некоторой заданной обмотки соседней обмоткой будет считаться та обмотка, которая находится ближе всего к заданной обмотке с той или другой стороны от поперечной плоскости, перпендикулярной магнитному моменту обмотки. Таким образом, у заданной обмотки может быть не более двух соседних обмоток. Например, соседними обмотками считаются обмотки 41 и 42, а также 42 и 43 на фиг. 4. На фиг. 1 соседними обмотками являются обмотки 11 и 12, 12 и 13, на фиг. 2 обмотки 21 и 22, 22 и 23, а на фиг. 3 обмотки 31 и 32, 32 и 33, 33 и 34, 34 и 35. Переход между соседними обмотками (между их поперечными плоскостями) преимущественно происходит поворотом на угол предпочтительно не более 135° и сдвигом вдоль направления магнитного момента. В том случае, если ближайшая обмотка находится в направлении, поперечном направлению магнитного момента, такая обмотка преимущественно не может считаться соседней. Например, на фиг. 4 не являются соседними обмотки 41 и 43 (поскольку они лежат в одной плоскости, то векторное произведение их параллельных (коллинеарных) магнитных моментов равно нулю, а направление нулевого вектора неопределяемо), а на фиг. 3 обмотки 31, 33 и 35, а также обмотки 32 и 34, обмотки 32 и 35 и обмотки 31 и 34.

Также может быть предложен другой способ определения соседства обмоток. Поскольку электромагнитное устройство по настоящему изобретению предназначено для формирования магнитного поля, взаимодействующего с объектом вне устройства, то для электромагнитного устройства (оно еще может называться как сборка обмоток, катушек или электромагнитов) может быть задано продольное направление, преимущественно пролегающее вдоль объекта, с которым предполагается взаимодействие устройства. На фигурах такое продольное направление задано осью OX (где она показана). В соответствии с этим обмотки устройства будут расположены со взаимным смещением вдоль продольного направления.

Смещение катушек может определяться с использованием различных точек. В предпочтительном варианте смещение определяется по положению, например, геометрических центров обмоток (электромагнитов, катушек). Геометрическими центрами могут считаться, в частности, точки симметрии, если обмотки выполнены в виде симметричных изделий, или точки, равноудаленные или в среднем равноудаленные от крайних точек и/или поверхностей обмоток. В то же время смещение в продольном направлении не означает, что эти электромагниты не могут быть установлены со смещением в других направлениях. Продольным направлением также может считаться то направление, в отношении которого обмотки смещены и углы между магнитными моментами обмоток, определенные относительно продольного направления, соответствуют настоящему изобретению.

Соседними обмотками в таком случае будет считаться пара таких обмоток, которые смещены относительно продольного направления на наименьшее расстояние в одну или другую сторону вдоль продольного направления относительно заданной обмотки. Например, в том случае, если положение обмотки определяется по ее геометрическому центру, то между проекциями геометрических точек соседних обмоток на продольное направление не находятся проекции геометрических точек других обмоток.

В некоторых случаях обмотки сборки могут быть сгруппированы в две группы обмоток. Первая группа обмоток располагается в плоскости, преимущественно параллельной объекту, для взаимодействия с которым создается магнитное поле (например, ферромагнитная направляющая или проводящая поверхность). На фиг. 4 это обмотки 41 и 43, на фиг. 3 это обмотки 31, 33, 35, 3 на фиг. 8 и 9 это обмотки 141, 143, 145, 147 (на фиг. 8 и 9 также показана проводящая поверхность 140). Обмотки первой группы, расположенные рядом (но не являющиеся соседними в вышеуказанном смысле, поскольку соседними обмотками могут являться только обмотки разных групп обмоток), имеют преимущественно противоположно направленные магнитные моменты. То есть, магнитное поле, формируемое одной обмоткой первой группы, направлено в сторону, противоположную направлению, в котором направлено магнитное поле, формируемое обмоткой первой группы, входящей в то же самое устройство и расположенной рядом.

При таком расположении обмоток часть полей, формируемых в обе стороны, будут замыкаться друг на друга, а часть будет рассеиваться. Для того, чтобы устранить рассеяние и обеспечить формирование магнитного поля только с одной стороны, в сборке преимущественно применяются две (но, в зависимости от конфигурации, возможно, деление на три и более) группы обмоток (в наименьшем варианте, когда в сборке всего три обмотки, вторая группа обмоток может быть представлена одной обмоткой, например, это обмотка 42 на фиг. 4). На фиг. 3 во вторую группу входят обмотки 32, 34, на фиг. 8 и 8 обмотки 142, 144, 146. Обмотки второй группы ориентируют преимущественно поперечно (или перпендикулярно) обмоткам первой группы, так, чтобы магнитный момент был преимущественно параллелен объекту, на который направляется магнитное поле (например, ферромагнитной направляющей или проводящей поверхности). Располагаются обмотки второй группы между обмотками первой группы или около них, преимущественно около ближних частей обмоток электромагнитов первой группы, так