Распределенное волоконно-оптическое устройство обнаружения звуковых волн

Иллюстрации

Показать все

Изобретение относится к распределенным волоконно-оптическим устройствам обнаружения звуковых волн. Заявленное распределенное волоконно-оптическое устройство обнаружения звуковых волн включает блок излучения оптических импульсов, вызывающий падение оптического импульса на оптическое волокно, и блок приема света рэлеевского рассеяния, принимающий рэлеевское рассеяние света, полученное внутри оптического волокна. Блок излучения оптических импульсов выдает оптический импульс, модулированный кодовой последовательностью, которая имеет заданную длину, основанную на размере длины оптического волокна, и посредством которой оптический импульс разделяется на множество элементов заданной ширины. Техническим результатом является повышение чувствительности и точности обнаружения звуковой волны. 11 з.п. ф-лы, 10 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится к распределенному волоконно-оптическому устройству обнаружения звуковых волн, в котором оптическое волокно используется в качестве датчика и которое способно обнаруживать с высокой чувствительностью и высокой точностью звуковые волны, поступающие в различных областях в продольном направлении оптического волокна.

УРОВЕНЬ ТЕХНИКИ

Метод, предусматривающий использование оптического рефлектометра во временной области (OTDR) известен как метод измерения посредством оптического волокна, посредством которого рэлеевское обратное рассеяние света (именуемый далее просто «рэлеевское рассеяние света»), получаемый путем введения зондирующего света в оптическое волокно, используется для измерения линейных характеристик оптических волокон (потерь или положения разрывов в оптическом волокне) или распределения деформаций в продольном направлении оптического волокна.

Например, способ, описанный в патентном документе 1, известен как способ измерения линейной характеристики в OTDR. При осуществлении этого способа, вводят зондирующий свет в (обеспечивают его падение на) оптическое волокно и измеряют линейную характеристику на основании рэлеевского рассеяния света, полученного внутри волокна посредством такого введения.

Более конкретно, вводят оптический импульс (обеспечивают падение света) как зондирующий свет с одного конца (входного конца) оптического волокна. Измеряют рэлеевское рассеяние света, которое получено в различных областях в продольном направлении оптического волокна посредством введения оптического импульса и возврата его к входному концу. Измеряют линейную характеристику оптического волокна исходя из интенсивности измеренного рэлеевского рассеяния света и положения, где получено рэлеевское рассеяние света. В этом случае, положение в продольном направлении оптического волокна, где произошло рэлеевское рассеяние, задают на основании времени возвратно-поступательного движения, требуемого с момента ввода для того, чтобы введенный оптический импульс отразился внутри оптического волокна и возвратился к входному концу.

Кроме того, например, способ использования сдвига частоты рэлеевского рассеяния света, полученного в области, где в оптическом волокне произошли деформации, известен как способ измерения распределения деформаций в продольном направлении оптического волокна в OTDR.

При осуществлении этого способа, вводят оптический импульс (обеспечивают его падение) с входного конца оптического волокна. Измеряют рэлеевское рассеяние света, которое получено в различных областях в продольном направлении оптического волокна посредством введения оптического импульса и возврата его к входному концу. Когда к оптическому волокну прикладывают давление и получают деформации внутри оптического волокна, происходит сдвиг частоты рэлеевского рассеяния света, полученного в области, где появились деформации. В результате фаза измеренного рэлеевского рассеяния света изменяется относительно фазы рэлеевского рассеяния света, полученного в оптическом волокне в исходном состоянии (состоянии, в котором давление не было приложено). Это изменение фазы дает возможность обнаружить давление, приложенное к оптическому волокну. В этом случае, изменение фазы можно установить с приемлемой точностью, вводя оптический импульс множество раз и находя среднее значение рэлеевского рассеяния в разных областях.

Таким образом, в OTDR можно обнаружить изменение рэлеевского рассеяния света в различных областях в продольном направлении оптических волокон и можно обнаружить деформации (напряжение, приложенное к оптическому волокну) в областях в продольном направлении оптического волокна с высокой чувствительностью и высокой точностью на основании изменения фазы.

Способ, предусматривающий вышеупомянутое изменение фазы рэлеевского рассеяния света, гарантирует высокочувствительное и высокоточное обнаружение деформаций, возникших в различных областях в продольном направлении оптического волокна. Поэтому очевидно, что таким способом можно обнаруживать звуковую волну, которая попала в упомянутые области оптического волокна (достигла их).

Более конкретно, когда определенная звуковая волна распространяется в газе, жидкости или твердом веществе и достигает оптического волокна, то есть попадает в него, в этот оптическом волокне появляются крошечные деформации. Эти деформации зависят от частоты или амплитуды звуковой волны, которая попала в оптическое волокно. Соответственно, деформации, возникшие в областях оптического волокна, можно обнаружить, пользуясь способом, предусматривающим использование вышеупомянутого изменения фазы, а анализируя деформации можно обнаружить звуковую волну (определить ее частоту или амплитуду) и задать положение источника излучения звуковой волны.

Когда при осуществлении такого способа обнаруживают звуковую волну в областях в продольном направлении оптического волокна, разрешение в продольном направлении (продольное разрешение) определяется шириной импульса зондирующего света (оптического импульса), вводимого в оптическое волокно. Например, при обнаружении оптических волн, которые попали в две точки, расположенные в продольном направлении оптического волокна, а промежуток между этими точками меньше ширины импульса зондирующего света, невозможно определить, которая из звуковых волн, попавших в эти две точки, вызвала установленное изменение фазы рэлеевского рассеяния света. Поэтому для реализации высокого продольного разрешения нужно уменьшать ширину импульса.

Вместе с тем, если уменьшают ширину импульса зондирующего света, уменьшается и энергия оптических импульсов. В результате мощность сигнала рассеиваемого света, который рассеивается в областях оптического волокна и возвращается к входному концу, уменьшается.

Кроме того, при осуществлении способа, предусматривающего вышеупомянутое изменение фазы, происходит обнаружение деформаций (деформаций оптического волокна), которые не изменяются в течение короткого периода времени. Поэтому определение изменения фазы рэлеевского рассеяния света в каждой области осуществляют с приемлемой точностью посредством многократного измерения рэлеевского рассеяния света, вырабатываемого в каждой области оптического волокна, и использования его среднего значения. Вместе с тем, поскольку деформации в оптическом волокне, обуславливаемые звуковой волной, попадающей в него, изменяются в течение очень короткого периода времени, нельзя использовать способ, предусматривающий многократное измерение света рэлеевского рассеяния, вырабатываемого в этих областях, и использование его среднего значения.

Таким образом, способом, предусматривающим использование вышеупомянутого изменения фазы, очень трудно обнаружить звуковую волну с приемлемой точностью.

Патентный документ 1: Публикация заявки № H9-236513 на патент Японии.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задача данного изобретения состоит в том, чтобы разработать распределенное волоконно-оптическое устройство обнаружения звуковых волн, которое может с высокой чувствительностью и высокой точностью обнаруживать звуковую волну, а также реализовать высокое разрешение.

Распределенное волоконно-оптическое устройство обнаружения звуковых волн в соответствии с первым аспектом данного изобретения представляет собой распределенное волоконно-оптическое устройство обнаружения звуковых волн, которое предусматривает использование оптического волокна в качестве датчика и включает в себя:

блок излучения оптических импульсов, вызывающий падение оптического импульса на оптическое волокно с одного конца оптического волокна; и

блок приема рэлеевского рассеяния света, принимающий рэлеевское рассеяние света, полученное внутри оптического волокна за счет падения оптического импульса, причем

блок излучения оптических импульсов выдает оптический импульс, модулируемый кодовой последовательностью, которая имеет заданную длину, основанную на размере длины оптического волокна, и посредством которой оптический импульс разделяется на множество элементов заданной ширины; а

блок приема рэлеевского рассеяния света включает в себя:

блок получения изменения фазы, осуществляющий демодуляцию, соответствующую модуляции в блоке излучения оптических импульсов, рэлеевского рассеяния света и определяющий изменение его фазы исходя из демодулированного рэлеевского рассеяния света; и

блок обнаружения звуковых волн, определяющий звуковую волну, попавшую в оптическое волокно, исходя из изменения фазы, определяемого блоком получения изменения фазы.

Задачи, признаки и преимущества данного изобретения станут понятнее из нижеследующего описания и сопровождающих чертежей.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 представлена функциональная блок-схема, демонстрирующая конфигурацию распределенного волоконно-оптического устройства обнаружения звуковых волн в соответствии с первым вариантом осуществления данного изобретения.

На фиг.2 представлен пояснительный чертеж, иллюстрирующий фазомодулированный оптический импульс, выдаваемый из блока излучения оптических импульсов распределенного волоконно-оптического устройства обнаружения звуковых волн.

На фиг.3 представлен пояснительный чертеж, иллюстрирующий блок измерения фазы распределенного волоконно-оптического устройства обнаружения звуковых волн.

На фиг.4 представлены схемы блока цифровой обработки сигналов распределенного волоконно-оптического устройства обнаружения звуковых волн.

На фиг.5A-5D представлены концептуальные диаграммы для пояснения модулированного оптического импульса и фильтра восстановления импульсов после сжатия для демодуляции оптического импульса.

На фиг.6 показаны данные распределения при изменении фазы света рэлеевского рассеяния вдоль продольного направления обнаруживающего волокна.

На фиг.7 показана блок-схема последовательности операций во время обнаружения звуковых волн.

На фиг.8 представлена функциональная блок-схема, демонстрирующая конфигурацию распределенного волоконно-оптического устройства обнаружения звуковых волн в соответствии со вторым вариантом осуществления данного изобретения.

На фиг.9 представлена функциональная блок-схема, демонстрирующая конфигурацию распределенного волоконно-оптического устройства обнаружения звуковых волн в соответствии с третьим вариантом осуществления данного изобретения.

На фиг.10 представлен пояснительный чертеж, демонстрирующий оптические импульсы, выдаваемые из множества импульсных блоков.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Первый вариант осуществления

Ниже со ссылками на фиг.1-6 приведено описание первого варианта осуществления данного изобретения.

Распределенное волоконно-оптическое устройство 10 обнаружения звуковых волн в соответствии с данным вариантом осуществления предусматривает использование оптического волокна (обнаруживающего оптического волокна) 12 в качестве датчика, обнаружение звуковых волн, которые попадают в каждую область в продольном направлении оптического волокна, с высокой чувствительностью и высокой точностью и реализацию высокого разрешения в продольном направлении (далее именуемого также «продольным разрешением»). Распределенное волоконно-оптическое устройство 10 обнаружения звуковых волн в соответствии с данным вариантом осуществления может обнаруживать не только звуковую волну, попавшую в конкретное положение (место) в продольном направлении (направлении оси z) обнаруживающего оптического волокна 12, но и распределение звуковых волн, попавших одновременно в области в продольном направлении.

В распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн обнаруживающее оптическое волокно можно использовать вместо микрофона для записи звука. Например, вставляя обнаруживающее оптическое волокно 12 в скважину или аналогичное углубление и обнаруживая звуковую волну (например, звуковую волну с частотой примерно 1 кГц), распространяющуюся в грунте, посредством этого обнаруживающего оптического волокна 12, можно наблюдать состояние скважины и подземные условия. В области медицины, за счет обнаружения звуковой волны (например, ультразвуковой волны с частотой от 3 МГц до 30 МГц), распространяющейся внутри тела человека, посредством обнаруживающего оптического волокна 12, можно наблюдать внутренности тела человека.

Как показано на фиг.1, распределенное волоконно-оптическое устройство 10 обнаружения звуковых волн снабжено основным корпусом 11 устройства и обнаруживающим оптическим волокном 12. Основной корпус 11 устройства снабжен блоком 20 излучения оптических импульсов, блоком 50 измерения фазы, оптическим циркулятором 14, блоком 30 приема света рэлеевского рассеяния, блоком 16 управляемой обработки и блоком 40 вывода.

Между блоком 20 излучения оптических импульсов и оптическим циркулятором 14 в распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн может быть расположен оптический усилитель, такой, как оптическое волокно, легированное эрбием (EDFA).

Кроме того, между блоком 20 излучения оптических импульсов и оптическим циркулятором 14 в распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн может быть расположен переключатель логических узлов (LN). В этом случае, коэффициент ослабления оптического импульса, выдаваемого из блока 20 излучения оптических импульсов в распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн, предпочтительно равен нескольким десяткам децибел или превышает это значение.

Обнаруживающее оптическое волокно 12 используется в качестве датчика для обнаружения звуковой волны, которая попала в оптическое волокно 12. Обнаруживающее оптическое волокно 12 представляет собой длинное оптическое волокно, имеющее первый концевой участок (один конец) 12a и второй концевой участок 12b, являющийся концевым участком на стороне, противоположной стороне первого концевого участка 12a. Более конкретно, например, когда распределенное волоконно-оптическое устройство 10 обнаружения звуковых волн используется для обнаружения звуковых волн в вышеупомянутой скважине, размер длины (общая длина) L обнаруживающего оптического волокна 12 составляет примерно 30 км, а когда распределенное волоконно-оптическое устройство обнаружения звуковых волн используется для обнаружения звуковых волн (ультразвуковых волн) в области медицины, длина составляет примерно 100 м.

Оптический импульс (зондирующий свет) падает в обнаруживающее оптическое волокно 12 с первого концевого участка 12a оптического волокна 12, а из-за того, что этот оптический импульс излучается наружу, внутри обнаруживающего оптического волокна 12 вырабатывается свет, связанный с рассеянием Рэлея (рэлеевское обратное рассеяние света).

Блок 20 излучения оптических импульсов снабжен блоком 22 источника света, выдающим оптический импульс заданной частоты, и блок 24 модуляции, который осуществляет модуляцию (в данном варианте осуществления - импульсную модуляцию) оптического импульса, выдаваемого из блока 22 источника света. Блок излучения оптических импульсов обуславливает падение оптического импульса на обнаруживающее оптическое волокно 12 с переднего концевого участка 12a обнаруживающего оптического волокна 12.

Блок 22 источника света имеет источник 220 света, первый разделительный блок 222, и второй разделительный блок (спектральный блок) 224 и выдает первый оптический импульс и второй оптический импульс.

Источник 220 света может выдавать (излучать) оптические импульсы с заданными частотами. Более конкретно, как показано на фиг.2, источник 220 света формирует импульсный свет, выдавая оптические импульсы P1, P2, P3, … Pi, имеющие заданную ширину D импульса с первым временным интервалом TD между ними. Источник 220 света выдает линейно поляризованные оптические импульсы Pi (импульсный свет). Источником 220 света управляет блок 16 управляемой обработки, а длину волны колебаний (частоту колебаний) изменяют путем изменения температуры или тока возбуждения посредством блока 16 управляемой обработки. Кроме того, в источнике 220 света блок 16 управляемой обработки также управляет выходным интервалом между оптическими импульсами Pi. Источник 220 света согласно данному варианту осуществления представляет собой лазерный диод (ЛД).

Ширину D импульса для каждого оптического импульса Pi задают на основании размера L длины обнаруживающего оптического волокна 12. Более конкретно, чем больше ширина D импульса, тем больше энергия оптического импульса Pi. Соответственно, ширину D импульса задают так, что когда блок 30 приема рэлеевского рассеяния света принимает рэлеевское рассеяние света, полученный в окрестности второго концевого участка 12b посредством оптического импульса Pi, падающего с переднего концевого участка 12a обнаруживающего оптического волокна 12, гарантируется, что рэлеевское рассеяние света имеет достаточную мощность сигнала (интенсивность рэлеевского рассеяния света), необходимую для обнаружения звуковой волны, которая попала в окрестность второго концевого участка 12b обнаруживающего оптического волокна 12. Ширина D импульса в общем случае также увеличивается с увеличением размера L длины обнаруживающего оптического волокна 12.

Временной интервал TD между оптическими импульсами Pi задают на основании частоты звуковой волны, которая является объектом обнаружения для распределенного волоконно-оптического устройства 10 обнаружения звуковых волн. Это подробнее описывается ниже.

В соответствии с теоремой дискретизации Найквиста, выборку из звуковой волны, являющейся объектом обнаружения, следует делать, по меньшей мере, дважды за один период звуковой волны. Поэтому временной интервал TD между оптическими импульсами Pi должен составлять половину периода звуковой волны, являющейся объектом обнаружения, или менее. Таким образом, распределение звуковых волн, которое можно обнаружить (сканировать) одним оптическим импульсом Pi (распределение звуковых волн, которые попали в каждую область в продольном направлении), находится в пределах диапазона, в котором оптический импульс Pi может двигаться взад и вперед внутри обнаруживающего оптического волокна 12 в течение периода времени выборки. В звуковой волне с высокой частотой, один период является коротким, и поэтому необходимый период выборки тоже является коротким. В результате диапазон, в котором оптический импульс Pi может двигаться взад и вперед в обнаруживающем оптическом волокне 12 в течение периода выборки, является коротким. Как следствие, диапазон, в котором звуковую волну с высокой частотой можно обнаружить одним оптическим импульсом Pi при распределении вдоль обнаруживающего оптического волокна 12, является узким (коротким). По этой причине, если период выборки задают равным времени возвратно-поступательного движения оптического импульса или превышающим это время, когда обнаруживающее оптическое волокно 12, используемое в качестве датчика, длиннее диапазона, в котором оптический импульс Pi может двигаться взад и вперед в течение периода выборки, определяемого периодом звуковой волны, подлежащей обнаружению, возникает искажение в спектре звуковых волн, и обнаруживаемая звуковая волна оказывается искаженной. Кроме того, если период выборки задают равным периоду возвратно-поступательного движения оптического импульса или меньшим, чем этот период, прием рэлеевского рассеяния света происходит одновременно из множества областей в продольном направлении обнаруживающего оптического волокна 12, а полное распределение звуковых волн обнаружить не удается.

Соответственно, в распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн интервал между оптическими импульсами Pi сделан временным интервалом TD (первым временным интервалом), который короче половины одного периода звуковой волны, являющейся объектом обнаружения (звуковой волны с наивысшей частотой в полосе частот, когда полоса частот звуковой волны, являющейся объектом обнаружения, является широкой), и множество оптических импульсов P1, P2, P3, …, Pi продвигаются в течение заданного временного интервала (временного интервала, соответствующего первому временному интервалу TD) в обнаруживающем оптическом волокне 12. В результате в течение периода выборки можно сканировать всю область в продольном направлении обнаруживающего оптического волокна 12 множеством оптических импульсов, P2, P3, …, Pi, и можно последовательно принимать рэлеевское рассеяние света из областей в продольном направлении, так что рэлеевское рассеяние света из этих областей в продольном направлении не накладываются друг на друга.

Первый временной интервал TD в данном варианте осуществления представляет собой особый временной интервал в течение периода выборки, задаваемого звуковой волной, являющейся объектом обнаружения (периода времени, равного полупериоду звуковой волны или меньшему, чем он).

Кстати, поскольку оптические импульсы Pi, выдаваемые в течение первого временного интервала TD, являются фазомодулированными посредством взаимно различных (взаимно независимых) кодовых последовательностей в блоке 24 модуляции, оптический импульс Pi, посредством которого получено рэлеевское рассеяние света, можно идентифицировать посредством демодуляции принятого рэлеевского рассеяния света.

Следовательно, даже когда в распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн используют длинное обнаруживающее оптическое волокно 12 в качестве датчика и обнаруживают звуковую волну высокой частоты (например, с коротким периодом, как бывает в случае ультразвуковых волн), распределение звуковых волн вдоль обнаруживающего оптического волокна 12 можно обнаружить с надлежащей точностью, выдавая оптические импульсы Pi с первым временным интервалом TD.

Возвращаясь к фиг.1, отмечаем, что первый разделительный блок 222 разделяет (разветвляет) оптический импульс Pi, выходящий из источника 220 света, поддерживая при этом линейную поляризацию, а разделенный оптический импульс Pi выдается во второй разделительный блок 224 и блок 30 приема рэлеевского рассеяния света (более конкретно - в цифровой когерентный блок 320 приема).

Второй разделительный блок 224 разделяет оптический импульс Pi из первого разделительного блока 222 на первый оптический импульс и второй оптический импульс, поддерживая при этом линейную поляризацию, и выдает первый оптический импульс и второй оптический импульс (пару оптических импульсов) в блок 24 модуляции. Второй разделительный блок 224 разветвляет введенный оптический импульс в отношении 1/2 (50:50) и выдает разветвленные импульсы. Второй разделительный блок 224 согласно данному варианту осуществления представляет собой разделительное устройство с параметром 3 дБ (делительную призму с параметром 3 дБ).

Блок 24 модуляции имеет блок 240 фазовой модуляции и блок 242 объединения, осуществляет фазовую модуляцию первого оптического импульса и второго оптического импульса, выдаваемые блоком 22 источника света (более конкретно, вторым разделительным блоком 224) и объединяет фазомодулированные первый оптический импульс и второй оптический импульс.

Блок 240 фазовой модуляции имеет первый фазовый модулятор 240a, осуществляющий фазовую модуляцию первого оптического импульса, второй фазовый модулятор 240b, осуществляющий фазовую модуляцию второго оптического импульса, и блок 244 формирования кодов, формирующий пару кодовых последовательностей (парных кодов: см. фиг.2), образованную первой кодовой последовательностью Ai и второй кодовой последовательностью Bi.

Первый фазовый модулятор 240a осуществляет фазовую модуляцию первого оптического импульса на основании первой кодовой последовательности Ai, вводимой из блока 244 формирования кодов.

Второй фазовый модулятор 240b осуществляет фазовую модуляцию второго оптического импульса на основании второй кодовой последовательности Bi, вводимой из блока 244 формирования кодов.

Блок 244 формирования кодов формирует парные коды, образованные первой кодовой последовательностью Ai и второй кодовой последовательностью Bi, как упоминалось выше, выдает первую кодовую последовательность Ai в первый фазовый модулятор 240a и выдает вторую кодовую последовательность Bi во второй фазовый модулятор 240b. Каждый из парных кодов (первой кодовой последовательности Ai и второй кодовой последовательности Bi), формируемых блоком 244 формирования кодов, имеет заданную длину ( заданную длину последовательности), основанную на размере L длины обнаруживающего оптического волокна 12, а первый и второй оптические импульсы делятся на множество элементов заданной ширины d посредством фазовой модуляции оптических импульсов соответствующими парными кодами (см. фиг.5A и 5B). Таким образом, каждый из оптических импульсов является фазомодулированным с частотой d модуляции.

Ширину d каждого элемента задают на основании продольного разрешения обнаруживающего оптического волокна 12 в направлении звуковой волны. Это подробнее описывается ниже.

Например, когда в оптическом волокне 12 обнаруживают звуковые волны, которые попали в две точки, расположенные в продольном направлении обнаруживающего оптического волокна 12, для независимого обнаружения звуковых волн, которые попали в каждую точку, ширину импульса надо сделать короче, чем расстояние между этими двумя точками, когда используется одиночный импульс (оптический импульс, который не разделен на множество элементов). Соответственно, если оптический импульс Pi разделяют на множество элементов посредством фазовой модуляции с использованием заданной кодовой последовательности, каждый элемент может действовать подобно оптическому импульсу с малой шириной импульса. Соответственно, ширину d каждого элемента (ширину элемента) задают меньшей, чем целевое продольное разрешение.

Помимо этого, за счет такого разделения каждого оптического импульса на множество элементов с шириной d, можно также обнаружить звуковую волну высокой частоты. Более конкретно, чтобы обнаружить звуковую волну высокой частоты посредством одиночного импульса, нужно проводить измерения, пользуясь оптическим импульсом с шириной импульса, меньшей, чем расстояние, проходимое звуковой волной высокой частоты за один период. В этом случае, если оптический импульс разделяют на множество элементов с шириной d, каждый элемент действует подобно оптическому импульсу с малой шириной импульса, как упоминалось выше, и поэтому можно обнаружить звуковую волну с высокой частотой, вследствие чего оказывается возможным обнаружение посредством оптического импульса с шириной d импульса (с высокой частотой, соответствующей ширине d каждого элемента).

Первый и второй оптические импульсы в распределенном волоконно-оптическом устройстве 10 обнаружения звуковых волн согласно данному варианту осуществления является фазомодулированными посредством кодовых последовательностей (парных кодов), так что образуются элементы, которые имеют ширину d, заданную таким образом.

Блок 244 формирования кодов согласно данному варианту осуществления выдает кодовую последовательность Голея. Кодовая последовательность, выдаваемая блоком 244 формирования кодов, не ограничивается кодовой последовательностью Голея. Таким образом, кодовая последовательность, выдаваемая блоком формирования кодов, может представлять собой парные коды, таким образом, что сумма автокорреляционных функций является δ-функцией, или такой код, что отдельная автокорреляционная функцией является δ-функцией. Например, возможна кодовая последовательность на основании псевдослучайных чисел, такая, как M-последовательность.

Блок 244 формирования кодов формирует разные (независимые) парные коды для каждого оптического импульса Pi, выдаваемого из блока 22 источника света. В результате появляется возможность идентифицировать оптический импульс Pi, который создало рэлеевское рассеяние света, возвращающийся из обнаруживающего оптического волокна 12.

Блок 242 объединения объединяет первый оптический импульс и второй оптический импульс, которые являются фазомодулированными посредством блока 240 фазовой модуляции, с получением одиночного оптического импульса Pi и выдает суммарный оптический импульс.

Блок 242 объединения согласно данному варианту осуществления имеет пару входных участков (первый входной участок 242a и второй входной участок 242b),и эта пара входных участков 242a, 242b выполнена так, что направления поляризации вводимых лучей света становятся взаимно ортогональными. То есть блок 242 объединения согласно данному варианту осуществления объединяет и выдает оптический импульс и второй оптический импульс в состоянии, в котором направления их поляризаций взаимно ортогональны. В пояснении, приводимом ниже, первый оптический импульс, вводимый на первый входной участок 242a, также называется P-поляризованным импульсом, а второй оптический импульс, вводимый на второй входной участок 242b, также называется S-поляризованным импульсом.

Оптический путь, соединяющий компоненты от источника 220 света до блока 242 объединения, образован поддерживающим поляризацию оптическим волокном (ПП волокном) или волноводом, в котором поддерживается состояние поляризации. В результате оптический импульс Pi, выдаваемый в качестве линейно поляризованного света из источника 220 света, поддерживает свое состояние поляризации даже после разделения во втором разделительном блоке 224. Поэтому пара оптических импульсов (первый и второй оптические импульсы), вводимых в блок 242 объединения, находятся в состоянии, в котором их направления поляризации взаимно ортогональны, когда поддерживающее поляризацию оптическое волокно, соединяющее второй разделительный блок 224 с первым входным участком 242a, и поддерживающее поляризацию оптическое волокно, соединяющее второй разделительный блок 224 со вторым входным участком 242b, соединены с входными участками 242a, 242b блока 242 объединения таким образом, что направления поляризации оптических импульсов взаимно ортогональны.

Блок 50 измерения фазы измеряет фазу оптического импульса Pi, выдаваемого источником 220 света, и обнаруживает вызываемое источником 220 света изменение фазы (изменение фазы во времени) в оптическом импульсе. Блок 50 измерения фазы соединен с оптическим волокном (волноводом), проходящим от источника 220 света, и блоком 324 демодуляции и выдает сигнал фазы, соответствующий результату измерения, в блок 324 демодуляции. Блок 324 демодуляции осуществляет коррекцию на основании сигнала фазы. В результате из демодулированного сигнала можно устранить влияние изменения фазы, обуславливаемого источником 220 света.

Более конкретно, как показано также на фиг.3, блок 50 измерения фазы снабжен блоком 52 разделения синфазной и квадратурной составляющих (I/Q-разделения) и блоком 54 получения изменения фазы.

Блок 52 I/Q-разделения имеет два оптических волновода 521, 522, ответвляющихся от оптического волокна (оптического волновода), идущих от источника 220 света, оптический ответвитель 523 и блок 524 сдвига фазы на 90° и осуществляет I/Q-разделение света (оптического импульса), выдаваемого из источника 220 света.

Оптические волноводы 521, 522 ответвляют часть света, распространяющегося в оптическом волокне (оптическом волноводе), идущем от источника 220 света, и направляют эту часть света к оптическому ответвителю 523. Длина оптического пути оптического волновода 521 отличается от длины оптического пути оптического волновода 522. Более конкретно, длина E2 оптического пути оптического волновода 521 больше на τ (более конкретно, на расстояние, проходимое оптическим импульсом в течение временного интервала τ), чем длина E1 оптического пути оптического волновода 522.

Оптический ответвитель 523 вызывает интерференцию света, направляемого оптическим волноводом 521, со светом, направляемым оптическим волноводом 522, и выдает интерференционный свет. В этом случае, поскольку длина оптического пути оптического волновода 521 отличается от длины оптического пути оптического волновода 522, свет, направляемый оптическим волноводом 521, достигает оптического ответвителя 523 с задержкой на время τ относительно света, направляемого оптическим волноводом 522. Оптический ответвитель 523 разделяет интерференционный свет надвое и выдает разделенный свет в блок 54 получения изменения фазы.

Блок 524 сдвига фазы на 90° осуществляет сдвиг на 90° фазы одного луча света, разделенного оптическим ответвителем 523.

Описываемые ниже сигналы синфазной и квадратурной составляющих (I, Q-сигналы) выдаются из вышеупомянутого блока 52 I/Q-разделения.

Математические формулы 1

Q   =   E 1 E 2 × sin ( φ ( t + τ ) − ( φ ( t ) ) … (1-1)

I   =   E 1 E 2 × cos ( φ ( t + τ ) − ( φ ( t ) ) … (1-2)

Блок 54 получения изменения фазы осуществляет аналого-цифровое преобразование I, Q-сигналов из блока 52 I/Q-разделения, объединяет преобразованные сигналы и определяет фазу ϕ(t) света, выдаваемого из источника 220 света. Более конкретно, блок 54 получения изменения фазы определяет фазу ϕ(t) света посредством следующего уравнения (2).

Математическая формула 2

φ ( t ) = a r c t an ( Q I ) … (2)

Кроме того, блок 54 получения изменения фазы может определять скорость изменения фазы в каждый момент времени путем взятия производной по времени - (dϕ(t)/dt) - фазы ϕ(t), определяемой посредством уравнения (2).

Блок 54 получения изменения фазы выдает изменение фазы ϕ(t) (изменение фазы оптического импульса, обуславливаемого источником 220 света) света, выдаваемого источником 220 света, которое обнаружено вышеописанным образом, в качестве сигнала фазы.

Конкретная конфигурация блока 50 измерения фазы не ограничивается вышеописанной конфигурацией. Так, блок 50 измерения фазы может иметь другую конфигурацию при условии возможности обнаружения изменения фазы оптического импульса Pi, обуславливаемого источником 220 света.

В блоке 50 измерения фазы, оптические волокна и волноводы, образующие оптические пути (оптические волноводы 521, 522) от оптического волокна, проходящего от источника 220 света до блока 54 получения изменения фазы, также обладают характеристикой поддержания поляризации. То есть направление поляризации света, ответвляющегося от оптического волокна, идущего от источника 220 света, поддерживается, поскольку есть блок 54 получения изменения фазы.

Оптический циркулятор 14 представляет собой нереверсивный оптический компонент, в котором падающий свет и излучаемый свет обладают циркуляционной взаимосвязью по номерам участков. Таким образом, свет, падающий на первый участок 14a, излучается со второго участка 14b и не излучается с третьего участка 14c. Свет, падающий на второй участок 14b, излучается с третьего участка 14c и не излучается с первого участка 14a. Свет, падающий на третий участок 14c, излучается с первого участка 14a и не излучается со второго участка 14b. Первый участок 14a оптического