Способы экстракции и выделения компонентов целлюлозного материала

Иллюстрации

Показать все

Изобретение относится к способу экстракции и выделения компонентов из целлюлозного материала, который включает: (a) взаимодействие целлюлозного материала с надкритической жидкостью при условиях, обеспечивающих получение экстракта; (b) удаление нерастворимого вещества из экстракта; и (c) фракционирование экстракта с помощью дистилляции при пониженном давлении с получением одного или большего количества выделенных компонентов. Технический результат заключается в обеспечении удаления растворителя из экстракта без проведения дополнительной стадии обработки. 3 н. и 15 з.п. ф-лы, 3 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу экстракции и выделения компонентов целлюлозного материала, и компонентам, которые выделяют с помощью этого способа. Точнее, настоящее изобретение относится к способу, включающему надкритическую экстракцию целлюлозного материала, такого как табак, с последующим выделением по меньшей мере одного из компонентов, содержащихся в экстрагирующей среде, с помощью дистилляции.

Компоненты целлюлозного материала, которые экстрагируют и выделяют, обладают характеристиками веществ, придающих вкус и/или запах, поскольку они придают вкус или запах целлюлозному материалу, из которого их выделяют, или целлюлозному материалу, в который их затем добавляют.

Выделенные компоненты предназначены для использования с целью усиления вкуса и/или запаха продуктов и, в частности, горючих и негорючих табачных продуктов или заменителей табака или никотина.

Уровень техники

Потребители горючих и негорючих табачных продуктов могут быть очень чувствительны к вкусу продукта, который они используют. Процессы, использующиеся при в производстве таких продуктов, могут привести к удалению компонентов табака, которые вносят вклад во вкус и/или запах. Поэтому может быть желательным усиление вкуса табака до, во время или после обработки.

Кроме того, может быть желательным изготовление продуктов, которые дают потребителю ощущение вкуса или запаха, связанное с табачным продуктом, но которые не содержат табак, например, не содержащих табак или заменяющих никотин продуктов.

Также может быть желательным изготовление продуктов, которые дают потребителю ощущение конкретного вкуса или запаха, например, вкуса и/или запаха ментола.

Эти задачи можно решить путем применения веществ, придающих вкус и/или запах.

Вещества, придающие вкус, являются веществами, которые способны создать ощущение во рту потребителя. Ощущение в основном воспринимается, как вкус и запах, но также может обнаруживаться тактильными и тепловыми рецепторами, находящимися во рту, которые воспринимают трехкомпонентные ощущения, такие как терпкость, едкость и нагревание / охлаждение.

Большинство веществ, которые создают вкус во рту, являются полярными, нелетучими и растворимыми в воде. Вещества, которые создают запах, должны быть достаточно летучими, чтобы их обнаруживали обонятельные рецепторы, находящиеся в носовых или ротовых путях. Множество вкусовых ощущений, которые может ощутить потребитель, обусловлены взаимодействиями химических соединений со вкусовыми рецепторами, окончаниями троичного нерва и обонятельными рецепторами.

Некоторые примеры классов придающих запах и вкус нелетучих и летучих соединений приведены ниже в таблице 1. Однако следует понимать, что химикаты одного класса могут придавать разный вкус, в особенности при разных концентрациях.

Таблица 1
Класс Органолептическая Пример
соединений характеристика
Альдегиды Фруктовый Гексаналь, пентаналь, ацетальдегид, ванилин
Спирты Сладкий Ментол, мальтол
Сложные Горький Этилацетат, этилбутират
эфиры
Кетоны Карамели Диацетил, ионон, фураноны
Фенолы Лекарственный, дымный Фенол(ы), гваяколы

Вещества, которые придают вкус и/или запах, можно получить из разных источников. Многие из этих источников являются природными, например, целлюлозные материалы, такие как Mentha arvensis или Mentha piperita, из которых можно выделить вещество со вкусом мяты, Zingiber officinale, из которого можно выделить вещество со вкусом имбиря, почки Ribes nigrum (черная смородина), из которого можно выделить придающее вкус вещество соланон, Trigonella foenum-graecum (пажитник), из которого можно выделить придающее вкус вещество дигидроактинидиолид, и Cichorium intybus, из которого можно выделить придающее вкус вещество цикорий.

Другим источником веществ, придающих вкус, является табак, для которого известно, что он содержит вещества, придающие вкус, такие как пулегон; пиперональ; геранилацетон; 3-метилбутаналь; бензол, этанол; метилтетрадеканоат; ароматические альдегиды, такие как бензальдегид и фенилацетальдегид; алкилальдегиды, такие как нонаналь, пентаналь и гексаналь; алкенилбензолы, такие как сафрол, транс-анетол, миристицин и метилэвгенол; кетоны, такие как ионон, соланон; терпеновые спирты, такие как линалоол; и моноциклические или летучие терпены, такие как цембрен и дигидроактинидиолид.

Желательно иметь возможность экстрагировать из целлюлозного материала компоненты, которые придают вкус и/или запах.

Компоненты целлюлозного материала можно экстрагировать с помощью растворителей. Например, в CN 1166753 раскрыто применение петролейного эфира и абсолютного этанола, использующихся при нагревании или в холодном состоянии, для экстракции компонентов из табака и таким образом получают “табачный экстракт”. Однако этот способ экстракции обладает тем недостатком, что в нем необходима стадия отделения и удаления растворителя из экстракта, например, стадия фильтрования или дистилляции. Проведение дополнительной стадии обработки для удаления растворителя является длительным и дорогостоящим и также может привести к тому, что из “экстракта” будут удалены компоненты целлюлозного материала, обладающие сходными с растворителем физическими характеристиками. Например, экстрагируемое придающее вкус или запах соединение, температура кипения которого близка к температуре кипения растворителя, может быть удалено вместе с растворителем вследствие разделения с помощью дистилляции, при которой компоненты различаются по температуре кипения. Это может привести к загрязнению растворителя экстрагируемым придающим вкус или запах соединением и потере содержащегося в экстракте придающего вкус / запах соединения. Также известно, что растворимые компоненты целлюлозного материала можно экстрагировать растворителей в надкритическом состоянии. Этот способ известен как надкритическая экстракция или надкритическая жидкостная экстракция.

Надкритическая жидкость представляет собой любое вещество, находящееся при температуре или давлении, которые выше его термодинамической критической точки. Если параметры жидкости близки к критической точке, то небольшие изменения давления или температуры приводят к большим изменениям характеристик, таких как плотность.

Основным принципом надкритической жидкостной экстракции является то, что вещество взаимодействует с надкритической жидкостью, что приводит к переходу летучих веществ, находящихся в загружаемом материале, в надкритическую фазу. После растворения любого растворимого вещества надкритическую жидкость, содержащую растворенные вещества, удаляют и растворенные компоненты загружаемого материала отделяют от надкритической жидкости.

При использовании в настоящем изобретении “надкритическая жидкость” означает стеру, находящуюся при температуре и давлении, равных или превышающих значения в его критической точке, предпочтительно превышающих значения в его критической точке. При повышении температуры и давления вдоль линии раздела жидкая/газовая фаза, различия между жидким и газообразным состояниями постепенно исчезают и в так называемой “критической точке” жидкая и газовая фаза становятся одной фазой. Следовательно, надкритические жидкости обладают физическими и термическими характеристиками, промежуточными между характеристиками истинной жидкости и газа. В соответствии с этим выражение “надкритическая жидкость” означает среду, состоящую из двух фаз, когда давление и/или температура меньше значений для критической точки или близки к ней, или среду, состоящую только из одной фазы, когда давление и температура совпадают со значениями для критической точки или превышают их. Вблизи от критической точки и выше нее характеристики среды быстро меняются даже при небольших изменениях давления и/или температуры. Надкритические жидкости обладают растворяющей способностью, близкой к растворяющей способности жидких органических растворителей, но обладают намного большей диффузионной способностью, меньшей вязкостью и меньшим поверхностным натяжением и поэтому легко проникают в пористые и волокнистые твердые вещества. Поэтому растворяющую способность надкритических жидкостей можно регулировать путем изменения давления или температуры.

В WO 01/65954 раскрыт способ, включающий применение надкритической жидкой экстрагирующей среды при повышенной температуре и давлении для обработки табака с целью удаления нитрозаминов.

В CN 1899142 раскрыто применение надкритического СО2 для удаления никотина из листьев табака.

Надкритическая экстракция по сравнению с другими методиками экстракции обладает тем преимуществом, что растворитель можно удалить из экстракта без проведения дополнительной стадии обработки. После экстракции систему можно возвратить в состояние с атмосферным давлением (не надкритическое), что приведет к испарению растворителя. Это обеспечивает то преимущество, что растворитель в чистом виде (т.е. без загрязнения экстрагированными компонентами) можно собрать и возвратить в систему и при этом ни один из экстрагированных компонентов не уносится растворителем.

Однако надкритическая экстракция не обеспечивает селективное удаление отдельных компонентов из загружаемого материала. Поэтому, если необходимо удаление конкретного компонента (компонентов) из загружаемого материала, то этот компонент необходимо выделить из надкритической жидкости и оставшиеся вещества рециркулировать в загружаемый материал.

Например, надкритическую экстракцию можно провести при условиях, достаточных для экстракции практически всех растворимых веществ из целлюлозного загружаемого материала. После экстракции проводят стадию отделения, на которой компоненты отделяют от надкритической жидкости. Выделенный компонент можно удалить, а другие компоненты вместе с надкритической жидкостью рециркулирует в целлюлозный загружаемый материал и тем самым эффективно восстанавливают загружаемый материал.

Пример этой процедуры приведен в ЕР 0280817, где раскрыт способ, позволяющий уменьшить в табаке содержание никотина, тогда как содержания остальных компонентов практически не меняются. Способ, раскрытый в ЕР 0280817, включает обработку табака растворителем в надкритическом состоянии или в жидком состоянии. Затем растворитель пропускают через содержащую кислоту ловушку, в которой из него удаляется практически весь никотин. Растворитель, обедненный никотином, но все еще обогащенный другими компонентами, которые перешли в надкритическую фазу, рециркулируют в целлюлозный компонент табака.

В CN 1459256 раскрыто применение экстракции надкритическим CO2 для удаления из табака вредных компонентов. Надкритический CO2, содержащий экстракт скрошенного табака, направляют к очищающие сепараторы, которые содержат адсорбирующие материалы, такие как активированный древесный уголь, под давлением и при регулируемой температуре для удаления вредных компонентов табака. Затем надкритический CO2 повторно вводят во взаимодействие со скрошенным табаком при более низких температуре и давлении для обеспечения переноса необходимых компонентов обратно в скрошенный табак.

Также известны способы выделения компонентов из надкритической жидкости. Например, в US 6637438 раскрыто применение высокоэффективной жидкостной хроматографии (ВЭЖХ) для разделения фракций, полученных с помощью экстракции надкритической жидкостью. Однако в методиках разделения, таких как хроматография, используются растворители, которые потенциально являются токсичными, вредными для окружающей среды и/или огнеопасными и которые обычно необходимо удалить из компонентов после выделения последних. Такие растворители включают бензол, циклогексан, диметилсульфоксид, ацетонитрил, трифторуксусную кислоту, триэтиламин и метанол.

Кроме того, может быть очень трудно эффективно выделить отдельные компоненты из надкритической жидкости. Это особенно затруднительно в случае, когда соответствующий компонент содержится в загружаемом материале в очень небольшом количестве или характеристика компонента, на основании которой его выделяют, очень сходна с характеристиками других компонентов, содержащихся в загружаемом материале. Например, хроматографические методики, такие как ВЭЖХ и газовая хроматография, основаны на различии полярности разделяемых образцов. Гельфильтрационная хроматография основана на различии молекулярных масс. Поэтому с помощью таких методик очень трудно разделить компоненты, которые обладают близкими молекулярными массами или полярностями.

Другой известной методикой разделения смеси смешивающихся жидкостей является дистилляция. Такие компании, как VTA Verfahrenstechnische Anlagen GmbH & Co.KG (Niederwinkling, Germany), обладают большим опытом в области дистилляции. Дистилляция является процессом нагревания жидкости до кипения, сбора и охлаждения образовавшихся горячих паров и сбора полученного конденсированного образца. С помощью дистилляции можно разделить смеси на основании различий летучестей компонентов в использующейся кипящей жидкой смеси. Идеальные модели дистилляции в основном описываются законом Рауля и законом Дальтона.

Для закона Рауля предполагается, что компонент вносит в полное давление пара смеси вклад, пропорциональный его содержанию в смеси и давлению его пара, когда он является чистым.

Согласно закону Дальтона полное давление в смеси газов равно сумме парциальных давлений индивидуальных компонентов смеси газов. Когда смесь жидкостей нагревается, давление пара каждого компонента смеси повышается, в результате чего повышается давление в смеси. Когда полное давление достигает давления окружающей жидкости, происходит кипение и жидкость превращается в газ во всем объеме жидкости. Если компоненты взаимно растворимы, то смесь данного состава при данном давлении обладает одной температурой кипения.

При температуре кипения все летучие компоненты смеси кипят, но содержание одного компонента в паре такое же, как доля его давления в полном давлении пара. Более легкие компоненты обладают более значительным парциальным давлением и поэтому концентрируются в паре, а более тяжелые летучие компоненты также обладают парциальным давлением и также испаряются, но их концентрация в паре меньше.

Обычно дистилляцию проводят на фракционной колонке. Смесь нагревают до ее испарения. Пар проходит фракционную колонку, где он постепенно охлаждается. Разные компоненты конденсируются на разных уровнях фракционной колонки, что обеспечивает разделение компонентов (в это время жидких) исходной смеси.

Недостатком простой методики дистилляции, в которой используют одну испаряющуюся и конденсирующуюся фазу, является то, что она не позволяет эффективно разделить смесь, температуры кипения компонентов которой различаются менее, чем на 60-70°С. Многократные циклы фракционирования для разделения смесей соединений с близкими температурами кипения могут быть дорогостоящими и все же не обеспечивают получение чистого дистиллята одного из соединений, в особенности когда компоненты обладают одинаковыми или очень близкими температурами кипения.

Например, в CN 1166753 раскрыто применение способа многостадийной молекулярной дистилляции для выделения компонентов табака из экстракта, который получен обработкой измельченных кусочков табака петролейным эфиром в горячем или холодном состоянии.

Трудность эффективного выделения отдельных компонентов из экстракта с помощью надкритической экстракции проявляется в еще большей мере, когда необходимо выделить из табака компоненты, которые придают вкус и/или запах табаку. Это обусловлено тем, что многие такие компоненты сходны по природе и обладают физическими характеристиками, сходными с характеристиками компонентов табака, которые считаются нежелательными.

Например, может потребоваться, чтобы выделенные компоненты не были загрязнены нитрозаминами. Нитрозамины являются классом химических соединений, которые впервые были описаны в химической литературе более 100 лет назад. Известно, что табак содержит некоторые нитрозамины, которые известны, как специфические для табака нитрозамины (TSNAs). TSNAs состоят из 4 химических соединений: N-нитрозонорникотина (NNN); 4-метил-N-нитрозамино-1-(3-пиридил)-1-бутанона (NNK); N-нитрозоанатабина (NAT) и N-нитрозоанабазина (NAB). Считается, что TSNAs не содержатся в сколько-нибудь значительном количестве в растущих растениях табака или в свежем нарезанном табаке (необработанный табак), но считается, что они образуются во время сушки и созревания табака.

Другим соединением, которое может быть желательно селективно удалить из экстракта табака, является бензо[а]пирен (В[а]Р), полициклический углеводород, который содержится в окружающей среде и табачном дыме.

Может быть нежелательно, чтобы компоненты табака, которые выделяют, чтобы использовать их способность придавать вкус или запах, были значительно загрязнены бензо[а]пиреном и/или TSNAs. Вследствие сходства физических характеристик этих соединений и компонентов табака, которые желательно выделить, при таком загрязнении может потребоваться использование некоторых методик выделения соединений.

Также может быть нежелательно, чтобы были значительно загрязнены никотином компоненты целлюлозного материала, которые выделяют с целью использования их способности придавать вкус или запах. Например, может быть желательным использование таких компонентов в продукте, не содержащем никотин. Вследствие сходства физических характеристик никотина и компонентов целлюлозного сырья, которые желательно выделить, при таком загрязнении может потребоваться использование некоторых методик выделения соединений.

Например, никотин обладает молекулярной массой, равной 162,24 г, и придающее вкус соединение сафрол обладает молекулярной массой, равной 162,2 г. Поэтому невозможно использование стандартной методики разделения с применением гель-фильтрации, с помощью которого соединения выделяют из смеси на основании их молекулярной массы, для получения в основном чистого образца сафрола из надкритической жидкости, которая взаимодействовала с загружаемым материалом, который также содержит никотин.

В приведенной ниже таблице 2 приведены некоторые физические характеристики соединений, придающих запах, которые обычно обнаруживают в табаке. В таблице 2 также приведены некоторые физические характеристики компонентов табака, которые могут считаться нежелательными.

Таблица 2
Название Описание аромата / вкуса tкип (°С) tкип (°С) ММ (г/моль) Растворимость (г/100 мл воды) Плотность (г/см3)
NNN - 153 47 177,2
NNK - 71-73 207,23
NAT - 189,21
NAB - 191,23
B[a]P - 495 179 252,31 Нерастворим 1,24
Никотин Горький 247 -79 162,26 Хорошо растворим 1,01
Соланон Табачного дыма 194,31
Бензальдегид Миндальный 178,1 -26 106,12 0,6 1,0415
Фенилаце-тальде-гид Похожий на медовый / сладкий / розы / травянистый 193 -10 120,15
Нонаналь Сильный фруктовый / цветочный 195 -18 142,24 Нерастворим 0,827
Цембрен Слабый воскоподобный 150-152 272,47
Линалоол цветочный соттенкомпряного 198-199 <20 154,25 0,1589 0,86-0,87
Метилтетрад Воскоподобный с оттенком медового 242,4 0,866
еканоат
Кумарин Ванильный 301 71 146,14 0,935
Пулегон Мятный, камфорный 224 152,23 Нерастворим 0,9346
Пиперональ С нотами фенхеля 264 35-37 150,13
транс-анетол Анисовый / фенхельный 234 20-21 148,2 0,998
Сафрол 232-234 11 162,2 1,096
Метилэвгенол Пряный, древесный, похожий на гвоздичный 256 -9 164,2 1,06
Миристицин Мускатный 173 <25 192,2 1,1437

NNN: N-нитрозонорникотин; NNK: 4-метил-N-нитрозамино-1-(3-пиридил)-1-бутанон; NAT: N-нитрозоанатабин; NAB: N-нитрозоанабазин; B[a]P: бензо[а]пирен; MM: молекулярная масса; tкип: Температура кипения; tпл:

Температура плавления.

При загрязнении одного или большего количества желательных компонентов нежелательными соединениями необходима дополнительная обработка образца. Это может быть дорогостоящим и длительным.

В JP 9-10502 раскрыта методика экстракции "целевого компонента", такого как никотин, из природного твердого сырья, включающая взаимодействие сырья с первой жидкостью при высоком давлении. Затем жидкость и растворенные в ней компоненты вводят во взаимодействие с абсорбентом. Затем растворенные в абсорбенте компоненты во взаимодействие со второй жидкостью при высоком давлении, в которой создан градиент температуры. Градиент температуры приводит к тому, что во второй жидкости при высоком давлении растворяются только целевые компоненты. Вторую жидкость, содержащую целевые компоненты, вводят в сепаратор, в котором целевой компонент (компоненты) отделяют путем уменьшения растворимости целевого компонента во второй жидкости при высоком давлении.

В WO 2007/053096, которая относится к выделению и удалению нитрозаминов из табака, раскрыт способ, в котором необходимо проведения более 10 стадий обработки.

Одним объектом настоящего изобретения является простой способ, который позволяет селективно выделить компоненты из целлюлозного сырья.

В частности, одним объектом настоящего изобретения является простой способ, который позволяет выделить соединения, обладающие близкими температурами кипения и/или давлениями пара.

Другим объектом настоящего изобретения является способ, который включает менее 5 стадий обработки.

Другим объектом настоящего изобретения является способ, который относительно благоприятен для окружающей среды, поскольку для разделения в нем не требуется использование матриц, загрязняющих окружающую среду.

Объектом настоящего изобретения также является способ, в котором не требуется использование потенциально токсичного или горючего экстрагирующего растворителя для экстракции растворимых компонентов из целлюлозного материала; и в котором не требуется использование растворителя для выделения компоненты из экстракта.

Другим объектом настоящего изобретения является способ, который можно точно регулировать с помощью аппаратуры и/или оборудования, имеющегося в продаже для проведения стадий способа.

Другим объектом настоящего изобретения является способ, который является относительно дешевым.

Другим объектом настоящего изобретения является способ, который приводит к относительно невысоким загрязнениям, поскольку оборудование, использующееся в способе, не требует чрезмерного количества циклов очистки для приведения в исходное рабочее состояние.

Краткое изложение сущности изобретения

Соответственно, первым объектом настоящего изобретения является способ экстракции и выделения компонентов из целлюлозного материала, способ, включающий:

(a) взаимодействие целлюлозного материала с надкритической жидкостью при условиях, обеспечивающих получение экстракта;

(b) удаление нерастворимого вещества из экстракта; и

(c) фракционирование экстракта с помощью дистилляция с получением одного или большего количества выделенных компонентов.

Выражение “компоненты целлюлозного материала” или “компоненты из целлюлозного материала” при использовании в настоящем изобретении означает соединения, которые можно солюбилизировать надкритической жидкостью.

Подробное описание изобретения

Примерами жидкостей, которые на практике можно использовать в надкритических методиках, являются: диоксид углерода, гексафторид серы, закись азота, галогенированные углеводороды, содержащие до 4 атомов углерода, такие как CF4, CHF3, CClF3, CBrF3, CF2=CH2, CF3-CF2CF3, CHClF2, CCl2F2, CHCl2F, CCl3F, CBrF3, CFCl=CF2, CH3-CF3, октафторциклобутан, и углеводороды, содержащие до 7 атомов углерода, такие как пропан, бутан, пентан, гексан, циклогексан, толуол, этанол, ацетон, метилацетат, диэтиловый эфир, дихлорметан, тетрахлорид углерода. Другие подходящие жидкости включают N2O, SF6 и аргон.

В предпочтительных вариантах осуществления надкритическая жидкость представляет собой нетоксичный, негорючий или экологически приемлемый экстрагирующий растворитель. Поэтому в некоторых вариантах осуществления надкритической жидкостью не является метанол или гексан. В предпочтительных вариантах осуществления надкритической жидкостью является диоксид углерода (CO2).

Целлюлозный материал можно получить из любых видов, включая виды царства растений, такие как деревья, цветковые растения, травы, кустарники, травянистые растения, виноград, папоротники, лишайники и т.п.

В некоторых вариантах осуществления целлюлозный материал получают из коровяка, гвоздичного дерева, мяты, чая, эвкалипта или ромашки.

В предпочтительных вариантах осуществления целлюлозный материал получают из сосудистых растений и наиболее предпочтительно семенных сосудистых растений, таких как Pinophyta (хвойные деревья), Cycadophyta (цикадовые растения), Ginkophyta (гинкго), Gnetophyta (гнетовидные), и Magnoliophyta (магнолиевые). Семейства растений типа Magnoliophyta включают Cannabaceae (коноплевые), которые включают род Humulus (хмели) и Solanaceae (пасленовые), которые также называют пасленовыми растениями. В семействе Solanaceae, особенно предпочтительным родом является Nicotiana (табак) и особенно предпочтительным целлюлозным материалом для применения в настоящем изобретении являются виды Nicotiana, называющиеся табачными растениями или просто табаком.

Табак содержит намного больше 3000 соединений в диапазоне от волокнистого матрикса, например, обладающих большой молекулярной массой полимерных соединений, таких как целлюлоза, и множества обладающих промежуточной молекулярной массой компонентов, являющихся в основном нелетучими, например, гемицеллюлоза и лигнин, и обладающих низкой молекулярной массой компонентов, включая соединения, придающие запах и вкус.

Примеры компонентов табака включают каротиноидные производные, алкалоиды, нитрозамины, влагоудерживающие вещества, металлы, не являющиеся полимерами соединения, примерами которых являются никотин, норникотин, анабазин, миосмин, антабин, глицерин, пропиленгликоль, триэтиленгликоль, аммиак, никель, свинец, кадмий, хром, мышьяк, селен, ртуть, бензо[а]пирен, нитрат, триацетин, пропионат натрия, сорбиновая кислота и эвгенол.

В предпочтительных вариантах осуществления настоящего изобретения компоненты целлюлозного материала, которые экстрагируют и выделяют, обладают характеристиками веществ, придающих вкус и/или запах, поскольку они придают вкус или запах целлюлозному материалу, из которого их выделяют, или целлюлозному материалу, в который их затем добавляют.

В некоторых вариантах осуществления компонентом может быть один или большее количество из следующих: кумарин, пулегон, фенилацетальдегид, нонаналь, цембрен, линалоол, ионон, геранилацетон, 3-метилбутаналь, пентаналь, гексаналь, бензол, этанол, метилтетрадеканоат, бензальдегид, пиперональ, транс-анетол, соланон, дигидроактинидиолид, сафрол, метилэвгенол, миристицин и вспомогательные вещества или их производные.

В предпочтительных вариантах осуществления компоненты целлюлозного материала, которые экстрагируют и выделяют способом, соответствующим первому объекту настоящего изобретения, в основном не содержат никотина, одного или большего количества нитрозаминов и/или бензо[а]пирена. В наиболее предпочтительных вариантах осуществления компоненты целлюлозного материала, которые экстрагируют и выделяют способом, соответствующим первому объекту настоящего изобретения, в основном не содержат никотина.

В предпочтительных вариантах осуществления компоненты, выделенные в соответствии с настоящим изобретением, являются в основном чистыми.

В некоторых вариантах осуществления компоненты, выделенные в соответствии с настоящим изобретением, обладают чистотой, составляющей 80-100%; 90-100%; 95-100%; 98-100%; 99-100%; или 99,5-100%. В некоторых вариантах осуществления выделенные компоненты обладают чистотой, составляющей 75-95%; 75-90%; или 85-90%.

Термин “чистое” при использовании в настоящем изобретении означает, что выделенный компонент(ы) состоит только из нужного компонента (компонентов) и не загрязнен другим компонентом (компонентами) целлюлозного материала.

В предпочтительных вариантах осуществления целлюлозный материал, применяющийся в способах, соответствующих первому объекту настоящего изобретения, включает или содержит материал из стебля или листовых пластинок растения. В особенно предпочтительных вариантах осуществления целлюлозный материал включает или содержит стебли табака или листовые пластинки табака. В наиболее предпочтительных вариантах осуществления применяющийся целлюлозный материал включает или содержит листовые пластинки табака.

Обычно большинство соединений, придающих вкус, содержатся в листовых пластинках растения и поэтому применение листовых пластинок в способах, предлагаемых в настоящем изобретении, повышает выход соединений, придающих вкус/запах. Однако листовая пластинка также содержит большую часть сахара и никотина. Кроме того, большая часть нитрозаминов и В[а]P находится в листовых пластинках виргинского табака дымовой сушки и в листовых пластинках и стеблях табака Берлей воздушной сушки. Таким образом, компоненты, экстрагированные из листовых пластинок, вероятно загрязнены никотином и/или одним или большим количеством нитрозаминов и/или В[а]Р.

До проведения стадии надкритической экстракции целлюлозный материал необязательно можно обработать с помощью одной или большего количества методик, как указано на стадии (а) первого объекта настоящего изобретения, чтобы обеспечить оптимальные характеристики экстракции. Например, целлюлозный материал можно предварительно обработать химическими основаниями, такими как бикарбонат аммония.

Альтернативно или, кроме того, целлюлозный материал предварительно гидратировать до проведения надкритической экстракции. Это можно сделать, например, путем использования целлюлозного материала известной влажности (определенной с помощью стандартных методик анализа), поместив известную массу материала в резервуар вместе с необходимым количеством воды. Целлюлозный материал и воду перемешивают и резервуар герметизируют и в течение примерно 24 ч выдерживают при температуре около 4°С для приведения в равновесие. Влажность можно определить путем исследования образца целлюлозного материала с помощью стандартных методик анализа.

Содержание воды в целлюлозном материале предпочтительно не должно превышать значения, при котором образуется взвесь в воде, поскольку это приводит к разрушению целлюлозного материала. Обычно до экстракции с помощью надкритической жидкости целлюлозный материал, предпочтительно табак, обладает влажностью (содержанием воды), равным от менее 10 мас. % примерно до 50 мас. %; предпочтительно от менее примерно 10% примерно до 35 мас. %; более предпочтительно от менее примерно 10% примерно до 20 мас. %; и еще более предпочтительно, если влажность составляет от менее 1, 2, 3, 4 или 5% примерно до 10 мас. %

Предварительную обработку целлюлозного материала, например, водой можно использовать для изменения соотношения типов компонентов целлюлозного материала, которые экстрагируют способами, предлагаемыми в настоящем изобретении. Гидратация исходного целлюлозного материала может повлиять на соотношение экстрагируемых соединений, что обусловлено смешиванием воды с надкритической жидкостью. Это смешивание приводит к изменению полярности и/или значения рН экстрагирующего растворителя надкритическая жидкость / вода по сравнению с полярностью и/или значением рН надкритической жидкости, в которой содержится минимальное количество воды.

Предварительная обработка целлюлозного материала путем размола, измельчения или проводимого другим образом уменьшения размера его частиц (например, с получением скрошенного табака) может привести к усиленной экстракции вследствие обусловленной этим увеличения площади поверхности целлюлозного материала, на который воздействует экстрагирующий растворитель. В результате экстрагирующая жидкость, использующаяся на стадии (а) способа, соответствующего первому объекту настоящего изобретения, взаимодействует с целлюлозным материалом.

Во время надкритической экстракции можно использовать любые давление и температуру, если эти параметры жидкости совпадают с критическими значениями или выше их. Для диоксида углерода температура может равняться всего лишь примерно 30°С, более предпочтительно не менее примерно 31,1°С. Предпочтительно, если температура не ниже примерно 35°С, предпочтительно примерно 40°С и может быть не ниже примерно 100°С. Температура может находиться в диапазоне от примерно 30 до примерно 150°С; более предпочтительно от примерно 35 до примерно 100°С; еще более предпочтительно от примерно 35 до примерно 80°С.

Давление, использующееся во время экстракции, может являться любым давлением, равным или превышающим критическое давление надкритической жидкости, использующееся в способе. Для диоксида углерода давление может равняться всего лишь примерно 7,0 МПа, предпочтительно, если давление не ниже примерно 7,38 или 7,382 МПа. Более предпочтительно, если давление не ниже примерно 15 МПа; более предпочтительно не ниже примерно 25 МПа; и еще более предпочтительно не ниже 30 МПа. Давление предпочтительно равно от примерно 7,382 до примерно 100 МПа; более предпочтительно от примерно 15 до примерно 80 МПа; и наиболее предпочтительно от примерно 20 до примерно 60 МПа.

При использовании диоксида углерода в качестве надкритической жидкости во время надкритической экстракции особенно предпочтительными являются температура, равная 40°С, и давление, равное 30 МПа (300 бар).

В особенно предпочтительном варианте осуществления надкритическую экстракцию проводят с использованием 70 кг диоксида углерода в качестве надкритической жидкости на 1 кг целлюлозного материала при температуре во время надкритической экстракции, равной примерно или точно 40°С, и давлении, равном примерно или точно 30 МПа.

Установлено, что температура, равная 40°С, и давление, равное 30 МПа, обеспечивают оптимальную сольватирующую способность для табака и тем самым обеспечивают удаление из загружаемого табака и перенос в надкритическую фазу наибольшего количества летучих веществ.

Длительность взаимодействия целлюлозного материала с надкритической жидкостью может меняться и предпочтительно такова, чтобы было обеспечено удаление из целлюлозного материала не менее 20 мас. % растворимых веществ. На длительность экстракции влияют тип использующейся надкритической жидкости, тип использующегося целлюлозного материала, форма целлюлозного материала, использующиеся условия экстракции и тип резервуара для экстракции. Обычно целлюлозный материал взаимодействует с надкритической жидкостью в течение не менее 5 мин; более предпочтительно в течение не менее 20 мин; и наиболее предпочтительно в течение не менее 60 мин.

Очистку оборудования для экстракции после надкритической экстракции, предлагаемой в настоящем изобретении, можно провести с помощью одного или большего количества “холостых