Стабильная сухая порошкообразная композиция, содержащая биологически активные микроорганизмы и/или биоактивные материалы, и способ ее изготовления

Иллюстрации

Показать все

Группа изобретений относится к стабильной сухой композиции, способу ее изготовления. Композиция содержит биоактивный микроорганизм или материал, два стабилизирующих агента - альгинат натрия и инулин, и два защитных агента - дисахарид и белковый гидролизат. При этом биоактивный микроорганизм или материал заключен в аморфную стекловидную матрицу. Композиция используется при кормлении животного биоактивным микроорганизмом или материалом при условии того, что биоактивный организм или материал не является гербицидом. Способ изготовления композиции включает объединение компонентов в водном растворителе, охлаждение полученной смеси до температуры выше ее температуры замерзания, осуществление первичной сушки охлажденной смеси в вакууме при температуре выше ее температуры замерзания и вторичной сушки смеси при температуре 20°C или выше в течение периода времени, достаточного для снижения активности воды Aw в смеси до 0,3 или менее. Предложена также композиция для изготовления стабильной сухой композиции, имеющая вязкость от около 10 Па·с до около 450 Па·с. Группа изобретений обеспечивает стабильность композиции при повышенной температуре и высокой влажности. 5 н. и 28 з.п. ф-лы, 11 ил, 21 пр., 4 табл.

Реферат

Ссылка на родственные заявки на изобретения

В данной заявке на изобретение испрашивается приоритет предварительных заявок на патенты США №№61/181248 и 61/223295, поданных в патентное ведомство США 26 мая 2009 года и 6 июля 2009 года, соответственно, содержание которых включено в данное описание полностью путем ссылки.

Предшествующий уровень техники

Область изобретения

Настоящее изобретение относится к области защиты биоактивного микроорганизма и/или материалов в условиях высокой температуры и влажности. В частности, изобретение относится к включению живых микроорганизмов и/или биоактивных материалов в защитную матрицу сухой композиции.

Родственный уровень техники

Биоактивные микроорганизмы, такие как живые или убитые бактерии и вирусы, или биоактивные материалы, такие как белки, витамины, минеральные вещества, гормоны и клетки, как правило являются нестабильными при хранении в условиях высокой температуры и влажности. Например, множество имеющихся в продаже пробиотических бактерий, таких как Lactobacillus rhamnosus, могут терять более 1 log жизнеспособности через менее чем две недели при хранении в атмосфере окружающей среды при комнатной температуре (приблизительно 25°С). Общепринятый способ сушки и защиты этих биоактивных микроорганизмов после сбора из культурального сосуда (например ферментера) заключается в том, что концентрированный раствор живых клеток вносят в виде капель в жидкий азот, затем хранят замороженные гранулы в морозильнике при -80°С для последующей лиофилизации или транспортировки в другие области. Лиофилизация представляет собой преимущественный способ сушки чувствительного биоактивного материала. Другие способы, такие как сушка распылением, сверхкритическая флюидная сушка и осушение, как правило не подходят для чувствительных биоактивных агентов, таких как живые или ослабленные бактерии и вирусы, вследствие высоких температур сушки, используемых в этих способах, что приводит в результате к значительному повреждению самого микроорганизма. Дополнительно, они могут не достаточно высушивать материал для достижения специфических требований к остаточной влаге с обеспечением стабильности продукта и, таким образом, может потребоваться дополнительная стадия сушки при помощи других средств.

При лиофилизации биоактивный микроорганизм или материалы обычно смешивают в растворе или суспензии защитных агентов, замораживают и затем дегидратируют путем сублимации в полном вакууме. Низкие температуры процесса лиофилизации уменьшают реакции дегидратации биоактивного агента и минимизируют потерю активности в конечной сухой форме. Однако минусовые температуры требуют затрат энергии, и низкое отношение площади поверхности к объему для замороженного материала приводит к необходимости использования длительного времени сушки (вплоть до нескольких суток на цикл сушки партии). Медленная сушка в процессе лиофилизации также способствует образованию кристаллов льда, что может повредить или денатурировать чувствительные биоактивные агенты. По этой причине для биоактивного микроорганизма или материалов, таких как вирусы, бактерии и клетки, имеющие клеточную стенку или липидную мембрану, использование лиофилизации вызывает значительные затруднения.

Одна из возможностей для уменьшения образования структуры ледяного кристалла заключается в добавлении криозащитных агентов в раствор биоактивного агента. Такие защитные агенты представляют собой высокорастворимые химические вещества, которые добавляют в композицию для защиты клеточных мембран и внутриклеточных белков во время замораживания и для усиления стабильности во время хранения. Общепринятые стабилизаторы для живых бактерий и вирусов включают сахара, такие как сахароза, глицерин или сорбит, в высоких концентрациях с клеточным материалом или биоактивным агентом (Morgan et al., 2006; Capefa et al., 2006). Однако такие защитные агенты могут недостаточно проникать в клетку для защиты активных компонентов во внутриклеточном объеме. Таким образом, существуют значительные трудности в разработке оптимальных способа сушки и композиции, которые минимизируют потери при сушке, в то же время достигая подходящую стабильность при хранении высушенного материала.

Некоторые из проблем, ассоциированных с лиофилизацией, решали с использованием комбинации определенных композиций и вакуумной сушки в жидком состоянии. Annear (Annear 1962) разработал композицию, содержащую бактерии в растворе Сахаров и аминокислот, и способ вакуумной сушки, в котором используется кипение и образование пены. Roser et al. (патент США 6964771) раскрыл сходную концепцию сушки путем образования пены, включающую стадию концентрирования жидкости с последующим кипением и вспениванием концентрированного раствора (сиропа) в вакууме. Для того чтобы избежать окисления и денатурирующего повреждения, которые могут возникнуть во время стадии кипения, Bronshtein (патенты США №№5766520 и 7153472) ввел улучшенный защитный состав, содержащий углеводы и поверхностно-активные вещества. Сушка защитного раствора также включала постадийный процесс концентрирования в умеренном вакууме перед применением сильного вакуума, для того чтобы вызвать поверхностное кипение остаточной воды с образованием сухой стабильной пены. В попытках исключить стадию кипения Busson и Schroeder (патент США №6534087) предложили способ сушки композиции в жидком состоянии для нечувствительных биоактивных агентов с использованием вакуумной печи без кипения путем приложения весьма умеренного вакуумметрического давления выше 30 Торр (3999,66 Па). После достижения определенной степени сушки без кипения материала подводили тепло на уровне выше 20°С и высушенный материал собирали после всего лишь нескольких часов.

Этот вид способа сушки, в котором биоактивный раствор поддерживается в жидком состоянии в течение всего процесса сушки, обладает преимуществом более быстрой сушки вследствие конвекции жидкости во время кипения и увеличенной площади поверхности, представляемой пенящимися поверхностями. Однако для кипения и вспенивания требуется поступление значительного количества тепла для обеспечения необходимого всплеска раствора. Такой способ сушки недостаточно хорошо адаптирован для сушки чувствительных биологических объектов, таких как живые вирусы, клетки или бактерии, поскольку подводимое тепло ускоряет ферментативные процессы (например протеолиз) и химические процессы (например окисление и атаки свободных радикалов), что может подавить активность или жизнеспособность биологического материала.

Способ сушки, описанный выше, также ограничен по возможности его масштабирования до более крупного промышленного способа. Избегание замораживания требует проведение процесса при более низком уровне вакуума (более 7 Торр (933,25 Па)) по сравнению с обычной лиофилизацией или циклами процесса сушки путем распыления-замораживания. Наиболее существенный недостаток вышеприведенных способов заключается в неспособности контролировать и ограничивать распространение пены внутри сосуда, поддона или флакона. Неконтролируемый всплеск и часто чрезмерное образование пены приводят к невозможности на практике разработать промышленно масштабируемый способ. Характерные для стадии кипения всплески и вспенивание приводят в результате к тому, что часть материала разбрызгивается на стенки сосуда и в сушильную камеру. Для смягчения разбрызгивания во время кипения Bronshtein (патенты США №№6884866 и 6306345) предложил специальные камеры и протокол применения контролируемой температуры/давления, что снижает избыточный нагрев до приемлемого уровня. Еще один подход для преодоления разбрызгивания и чрезмерного вспенивания описан в заявке на патент США №2008/0229609, в котором биоактивный раствор помещают в контейнер или пакет, покрытые воздухопроницаемыми мембранами. Все же эти протоколы являются сложными для реализации на промышленном уровне и трудны для надежного воспроизведения при использовании разных композиций.

Сохраняется потребность в подходящей защитной композиции, которая может быть высушена из жидкого состояния, и промышленно масштабируемом способе сушки биоактивных микроорганизмов, таких как живые или убитые вирусы, бактерии и клетки, в частности, при температурах выше температуры замерзания. В особенности, существует потребность в экономичном масштабируемом способе сушки, который также подходит для применений вне фармацевтической промышленности, таких как пищевая и сельскохозяйственная промышленности. Защитные композиции и мягкие способы сушки требуются для обеспечения подходящей сушки без воздействия высокими температурами. Необходима композиция, которая может защитить такие биологические объекты при хранении в условиях высокой температуры и влажности. В настоящем изобретении, описанном ниже, предложено решение всех этих проблем.

Краткое изложение сущности изобретения

Настоящее изобретение включает композиции и способы для сохранения биоактивных материалов, таких как пептиды, белки, гормоны, витамины, минеральные вещества, лекарственные средства, микробиоциды, фунгициды, гербициды, инстектициды, спермициды, нуклеиновые кислоты, антитела, вакцины и/или биоактивный микроорганизм, такой как бактерии (пробиотические или другие), вирусы и/или клеточные суспензии, при хранении. Способы сушки обеспечивают процесс контролируемого увеличения объема композиции, содержащей биоактивный микроорганизм или материал, стабилизатор композиции и защитный агент. Композицию готовят путем диспергирования всех твердых компонентов в растворе в условиях вакуума или без него. Раствор охлаждают до температуры выше его температуры замерзания и сушат в вакууме с получением сухой композиции, которая демонстрирует неожиданно высокую стабильность. Эти способы включают стадию первичной сушки композиции при желаемых температуре и периоде времени и стадию ускоренной вторичной сушки при максимальном вакууме и повышенной температуре с достижением желаемой конечной активности воды высушенного материала.

В одном из воплощений композиция содержит достаточные количества стабилизаторов композиции, в которых заключены микроорганизмы. Примеры подходящего стабилизатора композиции включают ацетатфталат целлюлозы (CAP), карбоксиметилцеллюлозу, пектин, альгинат натрия, соли альгиновой кислоты, гидроксипропилметилцеллюлозу (НРМС), метилцеллюлозу, каррагинан, гуаровую камедь, аравийскую камедь, ксантановую камедь, смолу плодов рожкового дерева, хитозан и хитозановые производные, коллаген, полигликолевую кислоту, крахмалы и модифицированные крахмалы, циклодекстрины и олигосахариды (инулин, мальтодекстрин, декстраны и так далее); и их комбинации, но не ограничиваются ими.

В одном из конкретных воплощений предпочтительный стабилизатор композиции представляет собой альгинат натрия. Предпочтительно, композиция содержит, в процентном отношении по массе всего сухого вещества, 0,1-10%, предпочтительно 1-6%, более предпочтительно 2-4% стабилизатора композиции. В дополнительном воплощении стабилизатор композиции содержит смесь альгината натрия и олигосахариды в массовом соотношении 1:1-10, более предпочтительно 1:1-5 альгината натрия/олигосахаридов. В еще одном воплощении настоящего изобретения стабилизатор композиции перекрестно связан двухвалентными ионами металлов с образованием прочного гидрогеля.

В еще одном воплощении композиция содержит значительные количества защитных агентов, в которых заключены микроорганизмы. Примеры подходящего защитного агента включают белки, такие как человеческий и бычий сывороточный альбумин, яичный альбумин, желатин, иммуноглобулин, выделенный соевый белок, пшеничный белок, сухое обезжиренное молоко, казеинат, белок молочной сыворотки и любые белковые гидролизаты; углеводы, включая моносахариды (например галактозу, D-маннозу, сорбозу и так далее), дисахариды (например лактозу, трегалозу, сахарозу и так далее), аминокислоту, такую как лизин, мононатрий-глутамат, глицин, аланин, аргинин или гистидин, а также гидрофобные аминокислоты (триптофан, тирозин, лейцин, фенилаланин и так далее); метиламин, такой как бетаин; соль-эксципиент, такую как сульфат магния; полиол, такой как трехатомные или сахарные спирты высшей атомности (например глицерин, эритрит, глицерол, арабит, ксилит, сорбит и маннит); пропиленгликоль; полиэтиленгликоль; плюроник; поверхностно-активные вещества; и их комбинации, но не ограничиваются ими.

В одном из предпочтительных воплощений защитный агент содержит смесь дисахарида, белка и белкового гидролизата. В конкретном воплощении предпочтительный защитный агент представляет собой смесь трегалозы, выделенного соевого белка или белка молочной сыворотки и их гидролизатов. Предпочтительно композиция содержит, в процентном отношении по массе всего сухого вещества, 10-90% трегалозы, 0,1-30% выделенного соевого белка или белков молочной сыворотки и 0,1-30% гидролизата соевого белка или белка молочной сыворотки. Предпочтительно 20-80% трегалозы, 0,1-20% выделенного соевого белка или белка молочной сыворотки и 1-20% гидролизата соевого белка или белка молочной сыворотки, более предпочтительно 40-80% трегалозы, 0,1-20% выделенного соевого белка или белков молочной сыворотки и 1-20% гидролизата соевого белка или белка молочной сыворотки.

Способ по изобретению, как правило, включает смешивание в условиях вакуума или без него концентрированного раствора или сухого порошка биоактивного микроорганизма (например живых или убитых вакцин, бактерий, водорослей, вирусов и/или клеточных суспензий) или биоактивного материала (например пептидов, белков, гормонов, витаминов, минеральных веществ, лекарственных средств, микробиоцидов, фунгицидов, гербицидов, инстектицидов, спермицидов, нуклеиновых кислот, антител, вакцин), стабилизатора и защитного агента в гомогенную композицию, охлаждение композиции до температуры выше ее температуры замерзания и сушку в вакууме при температуре полки выше 20°С. В соответствии с изобретением процесс сушки может включать первичную вакуумную сушку при температуре полки 20°С или выше с последующей ускоренной вторичной сушкой композиции при максимальном вакууме и повышенной температуре в течение периода времени, достаточного для снижения активности воды (Aw) высушенной композиции до 0,3 или менее.

В одном из воплощений способа смешивания биоактивный микроорганизм или материал находится в сухой стабилизированной форме, и его дополнительно подвергают сухому смешиванию со стабилизаторами и защитными агентами в сухой форме. Эту сухую смесь затем добавляют к воде и перемешивают в подходящих условиях вакуума и встряхивания с получением гомогенной суспензии с желаемой плотностью.

В еще одном воплощении способа смешивания биоактивный микроорганизм или материал находится в форме концентрированного раствора или пасты. Раствор смешивают со всеми другими ингредиентами композиции перед добавлением к воде.

В еще одном воплощении способа смешивания биоактивный микроорганизм или материал находится в форме сухого порошка. Этот сухой порошок смешивают со всеми другими ингредиентами композиции перед добавлением к воде.

В еще одном воплощении способа смешивания сухой биоактивный микроорганизм или материал смешивают лишь с частью ингредиентов композиции и эту смесь добавляют к предварительно приготовленной суспензии, полученной путем добавления других ингредиентов композиции к воде.

В предпочтительных воплощениях способов сушки биоактивный микроорганизм смешивают в вакууме в растворе, включающем стабилизатор композиции и защитный агент. В одном из конкретных воплощений биоактивный микроорганизм содержит живые бактерии (например пробиотические бактерии). Примеры подходящих микроорганизмов включают дрожжи, такие как Saccharomyces, Debaromyces, Candida, Pichia и Torulopsis, плесневые грибы, такие как Aspergillus, Rhizopus, Mucor, Penicillium и Torulopsis, и бактерии, такие как бактерии родов Bifidobacterium, Closthdium, Fusobacterium, Melissococcus, Propionibacterium, Streptococcus, Enterococcus, Lactococcus, Kocuriaw, Staphylococcus, Peptostrepococcus, Bacillus, Pediococcus, Micrococcus, Leuconostoc, Weissella, Aerococcus, Oenococcus и Lactobacillus. Конкретные примеры подходящих пробиотических микроорганизмов могут быть представлены следующими видами и включают все культуральные биотипы среди этих видов: Aspergillus niger, A.oryzae, Bacillus coagulans, B.lentus, В.licheniformis, В.mesentericus, В.pumilus, В.subtilis, В.natto, Bacteroides amylophilus, Вас.capillosus, Вас.ruminocola, Вас.suis, Bifidobacterium adolescentis, B.animalis, B.breve, B.bifidum, B.infantis, B.lactis, B.longum, B.pseudolongum, B.thermophilum, Candida pintolepesii, Clostridium butyricum, Enterococcus cremoris, E.diacetylactis, E faecium, E.intermedius, E.lactis, E.muntdi, E.thermophilus, Escherichia со//, Kluyveromyces fragilis, Lactobacillus acidophilus, L.alimentarius, L.amylovorus, L crispatus, L.brevis, L.case 4 L.curvatus, L.cellobiosus, L.delbmeckii ss. bulgaricus, L.farciminis, L.fermentum, L.gasseri, L.helveticus, L.lactis, L.plantarum, L.johnsonii, L.reuteri, L rhamnosus, L.sakei, L.salivarius, Leuconostoc mesenteroides, P.cereviseae (damnosus), Pediococcus acidilactici, P.pentosaceus, Propionibacterium freudenreichii, Prop.shermanii, Saccharomyces cereviseae, Staphylococcus camosus, Staph. xylosus, Streptococcus infantahus, Strep.salivarius ss. thermophilus, Strep.thermophilus и Strep.lactis, но не ограничиваются ими.

В предпочтительных способах композицию смешивают в вакууме при комнатной температуре (например от 20°С до 30°С). После смешивания до гомогенности композицию затем охлаждают до температуры выше температуры замерзания композиции. Как правило, композицию охлаждают до температуры от -10°С до +10°С, более предпочтительно композицию охлаждают до температуры от -5°С до +5°С. В предпочтительном воплощении охлажденную композицию затем переносят в сушильную камеру, в которой применяют нагревание (20°С или больше), контролируя исходное вакуумметрическое давление на уровне, поддерживающем исходную температуру до охлаждения. Как правило, желаемое вакуумметрическое давление составляет менее 7 Торр (933,25 Па), но не менее 3 Торр (399,97 Па). В этих предпочтительных условиях достигается контролируемое увеличение объема композиции и последующая более быстрая первичная сушка композиции. Для ускорения вторичной сушки применяют максимальное вакуумметрическое давление, и температура теплоносителя может быть дополнительно увеличена до 30°С-60°С. Для максимизации стабильности конечного продукта композицию предпочтительно сушат в течение периода времени, достаточного для снижения активности воды в композиции до Aw равной 0,3 или менее. В предпочтительном воплощении изобретения вторичная сушка включает удаление воды при давлении менее 1 Торр (133,32 Па) и в особенно предпочтительном воплощении до менее 0,2 Торр (26,66 Па).

Влажная композиция может находиться в форме вязкой суспензии или частиц гидрогеля в диапазоне от 0,05 до 10 мм. Высушенная композиция может быть использована непосредственно в виде комка или измельчена в порошок со средним размером частиц от приблизительно 10 мкм до приблизительно 1000 мкм. Композиция может быть введена непосредственно животному, включая человека, в виде концентрированного порошка, в виде восстановленной из порошка жидкости (например напитка), или она может быть включена в виде комка или порошка в имеющийся пищевой или кормовой продукт.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

На Фиг.1 представлен график стабильности пробиотических бактерий, L.rhamnosus, которых подвергали хранению при 40°С и относительной влажности 33%.

На Фиг.2 представлены температуры процесса и кумулятивная потеря жизнеспособности для способа изготовления, завершающегося вторичной стадией сушки с Aw 0,28.

На Фиг.3 показано влияние различных стабилизаторов композиции на стабильность при хранении.

На Фиг.4 показано влияние вязкости альгината на увеличение объема композиции в вакууме.

На Фиг.5 показано влияние различных комбинаций стабилизаторов на жизнеспособность бактерий.

На Фиг.6 показано влияние плотности композиции на степень увеличения объема в вакууме.

На Фиг.7 показано влияние температуры предварительного охлаждения композиции на увеличение объема в вакууме.

На Фиг.8 показано влияние вакуум-метрического давления на температуру композиции во время стадии первичной сушки.

На Фиг.9 показано влияние вакуумметрического давления на скорость сушки композиции.

На Фиг.10 показана стабильность пробиотических бактерий, L.acidophilus, высушенных с композицией и способом по изобретению, во время хранения при 37°С и относительной влажности 33%.

На Фиг.11 представлена схема процесса изготовления стабильной сухой композиции из гидрогелевой композиции в соответствии с изобретением.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения

Следует понимать, что используемая здесь терминология приведена с целью описания только конкретных воплощений и не предназначена для ограничения объема изобретения. Используемые в этом описании и формуле изобретения формы единственного числа включают, если ясно не указано иное, объекты во множественном числе. Таким образом, например ссылка на "белок" включает единичный белок или комбинацию двух или более белков; ссылка на "фермент", "витамин", "бактерии" и так далее включает единичные объекты или смеси нескольких из них и тому подобное.

В описании и формуле настоящего изобретения использована следующая терминология в соответствии с представленными ниже определениями.

Температуры или условия "окружающей среды" представляют собой температуры или условия в любой заданный момент времени в данной окружающей среде. Как правило, температура окружающей среды составляет 22-25°С, давление окружающей атмосферы и влажность окружающей среды легко измерить, и они варьируют в зависимости от времени года, погодных и климатических условий, высоты и так далее.

"Дегазирование" относится к высвобождению газа, растворенного в жидкости, в которой парциальное давление газа больше приложенного давления. Не представляет собой кипение и часто может происходить при давлениях выше давления, при котором может кипеть раствор. Например, бутилированные газированные безалкогольные напитки имеют высокое парциальное давление CO2. Удаление крышки с бутылки снижает парциальное давление, и напиток интенсивно пузырится (он дегазирует, но не кипит).

"Кипение" относится к быстрому фазовому переходу из жидкости в газ, которое происходит тогда, когда температура жидкости выше ее температуры кипения. Температура кипения представляет собой температуру, при которой давление паров в жидкости равно приложенному давлению. Кипение может быть особенно интенсивным при приложении тепла к жидкости, которая уже находится в точке своего кипения.

"Активность воды" или "Aw" в контексте высушенной композиции относится к доступности воды и отражает энергетическое состояние воды в системе. Оно определено как давление паров воды над образцом, разделенное на давление паров чистой воды при той же самой температуре. Чистая дистиллированная вода имеет активность воды, точно равную единице, или Aw=1,0.

"Относительная влажность" или "RH" в контексте стабильности при хранении относится к количеству паров воды в воздухе при данной температуре. Относительная влажность обычно меньше той, которая требуется для насыщения воздуха, и выражается в процентной доле от влажности насыщения.

"Первичная сушка" в отношении описанных здесь способов относится к сушке, которая протекает с момента первичного применения вакуума до точки, когда начинается вторичная сушка. Как правило, большая часть первичной сушки осуществляется путем обширного испарения, при том что температура продукта остается значительно ниже температур источника тепла.

"Вторичная сушка", в отношении описанных здесь способов, относится к стадии сушки, которая протекает при температурах выше температур замерзания композиции и близко к температуре источника тепла. В типичном способе сушки композиции стадия вторичной сушки снижает активность воды Aw в композиции до 0,3 или менее.

"Биоактивный микроорганизм" или "биологически активный микроорганизм или композиция" относится к препаратам живых или убитых микроорганизмов, которые находятся в такой форме, которая безусловно обеспечивает эффективную биологическую активность микроорганизмов. "Живой микроорганизм в виде сухого порошка" относится к бактериальной биомассе, в которой по меньшей мере 10% масс./масс. бактерий являются живыми. "Убитый микроорганизм в виде сухого порошка" относится к бактериальной биомассе, в которой по меньшей мере 99,999% бактерий являются убитыми.

"Биоактивный материал", "биоактивная композиция", "биологически активный материал" или "биологически активная композиция" относится к препаратам, которые находятся в такой форме, которая безусловно обеспечивает эффективную биологическую активность биоактивных ингредиентов. Такие биоактивные материалы включают пептиды, белки, гормоны, витамины, минеральные вещества, лекарственные средства, микробиоциды, фунгициды, гербициды, инстектициды, спермициды, нуклеиновые кислоты, антитела и вакцины, но не ограничиваются ими.

"Стабилизатор или стабилизирующий агент" относится к соединениям или материалам, которые добавляют в композицию для увеличения вязкости влажной композиции или для образования гидрогеля. Примеры подходящего стабилизирующего агента включают полисахариды, такие как ацетатфталат целлюлозы (CAP), карбоксиметилцеллюлоза, пектин, альгинат натрия, соли альгиновой кислоты, гидроксипропилметилцеллюлоза (НРМС), метилцеллюлоза, каррагинан, гуаровая камедь, аравийская камедь, ксантановая камедь, смола плодов рожкового дерева, хитозан и хитозановые производные, коллаген, полигликолевая кислота, крахмалы и модифицированные крахмалы, циклодекстрины и олигосахариды (инулин, мальтодекстрины, раффиноза, декстраны и так далее) и их комбинации, но не ограничиваются ими.

"Защищающий агент", или "защитный агент", или "протектор" в общем относится к соединениям или материалам, которые добавляют для обеспечения или увеличения стабильности биоактивного материала во время процесса сушки и после него, или для обеспечения стабильности при длительном хранении сухого порошкообразного продукта. Подходящие защитные агенты как правило легко растворимы в растворе и не сгущаются или не полимеризуются при контакте с водой. Подходящие защитные агенты описаны ниже и включают белки, такие как человеческий и бычий сывороточный альбумин, белок молочной сыворотки, соевый белок, казеинат, желатин, иммуноглобулины, углеводы, включая моносахариды (галактозу, D-маннозу, сорбозу и так далее), дисахариды (лактозу, трегалозу, сахарозу и так далее), аминокислоты, такие как глутамат мононатрия, лизин, глицин, аланин, аргинин или гистидин, а также гидрофобные аминокислоты (триптофан, тирозин, лейцин, фенилаланин и так далее); метиламин, такой как бетаин; соль-эксципиент, такой как сульфат магния; полиол, такой как трехатомные или высшие сахарные спирты (например глицерин, эритрит, глицерол, арабит, ксилит, сорбит и маннит); пропиленгликоль; полиэтиленгликоль; плюроник; поверхностно-активные вещества и их комбинации, но не ограничиваются ими.

"Стабильный" препарат или композиция представляет собой такой препарат или композицию, где биоактивный микроорганизм или материал по существу сохраняет свою жизнеспособность и/или биологическую активность при хранении. Стабильность может быть измерена при выбранной температуре и условиях влажности для выбранного периода времени. Анализ тренда может быть использован для оценки ожидаемого срока годности до того, как материал будет реально храниться в течение данного периода времени. Для живых бактерий, например, стабильность определяют как время, затрачиваемое для уменьшения на 1 log CFU (колониеобразующая единица)/г сухой композиции в заранее определенных условиях температуры, влажности и периоде времени.

"Жизнеспособность" в отношении бактерий относится к способности образовывать колонию (CFU или колониеобразующих единиц) на питательных средах, подходящих для роста бактерий. Жизнеспособность в отношении вирусов относится к способности инфицировать и воспроизводиться в подходящей клетке-хозяине, что приводит в результате к образованию бляшек на слое клеток-хозяев.

Композиции и способы по настоящему изобретению позволяют решить проблему обеспечения экономичных и промышленно масштабируемых способов сушки для получения сухой композиции, содержащей биоактивные микроорганизмы или материалы, такие как живые или убитые вакцины, бактерии, водоросли, вирусы и/или клеточные суспензии, пептиды, белки, гормоны, витамины, минеральные вещества, лекарственные средства, микробиоциды, фунгициды, гербициды, инстектициды, спермициды, нуклеиновые кислоты, антитела, вакцины, обладающей значительно увеличенным сроком годности в сухом состоянии. В изобретении предложена композиция, содержащая биоактивный микроорганизм или материал со стабилизатором и защитным агентом в растворе, охлаждение указанной композиции до температуры выше ее температуры замерзания и стабилизация композиции путем удаления влаги в режиме пониженного давления при подведении к композиции тепла.

Большая часть потерь жизнеспособности микроорганизмов во время процессов сушки может быть связана с комбинацией стрессов во время замораживания-оттаивания и образования кристаллов льда, высокими осмотическими и окислительными стрессами, усилиями сдвига и высвобождением энергии во время пузырьковой кавитации, ассоциированной с "кипением" раствора при низком давлении сушки и высокой температуре. В настоящем изобретении предложена композиция и промышленно масштабируемый способ сушки, который минимизует потери во время сушки и защищает биоактивный микроорганизм при последующих жестких условиях хранения.

КОМПОЗИЦИИ ПО ИЗОБРЕТЕНИЮ

Настоящее изобретение включает изготовление композиций биоактивного микроорганизма или материала, стабилизатора и защитного агента в вязком растворе. Обнаружено, что композиции по изобретению по существу отличаются по своей физической структуре и функции от невязких или концентрированных композиций, которые сушили без предварительного охлаждения. Например, композиции предшествующего уровня техники сначала "вспенивали" для облегчения эффективной сушки. Стадия вспенивания в общем приводила в результате к интенсивному кипению и разбрызгиванию раствора, что является неизбежным следствием вакуумной сушки в жидком состоянии, и в результате может быть достигнута лишь очень низкая загрузочная емкость материала во флаконе или сосуде (см., например, патент США №6534087, в котором толщина слоя конечного вспененного продукта составляет менее 2 мм). Композиции и способы сушки по настоящему изобретению приводят лишь к очень ограниченному и контролируемому увеличению объема композиции, тем самым обеспечивая возможность гораздо более высокой загрузочной емкости материала на площадь сушки и, в результате, могут быть легко масштабированы для производства больших количеств материала.

Показано, что для одноклеточных микроорганизмов в особенности благоприятны композиции и способы сушки по настоящему изобретению. В одном из воплощений биоактивный микроорганизм по изобретению представляет собой пробиотические бактерии. Композицию готовят в соответствии с композициями и способами по изобретению, включающими приготовление живых пробиотических бактерий в концентрированном растворе, пасте, замороженных гранулах или сухой порошкообразной форме; смешивание пробиотических бактерий в вакууме со стабилизатором и защитным агентом, охлаждение вязкой композиции до температуры выше ее температуры замерзания, применение достаточного вакуумметрического давления для поддержания этой температуры предварительного охлаждения и применение источника тепла 20°С и выше для облегчения удаления воды. Поддержание температуры композиции после предварительного охлаждения может быть осуществлено путем отведения тепла от композиции и/или путем уменьшения скрытой теплоты вследствие испарения воды. Для дополнительного ускорения процесса сушки применяют стадию вторичной сушки при более высоком вакууме вплоть до 0,1 Торр (13,33 Па) и при повышенной температуре вплоть до 70°С для получения конечной композиции, обладающей активностью воды Aw равной 0,3 или менее. Такая композиция может сохранять стабильность в условиях хранения при 40°С и 33% RH в течение 60 суток или дольше (см. Фиг.1). Показано, что эти специфические способы по изобретению приводят в результате к неожиданной способности клеток сохранять свою жизнеспособность выше той, которая достигается при использовании общепринятых способов сушки. Исходная потеря жизнеспособности при проведении всего процесса сушки в соответствии с настоящим изобретением составила лишь 0,3 log (см. Фиг.2).

Составы для изготовления стабильных сухих порошкообразных композиций

Компоненты, которые необходимо смешать с предпочтительным микроорганизмом или материалом для изготовления сухих порошкообразных композиций в соответствии с изобретением, включают стабилизатор и защитный агент. Такие компоненты, когда их смешивают с предпочтительными биоактивными микроорганизмами или материалом, могут быть обработаны в соответствии со способами по изобретению, обеспечивающими получение больших количеств стабильных сухих композиций для хранения и введения указанных микроорганизмов. Стабилизаторы композиций могут включать смесь полисахарида и олигосахарида. Предпочтительным полисахаридом, в особенности для стабилизации живых микроорганизмов, оказался альгинат, поскольку неожиданно обнаружили, что альгинат превосходит другие полисахариды, такие как пектин и аравийскую камедь, в отношении снижения потерь чувствительных биологических молекул, таких как пробиотики, при сушке (Фиг.3). Он также является предпочтительным благодаря своему свойству образовывать гидрогель с нетоксичными металлами при умеренных температурах. Также было обнаружено, что альгинат эффективно стабилизирует композицию в вакууме путем придания подходящей вязкости композиции и обеспечивая контролируемое увеличение объема композиции при конкретной вязкости (Фиг.4).

Также было обнаружено, что объединение олигосахарида с альгинатом вносит дополнительный вклад в общую стабильность композиции. На Фиг.5 показано влияние различных комбинаций альгината и олигосахаридов на стабильность при хранении. Комбинация альгината и инулина представляла собой предпочтительную комбинацию с точки зрения влияния ее длительного хранения на пробиотические бактерии. В одном из воплощений изобретения по меньшей мере один из стабилизирующих агентов композиции предпочтительно представляет собой смолу, которая может образовывать прочный гидрогель путем перекрестного связывания с ионами металлов.

Защитные агенты по изобретению могут включать различные белки, пептиды, сахара, сахарные спирты и аминокислоты. Защитный агент предпочтительно представляет собой агент, который не кристаллизуется и/или не дестабилизирует биологически активный материал в композиции при температурах замерзания (например -20°С). Может быть благоприятно включать два или более чем два разных защитных агента для ингибирования образования кристаллов и стабилизации высушенной композиции биоактивного материала в условиях хранения в течение длительных периодов времени.

Влажные композиции могут включать значительное количество твердых веществ (компоненты минус растворитель, такой как вода). Значительная доля твердых веществ может состоять из биоактивного материала, стабилизирующего агента и защитного агента.

Например, биоактивный материал может присутствовать в композиции в концентрации, находящейся в диапазоне приблизительно 2-50 масс.%, стабилизирующий агент в диапазоне приблизительно 1-20 масс.% и защитный агент в диапазоне приблизительно 20-80 масс.%. В еще одном примере стабилизирующий агент может присутствовать в композиции в концентрации, находящейся в диапазоне приблизительно 0,5-10 масс.%, и защитный агент в диапазоне приблизительно 10-40 масс.%. Предпочтительно, влажная композиция должна иметь содержание твердых веществ от приблизительно 5% до 80%; более предпочтительно от приблизительно 30% до 60%. Вязкость композиции по изобретению обычно составляет боле 1000 сантипуаз (сП) (1 Па·с); более предпочтительно, более 10000 сП (10 Па·с) и менее 450000 сП (450 Па·с); и наиболее предпочтительно, более 30000 сП (30 Па·с) и менее 100000 сП (100 Па·с).

Вязкость композиций по изобрете