Способ организации комплексной технологии очистки, пассивации и поддержания водно-химического режима рабочего водопарового тракта энергоблока

Изобретение относится к области теплоэнергетики и может быть использовано для очистки, пассивации и поддержания водно-химического режима (ВХР) рабочего водопарового тракта (РВПТ) паросиловых энергоблоков докритических параметров, в том числе парогазовых установок. Предложен способ организации комплексной технологии очистки и пассивации внутренних поверхностей, а также последующего поддержания корректирующего эксплуатационного ВХР РВПТ паросилового энергоблока с использованием средств воздействия на химическое состояние водопаровой среды на каждом из перечисленных этапов указанной комплексной технологии. Отличие в том, что в качестве средств воздействия на химическое состояние водопаровой среды на всех трех этапах указанной комплексной технологии используют один и тот же аминосодержащий химический реагент, оптимальную концентрацию которого в обрабатываемой им среде подбирают индивидуально для каждого из указанных этапов, а оптимальные параметры указанной среды подбирают только для двух первых этапов. 2 з.п. ф-лы.

Реферат

Область использования

Изобретение относится к области теплоэнергетики и может быть использовано для очистки, пассивации и поддержания водно-химического режима (ВХР) рабочего водопарового тракта (РВПТ) паросиловых энергоблоков докритических параметров, в том числе парогазовых установок (ПГУ).

Предшествующий уровень техники

Известен принятый в качестве прототипа способ организации комплексной технологии очистки и пассивации внутренних поверхностей, а также последующего поддержания корректирующего эксплуатационного ВХР РВПТ паросилового энергоблока с использованием средств воздействия на химическое состояние водопаровой среды на каждом из перечисленных этапов указанной комплексной технологии (RU 2379584, F22B 37/48, 2010 [1]). Согласно известному способу [1] на первых двух этапах указанной технологии очистка и пассивация (консервация) внутренних поверхностей РВПТ осуществляется с использованием в качестве средства воздействия на химическое состояние водопаровой среды парокислородной смеси в определенном диапазоне температур и давлений. На третьем этапе согласно [1] осуществляют бескислородный ВХР при глубоком обессоливании турбинного конденсата и высокой степени его деаэрации. К недостаткам способа [1] следует отнести относительно большие эксплуатационные затраты, связанные с высокой стоимостью кислорода, а также с обеспечением глубокого обессоливания и высокой степени деаэрации турбинного конденсата.

Раскрытие изобретения

Задачей, на решение которой направлено заявляемое изобретение, является создание простой, относительно малозатратной и эффективной комплексной технологии воздействия на химическое состояние среды РВПТ паросилового энергоблока, обеспечивающей надежную защиту внутренней поверхности указанного тракта от коррозии и отложений. Техническим результатом изобретения является возможность использования единого химического реагента, способного удовлетворить всем перечисленным выше требованиям для решения поставленной задачи с исключением необходимости глубокого обессоливания турбинного конденсата и неоправданно высокой степени его деаэрации.

Указанные задача и технический результат заявляемого изобретения обеспечиваются тем, что в способе организации комплексной технологии очистки и пассивации внутренних поверхностей, а также последующего поддержания корректирующего эксплуатационного ВХР РВПТ паросилового энергоблока с использованием средств воздействия на химическое состояние водопаровой среды на каждом из перечисленных этапов указанной комплексной технологии согласно изобретению в качестве указанных средств воздействия на химическое состояние водопаровой среды на всех трех этапах указанной комплексной технологии используют один и тот же аминосодержащий химический реагент, оптимальную концентрацию которого в обрабатываемой им среде подбирают индивидуально для каждого из указанных этапов, а оптимальные параметры указанной среды подбирают только для двух первых этапов. При этом в качестве указанного аминосодержащего реагента преимущественно используют водный раствор амина, содержащий моноэтаноламин, 1,3-олеилпропандиамин, этоксилированные жирные алкиламины и диэтиламиноэтанол при следующем соотношении компонентов, мас.%:

моноэтаноламин 24,0…26,0
диэтиламиноэтанол 7,0…8,0
1,3-олеилпропандиамин 2,0…3,0
этоксилированные жирные алкиламины 0,5…1,5
вода остальное до 100%

Концентрация указанного аминосодержащего химического реагента в среде РВПТ энергоблока на первом из указанных этапов комплексной технологии составляет 250…300 мкг/дм3, на втором - 100…250 мкг/дм3, на третьем - 50…100 мкг/дм3 при температуре указанной среды на первом этапе 50…130°C, на втором - 130…200°C, на третьем - в соответствии с требованиями текущего эксплуатационного режима энергоблока и максимальном давлении указанной среды на первом этапе 1,5…3,0 МПа, на втором - 3,0…10 МПа, на третьем - в соответствии с требованиями текущего эксплуатационного режима энергоблока, причем первые два этапа указанной комплексной технологии осуществляют при нагрузке энергоблока в диапазоне 30…50% от номинальной.

Подробное описание изобретения

Следует отметить, что любой химический реагент, по сравнению с кислородом, представляет некоторую опасность для окружающей среды. В связи с этим в основе предлагаемой технологии лежит применение химических реагентов, относящихся к третьему классу опасности, что практически в достаточной степени предотвращает вредное воздействие их на окружающую среду.

Физико-химический процесс очистки и пассивации при использовании аминосодержащих химических реагентов обеспечивает не только процесс физической адсорбции загрязнений, но и процесс хемосорбции, обеспечивая образование комплексов аминов с металлом и его оксидами, которые поддерживаются при ведении ВХР с применением аминов.

Комплексная трехэтапная технология обработки РВПТ с использованием на всех этапах одного и того же аминосодержащего химического реагента согласно изобретению проводится следующим образом:

- В качестве аминосодержащего химического реагента используют водный раствор амина, содержащий моноэтаноламин, 1,3-олеилпропандиамин, этоксилированные жирные алкиламины и диэтиламиноэтанол при следующем соотношении компонентов, мас.%:

моноэтаноламин 24,0…26,0
диэтиламиноэтанол 7,0…8,0
1,3-олеилпропандиамин 2,0…3,0
этоксилированные жирные алкиламины 0,5…1,5
вода остальное до 100%

- Первый этап. Очистка внутренних поверхностей нагрева указанного тракта, включая поверхности водяного экономайзера энергетического котла. Концентрация указанного химического реагента в среде указанного тракта составляет 250…300 мкг/дм3; температура указанной среды в тракте 50…130°C; давление в барабане котла поддерживается на уровне 1,5…3,0 МПа. Отложения с очищаемых поверхностей удаляют путем периодической продувки из нижних точек тракта. Дозирование реагента производят во всасывающий коллектор питательного насоса или в напорный коллектор конденсатного насоса, а также непосредственно в барабан котла. Продолжительность этапа составляет от 12 до 24 часов. Критерием завершения очистки является стабилизация содержания железа в котловой воде на уровне не более 500 мкг/дм3 при концентрации реагента не менее 50 мкг/дм3.

- Второй этап. Пассивация (консервация) внутренних поверхностей нагрева. Концентрация указанного химического реагента в среде РВПТ составляет 250…300 мкг/дм3; температура среды в тракте 130…200°C; давление в барабане котла поддерживается на уровне 3,0…10,0 МПа. Дозирование реагента производится во всасывающий коллектор питательного насоса или в напорный коллектор конденсатного насоса, а также непосредственно в барабан котла. Продолжительность этапа составляет от 12 до 24 часов. Критерием завершения пассивации является стабилизация содержания железа в котловой воде на уровне не более 50 мкг/дм3 при концентрации реагента не менее 50 мкг/дм3.

Третий этап. ВХР. Периодически производится дозирование того же реагента в среду РПВТ в эксплуатационных режимах работы энергоблока с соответствующими этим режимам параметрами. Частота периодов дозирования реагента и продолжительность дозирования производятся исходя из условия сохранения в среде РПВТ концентрации реагента в диапазоне 50…100 мкг/дм3.

Примеры использования

Комплексная технология очистки, пассивации и поддержания ВХР РВПТ энергоблока согласно изобретению была успешно опробована во всех приведенных выше диапазонах концентраций реагента и параметров рабочей среды. При этом удавалось удалить до 70% эксплуатационных отложений, а показатели состояния внутренней поверхности РПВТ как в водяной, так и в паровой области отвечало предъявляемым требованиям коррозионной стойкости. В частности, pH среды находилось в пределах 9.0…9.6, а коррозионная стойкость образованной на этапе пассивации и поддерживаемой на этапе ВХР защитной магнетитовой пленки составляла 4…5 баллов, характеризуемая как «высшая» согласно ГОСТ 9.908-85 при скорости коррозии металла поверхностей нагрева не более 0,08 мм/год.

Промышленное применение

Комплексная технология согласно изобретению может найти широкое применение на тепловых электростанциях с энергоблоками докритических параметров. Технология экологически безопасная и практически не оказывает техногенного воздействия на окружающую среду, не требуя утилизации токсичных стоков. Кроме того, она позволяет выводить оборудование в резерв или вводить в эксплуатацию без дополнительных технологических мероприятий по расконсервации и очистке энергоблока. Глубина обессоливания и степень деаэрации турбинного конденсата и добавочной воды при данной технологии могут находиться в пределах, установленных правилами технической эксплуатации указанных энергоблоков.

1. Способ организации комплексной технологии очистки и пассивации внутренних поверхностей, а также последующего поддержания корректирующего эксплуатационного водно-химического режима рабочего водопарового тракта паросилового энергоблока с использованием средств воздействия на химическое состояние водопаровой среды на каждом из перечисленных этапов указанной комплексной технологии, отличающийся тем, что в качестве указанных средств воздействия на химическое состояние водопаровой среды на всех трех этапах указанной комплексной технологии используют один и тот же аминосодержащий химический реагент, оптимальную концентрацию которого в обрабатываемой им среде подбирают индивидуально для каждого из указанных этапов, а оптимальные параметры указанной среды подбирают только для двух первых этапов.

2. Способ по п.1, отличающийся тем, что в качестве указанного аминосодержащего реагента используют водный раствор амина, содержащий моноэтаноламин, 1,3-олеилпропандиамин, этоксилированные жирные алкиламины и диэтиламиноэтанол при следующем соотношении компонентов, мас.%:

моноэтаноламин 24,0…26,0
диэтиламиноэтанол 7,0…8,0
1,3-олеилпропандиамин 2,0…3,0
этоксилированные жирные алкиламины 0,5…1,5
вода остальное до 100%

3. Способ по п.1 или 2, отличающийся тем, что концентрация указанного аминосодержащего химического реагента в среде рабочего водопарового тракта энергоблока на первом из указанных этапов комплексной технологии составляет 250…300 мкг/дм3, на втором - 100…250 мкг/дм3, на третьем - 50…100 мкг/дм3 при температуре указанной среды на первом этапе 50…130°С, на втором - 130…200°С, на третьем - в соответствии с требованиями текущего эксплуатационного режима энергоблока и максимальном давлении указанной среды на первом этапе 1,5…3,0 МПа, на втором - 3,0…10 МПа, на третьем - в соответствии с требованиями текущего эксплуатационного режима энергоблока, причем первые два этапа указанной комплексной технологии осуществляют при нагрузке энергоблока в диапазоне 30…50% от номинальной.