Конструируемые белки с цинковыми пальцами, направленные на гены растений, вовлеченные в биосинтез жирных кислот

Иллюстрации

Показать все

Изобретение относится к биотехнологии. Описан неприродный белок с цинковыми пальцами, модулирующий экспрессию эндогенного гена β-кетоацил-АСР-синтетазы (KAS) растения, и слитый белок, содержащий его. Представлен полинуклеотид, кодирующий слитый белок. Описан способ модификации одного или нескольких генов, вовлеченных в биосинтез жирных кислот в растительной клетке, включающий использование слитого белка. Представлены растительная клетка и растение, а также потомство растения и его семя, содержащие полинуклеотид, кодирующий описанный слитый белок. 9 н. и 9 з.п. ф-лы, 20 ил., 19 табл., 15 пр.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] По заявке испрашивается приоритет предварительной заявки США № 61/279528, поданной 22 октября 2010 года, описание которой, таким образом, в полном объеме включено в настоящий документ посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ

[0002] Описание в основном относится к областям геномной инженерии и экспрессии белков в растениях. В частности, настоящее изобретение относится к конструированию ДНК-связывающих доменов, например, белков с цинковыми пальцами, направленных на гены, вовлеченные в синтез жирных кислот, и к способам использования таких белков с цинковыми пальцами для модуляции экспрессии генов, инактивации генов и направленной модификации генов для получения растений с измененными профилями жирных кислот.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0003] Диеты с высоким содержанием насыщенных жиров увеличивают содержание липопротеинов низкой плотности (LDL), что, в свою очередь, вызывает отложение холестерина на кровеносных сосудах, предварительное условие тесно, коррелирующее с атеросклерозом и ишемической болезнью сердца (Conner et al., Coronary Heart Disease: Prevention, Complications, and Treatment, J.B. Lippincott, Philadelphia, 1984 pp. 43-64). В отличие от этого показано, что диеты с высоким содержанием мононенасыщенных жиров ослабляют заболевание сердца. Олеиновая кислота, единственная мононенасыщенная жирная кислота в большинстве пищевых растительных масел, снижает LDL также эффективно, как и линолевая кислота, но не влияет на уровни липопротеинов высокой плотности (HDL) (Mensink et al. (1989) New England J. Med., 321:436-441). Кроме того, диеты с высоким содержанием мононенасыщенных жирных кислот также коррелируют со сниженным систолическим артериальным давлением (Williams et al. (1987) J. Am. Med. Assoc., 257:3251-3256, 1987).

[0004] В свете влияния жирных кислот на диету и здоровье проводились попытки изменить профиль жирных кислот растений, используемых в пищевых и промышленных целях. Однако общепринятые способы изменения растений для улучшения профиля жирных кислот основаны на мутагенезе (например, химический, радиационный и т.д.) и/или селекции и требуют времени, трудоемки и не направлены специфически на выбранные гены. См., например, патент США № 5861187.

[0005] Недавно, конструируемые ДНК-связывающие домены, такие как ДНК-связывающие домены мегануклеаз и белки с цинковыми пальцами (ZFP), эффективно использовали для селективной модуляции экспрессии генов и для направленного изменения последовательностей генов у растений (см., например, патенты США №№ 7262054, 7235354, 7220719, 7001768 и 6534261; патентные публикации США №№ 2008/0182332 и с серийным номером США № 12/284888). Белки с цинковыми пальцами (ZFP) представляют собой белки, которые связываются с ДНК, РНК и/или белком специфичным для последовательности образом посредством стабилизированного металлом домена, известного как цинковый палец. См., например, Miller et al. (1985) EMBO J. 4:1609-1614; Rhodes et al. (1993) Sci. Amer. 268(2):56-65; и Klug (1999) J. Mol. Biol. 293:215-218. ZFP, как правило, находятся в факторах транскрипции, и до настоящего времени в нескольких тысячах известных или предполагаемых факторах транскрипции идентифицировано более 10000 последовательностей цинковых пальцев.

[0006] ДНК-связывающие домены также можно использовать с нуклеазными доменами с получением сконструированных нуклеаз. Например, можно изменять ДНК-связывающий домен хоминг-эндонуклеазы с получением новой хоминг-эндонуклеазы. Подобным образом, домены цинковых пальцев также комбинировали с нуклеазными расщепляющими доменами с получением нуклеаз с цинковыми пальцами (ZFN) для специфичного задания двухцепочечного разрыва в области генома, где желательна модификация (например, делеция, мутация, гомологичная рекомбинация или вставка экзогенной последовательности) (см., например, публикации патентных заявок США №№ 2007/0134796; 2005/0064474; 2008/0182332). Конструируемые ZFP значительно облегчают вставку экзогенной последовательности или модификацию эндогенной последовательности в конкретных участках-мишенях у растений и обеспечивают направленное изменение геномов растений с большей эффективностью, чем общепринятые способы (см., например, патенты США №№ 7262054, 7235354, 7220719, 7001768 и 6534261).

[0007] Тем не менее, сохраняется необходимость в композициях и способах для направленного изменения генов, вовлеченных в синтез жирных кислот, для получения растений и растительных продуктов (например, растительных масел), содержащих выбранные жирные кислоты. Посредством продуцирования видов растений со сниженными уровнями конкретных и всех насыщенных жирных кислот в масле семян можно получать масляные пищевые продукты, содержащие меньше насыщенных жирных кислот. Такие продукты приносят пользу для здравоохранения, снижая заболеваемость атеросклерозом и ишемической болезнью сердца.

СУЩНОСТЬ

[0008] Настоящее описание относится к композициям и способам для модуляции экспрессии и направленного изменения в целых растениях или в растительных клетках одного или нескольких генов растений, вовлеченных в биосинтез жирных кислот, таким образом, изменяя состав жирных кислот в целом растении или в растительных клетках. Целые растения или растительные клетки могут принадлежать к односемядольным (однодольным) или двусемянодольным (двудольным) видам растений, включая в некоторых конкретных вариантах осуществления маслопродуцирующие растения, а также включая культивируемые клетки, клетки в растении на любой стадии развития и растительные клетки, выделенные из целого растения, и которые (или их потомство) регенерируют в растения. Растительные клетки могут содержать одну или несколько гомеологичных или паралогичных последовательностей генов, любое количество которых или все из них могут являться мишенью для модификации способами, описываемыми в настоящем документе.

[0009] В одном из аспектов в настоящем документе описан ДНК-связывающий домен (например, белок с цинковыми пальцами (ZFP)), который специфически связывается с геном, вовлеченным в путь биосинтеза жирных кислот у растений. В некоторых вариантах осуществления ген представляет собой ген Brassica napus. В некоторых конкретных вариантах осуществления, ген Brassica napus может кодировать ацетил-КоА-карбоксилазу (ACCазу), β-кетоацил-ACP-синтетазы (KAS, например, KAS I-KAS IV), тиоэстеразу жирных кислот B (FATB, например, FATB1-FATB5, или другие тиоэстеразы пластид), синтазу жирных кислот (FAS), элонгазу жирных кислот (FAE, например, FAE1), тиоэстеразу жирных кислот A (FatA), десатуразу жирных кислот (Fad2, Fad3), G-3-P-дегидрогеназу пластид (GPDH), глицерокиназу (GK), десатуразу белка-носителя стеароилацила (S-ACP-DES) и олеоил-ACP-гидролазу. В некоторых конкретных вариантах осуществления ген может представлять собой ортолог или гомолог этих генов у других видов маслопродуцирующих растений.

[0010] В еще одном дополнительном аспекте также предоставлены слитые белки, содержащие любой из ДНК-связывающих доменов (например, ZFP), описываемых в настоящем документе. В определенных вариантах осуществления слитый белок содержит белок с цинковыми пальцами и домен регуляции транскрипции (например, домен активации или репрессии), также известный как ZFP TF. В других вариантах осуществления слитый белок содержит ZFP и нуклеазный домен с образованием нуклеазы с цинковыми пальцами (ZFN), расщепляющей ген-мишень в представляющей интерес области генома. В определенных вариантах осуществления ZFN включает слитый полипептид, содержащий конструируемый связывающий домен цинковых пальцев со специфичностью к гену, вовлеченному в путь биосинтеза жирных кислот у растений (например, ген, кодирующий ACCазу, KAS I, KAS II, KAS III, KAS IV, FATB1, FATB2, FATB3, FATB4, FATB5, FAS, FAE1, FatA, Fad2, Fad3, GPDH, GK или S-ACP-DES), и домен расщепления, и/или один или несколько слитых полипептидов, содержащих конструируемый связывающий домен цинковых пальцев и полудомен расщепления. В определенных вариантах осуществления связывающие домены цинковых пальцев связываются с участком-мишенью, как показано в таблице 2 или таблице 10A. В определенных вариантах осуществления связывающие домены цинковых пальцев содержат последовательность, выбранную из группы, состоящей из белков с цинковыми пальцами, содержащих домены распознавания (например, единичной цепи), представленные в таблице 1 или таблице 10B. Домены расщепления и полудомены расщепления можно получать, например, из различных рестрикционных эндонуклеаз и/или хоминг-эндонуклеаз. В одном из вариантов осуществления полудомены расщепления получают из рестрикционной эндонуклеазы типа IIS (например, FokI).

[0011] В других аспектах в настоящем документе предоставлены полинуклеотиды, кодирующие любой из ДНК-связывающих доменов (например, белки с цинковыми пальцами) и/или слитые белки, описываемые в настоящем документе. Определенные варианты осуществления, описываемые в настоящем документе, представляет собой экспрессирующий ZFP вектор, содержащий полинуклеотид, кодирующий один или несколько ZFP, описываемых в настоящем документе, функционально связанный с промотором. В одном из вариантов осуществления один или несколько из ZFP представляют собой ZFN.

[0012] ZFP и слитые белки, содержащие эти ZFP, могут связываться с геном, вовлеченным в синтез жирных кислот, и/или расщеплять его в кодирующей области гена или в некодирующей последовательности в гене или рядом с ним, такой как, например, лидерная последовательность, трейлерная последовательность или интрон, или в нетранскрибируемой области, выше или ниже кодирующей области. В определенных вариантах осуществления ZFP или ZFN связываются с кодирующей последовательностью или регуляторной последовательностью гена, вовлеченного в биосинтез жирных кислот, и/или расщепляют их.

[0013] В другом аспекте в настоящем документе описаны композиции, содержащие один или несколько белков, слитых белков или полинуклеотидов, как описано в настоящем документе. Растительные клетки могут содержать один уникальный ген-мишень или несколько паралогичных копий одного и того же гена. Таким образом, композиции могут содержать один или несколько содержащих ZFP белков (и полинуклеотидов, кодирующих их), направленных на один или несколько генов, вовлеченных в синтез жирных кислот в растительной клетке. ZFP могут являться направленными ко всем паралогичным или гомеологичным генам и конкретным выбранным паралогичным или гомеологичным генам в растительной клетке или их сочетанию.

[0014] В другом аспекте в настоящем документе предоставлена растительная клетка-хозяин, содержащая один или несколько белков или полинуклеотидов (например, экспрессирующие ZFP векторы), как описано в настоящем документе. Для полинуклеотидов, растительная клетка-хозяин может являться стабильно трансформированной или транзиторно трансфицированной или являться подвергнутой их сочетанию одним или несколькими экспрессирующими ZFP векторами. В одном из вариантов осуществления один или несколько экспрессирующих ZFP векторов экспрессируют в растительной клетке-хозяине одну или несколько ZFN. В другом варианте осуществления один или несколько экспрессирующих ZFP векторов экспрессируют в растительной клетке-хозяине один или несколько ZFP TF.

[0015] В другом аспекте в настоящем документе описан способ модуляции экспрессии одного или нескольких генов, вовлеченных в биосинтез жирных кислот в растительной клетке, где способ включает: (a) введение в растительную клетку одного или нескольких экспрессирующих векторов, кодирующих один или несколько ZFP TF, которые связываются с участком-мишенью в одном или нескольких генах, вовлеченных в биосинтез жирных кислот, в таких условиях, что происходит экспрессия ZFP TF и модуляция одного или нескольких генов. Модуляция может представлять собой активацию или репрессию. В определенных вариантах осуществления по меньшей мере один участок-мишень находится в гене(ах) ACCазы, KAS I, KAS II, KAS III, KAS IV, FATB1, FATB2, FATB3, FATB4, FATB5, FAS, FAE1, FatA, Fad2, Fad3, GPDH, GK и/или S-ACP-DES. В других вариантах осуществления происходит модуляция более одного гена, вовлеченного в биосинтез жирных кислот. В любом из способов модуляции экспрессии генов, вовлеченных в биосинтез жирных кислот, как описано в настоящем документе, этими способами получают растительные клетки с модифицированным содержанием жирных кислот, например, со снижением количества насыщенных жирных кислот в растительных клетках. В некоторых вариантах осуществления модифицированное содержание жирных кислот в растительных клетках приводит к модифицированному содержанию жирных кислот в семенах растения, например, к снижению количества насыщенных жирных кислот в семенах растения. В некоторых вариантах осуществления растение представляет собой маслопродуцирующее растение с модифицированным содержанием жирных кислот в семенах маслопродуцирующего растения (например, со сниженным содержанием насыщенных жирных кислот). В определенном конкретном варианте осуществления растение представляет собой растение Brassica napus с модифицированным содержанием жирных кислот в семенах растения Brassica napus (например, со сниженным содержанием насыщенных жирных кислот).

[0016] В другом аспекте в настоящем документе описан способ расщепления одного или нескольких генов, вовлеченных в биосинтез жирных кислот в растительной клетке, где способ включает: (a) введение в растительную клетку одного или нескольких экспрессирующих векторов, кодирующих одну или несколько нуклеаз (например, ZFN), которые связываются с участком-мишенью в одном или нескольких генах, вовлеченных в биосинтез жирных кислот, в таких условиях, что происходит экспрессия нуклеаз(ы) (например, ZFN) и расщепление одного или нескольких генов. В определенных вариантах осуществления по меньшей мере один участок-мишень находится в гене, кодирующем ACCазу, KAS I, KAS II, KAS III, KAS IV, FATB1, FATB2, FATB3, FATB4, FATB5, FAS, FAE1, FatA, Fad2, Fad3, GPDH, GK и/или S-ACP-DES. В других вариантах осуществления расщепляется более одного гена, вовлеченного в биосинтез жирных кислот. Кроме того, в любом из способов, описываемых в настоящем документе, расщепление одного или нескольких генов должно приводить к делеции, добавлению и/или замене нуклеотидов в расщепляемой области.

[0017] В еще одном аспекте в настоящем документе описан способ введения в геном растительной клетки экзогенной последовательности, где способ включает стадии: (a) приведения клетки в контакт с экзогенной последовательностью (донорный вектор) и (b) экспрессию в клетке одной или нескольких нуклеаз (например, нуклеаз с цинковыми пальцами), как описано в настоящем документе, где одна или несколько нуклеаз расщепляют хромосомную ДНК так, что расщепление хромосомной ДНК на этапе (b) стимулирует встраивание донорного вектора в геном посредством гомологичной рекомбинации. В определенных вариантах осуществления одна или несколько нуклеаз представляют собой слияния домена расщепления рестрикционной эндонуклеазы типа IIs и сконструированного связывающего домена цинковых пальцев. В других вариантах осуществления нуклеаза содержит хоминг-эндонуклеазу, например, хоминг-эндонуклеазу с модифицированным ДНК-связывающим доменом. В любом из способов, описываемых в настоящем документе, экзогенная последовательность может кодировать белковый продукт.

[0018] В еще одном дополнительном аспекте также предоставлена трансгенная или нетрансгенная растительная клетка, получаемая любым из способов, описанных в настоящем документе.

[0019] В другом аспекте в настоящем документе предоставлено растение, содержащее трансгенную или нетрансгенную растительную клетку, полученную, как описано в настоящем документе.

[0020] В другом аспекте в настоящем документе предоставлено семя растения, содержащее трансгенную или нетрансгенную растительную клетку, полученную, как описано в настоящем документе.

[0021] В другом аспекте в настоящем документе предоставлено масло из семян, получаемое из растения, содержащего трансгенную или нетрансгенную растительную клетку, полученную, как описано в настоящем документе.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0022] Фигура 1 представляет собой схематическое изображение путей биосинтеза жирных кислот в каноле (B. napus). Оно адаптировано по John Shanklin, Brookhaven National Laboratory, Upton, NY (Thelen and Ohlrogge, 2002, Metabolic engineering 4:12-21).

[0023] Фигура 2 представляет собой схематическое изображение положений участков-мишеней в гене KASII для различных иллюстративных направленных на KASII ZFP TF. Числа обозначают участки-мишени ZFP, содержащиеся в конструкциях, приведенных в таблице III. Составы ZFP приведены в таблицах I и II.

[0024] Фигура 3 представляет собой изображение экспрессии мРНК KASII в листьях растений T0, трансформированных активирующей KASII конструкцией ZFP TF 4695, как определено посредством кПЦР-РВ, в виде диаграммы. Для расчета кратности возрастания экспрессии, представленной на диаграмме, применяли среднее по 27 контрольным растениям. В определенных случаях наблюдали более чем 3-кратное возрастание экспрессии мРНК KASII.

[0025] Фигура 4 представляет собой изображение отношений экспрессии KASII-ZFP TF/тубулина в листьях растений T1, детектируемой кПЦР-РВ, в виде диаграммы. Сравнивали три случая вместе с соответствующими нулевыми значениями.

[0026] Фигура 5 представляет собой изображение в виде диаграммы средних отношений экспрессии мРНК KASII/тубулина в содержащих ZFP TF и сегрегирующих ноль-растений T1 каждого из трех событий, как определено посредством кПЦР-РВ. В листья этих растений T1 наблюдали 2-3-кратное повышение экспрессии мРНК KASII.

[0027] Фигуры 6A и 6B представляют собой диаграммы, полученные с применением статистического программного обеспечения JMP для однофакторного анализа жирных кислот(ы)-мишеней, демонстрирующие согласованное и значимое (p = <0,001) снижение всех C16 (6A) и снижение отношений всех C16/всех C18 (6B) в положительных по ZFP TF растений и сестринских ноль-растений в каждом случае. Все C16 включали содержание C16:0 и C16:1, а все C18 включали содержание C18:0, 18:1, 18:2 и 18:3.

[0028] На фигуре 7 приведено выравнивание последовательностей AF318307 и AF244520. Затенение означает области точной гомологии.

[0029] На фигуре 8 приведено выравнивание последовательностей SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:46, SEQ ID NO:30, AC189461 и BH723504. Пунктирными линиями над соответствующей последовательностью выделены последовательности прямого и обратного праймеров (SEQ ID NO:28 и 29) для амплификации кДНК β-кетоацил-ACP-синтетазы II. Затенение означает области точной гомологии.

[0030] На фигуре 9 изображена экспрессия генов FatB4 и FatB5 в трансгенных линиях каллюсов B. napus для различных составов ZFP TF, присутствующих в конструкциях pDAB4690-pDAB4692. Анализировали 17 линий для контроля и 25 линий для каждой из конструкций ZFP. Черные столбцы = экспрессия мРНК FatB4; серые столбцы = экспрессия мРНК FatB5.

[0031] На фигуре 10 представлены экспрессии FatB4 и FatB5 в листьях трансгенных растений T0 B. napus, анализируемых с использованием кПЦР-РВ. В трансгенных растениях тестировали три конструкции, содержащие ZFP TF, pDAB4689-pDAB4691. Общее количество независимых трансгенных растений T0, анализируемых в этом эксперименте, составляло 40, 62, 41 и 22 для pDAB4689-pDAB4691 и pDAB8210, соответственно. Контроль Nex710 состоял из 10 растений. Положительными по экспрессии ZFP TF являлись девяносто семь процентов случаев переноса трансгена для 3 конструкций ZFP TF, как определено посредством анализа экспрессии ZFP TF (пример 8.3). Подобные результаты получали, когда посредством эталона для нормализации экспрессии генов FatB использовали экспрессию мРНК природного тубулина. Черный столбец = экспрессия FatB4; серый столбец = экспрессия FatB5.

[0032] Фигура 11 представляет собой диаграмму, демонстрирующую линейную зависимость между экспрессией генов FatB и тубулина при анализе растений T1. Черные квадраты = экспрессия FatB4; серые ромбы = экспрессия FatB5.

[0033] На фигуре 12 представлена кПЦР-РВ для экспрессии FatB4 и FatB5 в листьях растений T1, трансгенных по конструкции ZFP TF pDAB4691. Черные квадраты = экспрессия FatB4; серые ромбы = экспрессия FatB5.

[0034] Фигура 13 представляет собой однофакторный анализ содержания C18:0 на образец с использованием статистического программного обеспечения JMP.

[0035] На фигуре 14 представлен однофакторный анализ общего содержания C16/C18 на образец с использованием программного обеспечения для статистического анализа JMP.

[0036] На фигуре 15 представлен анализ профилей FA T1 зрелых семян, содержащих 4 случая с конструкциями ZFP TF, продемонстрированный с использованием статистического программного обеспечения JMP. На панелях A и B представлен однофакторный анализ содержания C18:0 и содержания C16:0/C18:0 на образец (конструкцию), соответственно.

[0037] На фигуре 16 представлен анализ профилей FA T1 зрелых семян, содержащих 4 случая с конструкциями ZFP TF, продемонстрированный с использованием статистического программного обеспечения JMP. На панелях A и B представлен однофакторный анализ содержания C14:0 и содержания C16:1 на образец (конструкцию), соответственно, подчеркивающий дифференцирующее свойство конструкции pDAS5227. Анализ профилей FA T1 зрелых семян, содержащих 4 случая с конструкциями ZFP TF, продемонстрирован с использованием статистического программного обеспечения JMP. На панелях A и B представлен однофакторный анализ содержания C14:0 и C16:1 на образец (конструкцию), соответственно, подчеркивающий дифференцирующее свойство конструкции pDAS5227.

[0038] На фигуре 17 продемонстрировано снижение экспрессии мРНК FatB5 (черные столбцы) в незрелых семенах T2, трансформированных конструкцией с ZFP TF pDAS5227. Экспрессия ZFP TF представлена экспрессией ERF3 (серые столбцы). Анализировали незрелые семена на 25 DAF из четырех ноль-растений, трех гетерозиготных (5227_12ZF-1) и четырех гомозиготных (5227_12ZF-2) растений T1 в случае 5227-12.

[0039] На фигуре 18 представлено снижение экспрессии мРНК FatB5 (черные столбцы) в незрелых семенах T2, трансформированных конструкцией с ZFP TF pDAS5212. Экспрессия мРНК ZFP TF представлена экспрессией KRAB1 (серые столбцы). Анализировали незрелые семена на 25 DAF из пяти ноль-растений, трех гетерозиготных и четырех гомозиготных растений в случае 5212-4.

[0040] На фигуре 19 представлен однофакторный анализ всех насыщенных жирных кислот (насыщ.) в соответствии с зиготностью семян T2 в случае 5227-12 с ZFP TF. Семена T2, полученные из ноль-растений, гетерозиготных и гомозиготных исходных растений T1, помечали как 5227-12ZF ноль, 5227-12ZF(1) и 5227-12ZF(2), соответственно.

[0041] На фигуре 20 представлен однофакторный анализ всех насыщенных жирных кислот (насыщ.) в соответствии с зиготностью семян T2 в случае 5227-4 с ZFP TF. Семена T2, полученные из растений отрицательного контроля, гетерозиготных и гомозиготных исходных растений T1, помечали как 5227-4ZF ноль, 5227-4ZF(1) и 5227-4ZF(2), соответственно.

ПОДРОБНОЕ ОПИСАНИЕ

[0042] В настоящем документе описаны композиции и способы, пригодные для модуляции экспрессии и направленного расщепления и изменения одного или нескольких генов, вовлеченных в синтез жирных кислот у растений. Регуляцию таких генов можно модулировать, например, используя конструируемые факторы транскрипции с ZFP или модифицируя регуляторные области гена. Гены можно изменять, например, посредством направленного расщепления с последующей внутрихромосомной гомологичной рекомбинацией или посредством направленного расщепления с последующей гомологичной рекомбинацией между экзогенным полинуклеотидом (содержащим одну или несколько областей гомологии с нуклеотидной последовательностью гена) и геномной последовательностью.

[0043] Геномные последовательности включают последовательности, присутствующие в хромосомах, эписомах, геномах органелл (например, митохондрий, пластид), искусственных хромосомах и нуклеиновой кислоте любого другого типа, присутствующие в клетке, например, такие как амплифицированные последовательности, двойные микрохромосомы и геномы эндогенных или инфицирующих бактерий и вирусов. Геномные последовательности могут являться нормальными (т.е., дикого типа) или мутантными; мутантные последовательности могут содержать, например, вставки, делеции, транслокации, перестановки и/или точечные мутации. Геномная последовательность также может содержать один из ряда различных аллелей.

[0044] Композиции, описываемые в настоящем документе, содержат один или несколько ZFP, содержащих конструируемые связывающие домены цинковых пальцев, полинуклеотиды, кодирующие эти полипептиды и комбинации ZFP и кодирующих ZFP полинуклеотидов. Связывающий домен цинковых пальцев может содержать один или несколько цинковых пальцев (например, 2, 3, 4, 5, 6, 7, 8, 9 или более цинковых пальцев), и его можно конструировать для связывания с любой геномной последовательностью гена, включая регуляторные последовательности, функционально связанные с геном, вовлеченным в биосинтез жирных кислот.

[0045] Как описано в настоящем документе, ZFP можно использовать для регуляции экспрессии гена посредством активации или репрессии транскрипции гена. Можно конструировать ZFP, содержащие слияния доменов цинковых пальцев, связанных с регуляторными доменами, с получением химерных факторов транскрипции, активирующих или репрессирующих транскрипцию. ZFP также можно использовать для направленного расщепления представляющей интерес области генома, посредством связывания доменов цинковых пальцев с доменами расщепления нуклеаз (или полудоменами расщепления) с получением нуклеаз с цинковыми пальцами. Таким образом, при идентификации представляющей интерес области-мишени генома, для которой желательны регуляция, расщепление или рекомбинация гена, способами, описываемыми в настоящем документе, можно конструировать белок с цинковыми пальцами, содержащий один или несколько слитых белков, содержащих один или несколько регуляторных доменов и/или доменов расщепления (или полудоменов расщепления), связанных с доменом цинковых пальцев, сконструированным для распознавания генной последовательности в этой геномной области. Присутствие такого содержащего ZFP слитого белка (или белков) в клетке приводит к связыванию слитого белка(ов) с его (их) участком(ами) связывания и изменяет регуляцию или расщепление геномной области или области рядом с ней. Кроме того, если расщепляют геномную область и в клетке также присутствует экзогенный полинуклеотид, гомологичный этой геномной области, между геномной областью и экзогенным полинуклеотидом с высокой вероятностью происходит гомологичная рекомбинация.

[0046] Как показано на фигуре 1, существует несколько генов, вовлеченных в биосинтез жирных кислот. Таким образом, композиции, описываемые в настоящем документе, могут являться направленными на один или несколько из этих генов в растительной клетке, включая в качестве неограничивающих примеров ген(ы) ACCазы, KAS I, KAS II, KAS III, KAS IV, FATB1, FATB2, FATB3, FATB4, FATB5, FAS, FAE1, FatA, Fad2, Fad3, GPDH, GK или S-ACP-DES и ортологи, паралоги и гомеологи этих генов. Например, белки (например, ZFP), описываемые в настоящем документе, могут являться направленными на 1, 2, 3, 4, 5 или более генов, вовлеченных в биосинтез жирных кислот. Таким образом, для направления на представляющие интерес желаемые гены в растении можно комбинировать один или несколько ZFP или экспрессирующих векторов, кодирующих ZFP, различной специфичности.

Общая часть

[0047] Если не указано иначе, при практическом применении способов, а также при получении и применении композиций, описываемых в настоящем документе, используют общепринятые способы в областях молекулярной биологии, биохимии, структуры и анализа хроматина, вычислительной химии, культивирования клеток, рекомбинантных ДНК и связанных областях, как известно специалистам в данной области. Эти способы полностью описаны в литературе. См., например, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL, Second edition, Cold Spring Harbor Laboratory Press, 1989 and Third edition, 2001; Ausubel et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, 1987 and periodic updates; the series METHODS IN ENZYMOLOGY, Academic Press, San Diego; Wolffe, CHROMATIN STRUCTURE AND FUNCTION, Third edition, Academic Press, San Diego, 1998; METHODS IN ENZYMOLOGY, Vol. 304, "Chromatin" (P.M. Wassarman and A. P. Wolffe, eds.), Academic Press, San Diego, 1999; и METHODS IN MOLECULAR BIOLOGY, Vol. 119, "Chromatin Protocols" (P.B. Becker, ed.) Humana Press, Totowa, 1999.

Определения

[0048] Термины "нуклеиновая кислота", "полинуклеотид" и "олигонуклеотид" используют взаимозаменяемо, и они относятся к дезоксирибонуклеотидному или рибонуклеотидному полимеру, в линейной или кольцевой конформация, и в одно- или двухцепочечной форме. Для целей настоящего описания эти термины не следует рассматривать как ограничивающие в отношении длины полимера. Термины могут включать известные аналоги природных нуклеотидов, а также нуклеотиды, которые модифицированы по группам основания, сахара и/или фосфата (например, тиофосфатные каркасы). Как правило, аналог конкретного нуклеотида обладает той же специфичностью спаривания оснований; например, аналог A образует пару оснований с T.

[0049] Термины "полипептид", "пептид" и "белок" используют взаимозаменяемо для обозначения полимера из аминокислотных остатков. Термин также используют для полимеров из аминокислот, в которых одна или несколько аминокислот представляют собой химические аналоги или модифицированные производные соответствующих природных аминокислот.

[0050] "Связывание" относится к специфичному для последовательности нековалентному взаимодействию между макромолекулами (например, между белком и нуклеиновой кислотой). Не все компоненты связывающего взаимодействия должны являться специфичными для последовательности (например, контакты с фосфатными остатками в каркасе ДНК), при условии, что в целом взаимодействие является специфичным для последовательности. Такие взаимодействия, как правило, характеризуются константой диссоциации (Kd) 10-6 M-1 или ниже. "Аффинность" относится к силе связывания: более высокая аффинность связывания коррелирует с меньшей Kd.

[0051] "Связывающий белок" представляет собой белок, способный нековалентно связываться с другой молекулой. Связывающий белок может связываться, например, с молекулой ДНК (ДНК-связывающий белок), молекулой РНК (РНК-связывающий белок) и/или молекулой белка (белок-связывающий белок). В случае белок-связывающего белка, он может связываться сам с собой (с формированием гомодимеров, гомотримеров и т.д.), и/или он может связываться с одной или несколькими молекулами другого белка или белков. Связывающий белок может обладать более чем одним типом связывающей активности. Например, белки с цинковыми пальцами обладают ДНК-связывающей, РНК-связывающей и белок-связывающей активностью.

[0052] "ДНК-связывающий белок с цинковыми пальцами" (или связывающий домен) представляет собой белок или домен в более крупном белке, который связывает ДНК специфичным для последовательности образом посредством одного или нескольких цинковых пальцев, которые представляют собой области аминокислотной последовательности в связывающем домене, структура которых стабилизирована посредством координационного взаимодействия с ионом цинка. Термин ДНК-связывающий белок с цинковыми пальцами часто сокращают как белок с цинковыми пальцами или ZFP.

[0053] Связывающие домены цинковых пальцев могут являться "конструируемыми" для связывания с предопределенной нуклеотидной последовательностью (например, последовательностью-мишенью в любом гене, вовлеченном в биосинтез жирных кислот). Неограничивающие примеры способов конструирования белков с цинковыми пальцами представляют собой составление и отбор. Составленный белок с цинковыми пальцами представляет собой белок, не встречающийся в природе, состав/композиция которого в основном являются результатом рациональных критериев. Рациональные критерии составления включают применение правил замен и компьютеризированных алгоритмов для обработки информации в базе данных, хранящей информацию о существующих конструкциях ZFP и данных связывания. См., например, патенты США 6140081; 6453242; 6534261 и 6785613; также см. WO 98/53058; WO 98/53059; WO 98/53060; WO 02/016536 и WO 03/016496 и патенты США 6746838; 6866997 и 7030215. Таким образом, "конструируемый" белок с цинковыми пальцами или "неприродный" белок с цинковыми пальцами представляет собой белок, в котором один или несколько компонентов ДНК-связывающих доменов цинковых пальцев (распознающих спиралей) являются неприродными и сконструированы для связывания с предварительно выбранным участком-мишенью.

[0054] "Отобранный" белок с цинковыми пальцами представляет собой белок, не встречающийся в природе, получение которого преимущественно является результатом эмпирического способа, такого как фаговый дисплей, улавливание взаимодействий или отбор гибридов. См. например, US 5789538; US 5925523; US 6007988; US 6013453; US 6200759; US 6733970; US RE39229 и WO 95/19431; WO 96/06166; WO 98/53057; WO 98/54311; WO 00/27878; WO 01/60970 WO 01/88197 и WO 02/099084.

[0055] Термин "последовательность" относится к нуклеотидной последовательности любой длины, которая может представлять собой ДНК или РНК; может являться линейной, кольцевой или разветвленной и может являться одноцепочечной или двухцепочечной. Термин "донорная последовательность" относится к нуклеотидной последовательности, которая вставлена в геном. Донорная последовательность может обладать любой длиной, например, длиной от 2 до 25000 нуклеотидов (или любым целочисленным значением между ними или большим), предпочтительно - длиной приблизительно от 100 до 5000 нуклеотидов (или любым целочисленным значением между ними), более предпочтительно - длиной приблизительно от 200 до 2500 нуклеотидов.

[0056] "Гомологичная последовательность" относится к первой последовательности, обладающей определенной степенью идентичности последовательностей со второй последовательностью, и последовательность которой может быть идентична последовательности второй последовательности. "Гомологичная неидентичная последовательность" относится к первой последовательности, обладающей определенной степенью идентичности последовательностей со второй последовательностью, но последовательность которой не является идентичной последовательности второй последовательности. Например, полинуклеотид, содержащий последовательность дикого типа мутантного гена, гомологичен и неидентичен последовательности мутантного гена. В определенных вариантах осуществления степень гомологии между двумя последовательностями является достаточной для обеспечения гомологичной рекомбинации между ними с использованием нормальных клеточных механизмов. Длина двух гомологичных неидентичных последовательностей может являться любой, а их степень негомологичности может быть настолько малой, как единичный нуклеотид (например, для коррекции точечной геномной мутации посредством гомологичной рекомбинации) или настолько большой, как 10 или более тысяч пар оснований (например, для вставки гена в предопределенный участок хромосомы). Длина двух полинуклеотидов, содержащих гомологичные неидентичные последовательности, не должна являться одинаковой. Например, можно использовать экзогенный полинуклеотид (т.е., донорный полинуклеотид) длиной от 20 до 10000 нуклеотидов или пар нуклеотидов.

[0057] Способы определения идентичности нуклеиновых кислот и аминокислотных последовательностей известны в данной области. Как правило, такие способы включают определение нуклеотидной последовательности мРНК гена и/или определение аминокислотной последовательности, кодируемой ей, и сравнение этих последовательностей со второй нуклеотидной или аминокислотной последовательностью. Геномные последовательности также можно определять и сравнивать таким способом. В основном, идентичность относится к точному соответствию нуклеотид-к-нуклеотиду или аминокислота-к-аминокислоте двух полинуклеотидных или полипептидных последовательностей, соответственно. Две или более последовательностей (полинуклеотидных или аминокислотных) можно сравнивать, определяя процент их идентичности. Процент идентичности двух последовательностей, последовательностей нуклеиновой кислоты или аминокислотных последовательностей, представляет собой число точных соответствий между двумя выровненными последовательностями, разделенное на длину более коротких последовательностей и умноженное на 100. Приблизительное выравнивание последовательностей нуклеиновой кислоты обеспечивает алгоритм локальной гомологии Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981). Этот алгоритм можно применять для аминокислотных последовательностей, используя оценочную матрицу, разработанную Dayhoff, Atlas of Protein Sequences and Structure, M.O. Dayhoff ed., 5 suppl. 3:353-358, National Biomedical Research Foundation, Washington, D.C., USA, и нормализованную Gribskov, Nucl. Acids Res. 14(6):6745-6763 (1986). Иллюстративная ре