Устройство обнаружения движущихся тел и система обнаружения движущихся тел

Иллюстрации

Показать все

Изобретение относится к средствам обнаружения объектов, окружающих транспортное средство. Техническим результатом является повышение точности обнаружения движущегося тела при повороте транспортного средства. Устройство содержит средство захвата изображений сзади транспортного средства, установленное на его борту, средство преобразования изображений точки наблюдения в изображение вида с высоты птичьего полета, средство формирования форм разностных сигналов для позиционного совмещения изображений вида с высоты птичьего полета, подсчета числа пикселов, демонстрирующих разность для позиционно совмещенных изображений вида с высоты птичьего полета и создания частотного распределения, формирования информации форм разностных сигналов, средство обнаружения трехмерного объекта, который является движущимся телом, средство обнаружения движущихся тел, средство обнаружения поворотов транспортного средства; средство управления, подавляющее обнаружение трехмерного объекта в качестве движущегося тела, если транспортное средство поворачивает. 6 н. и 14 з.п. ф-лы, 18 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

[0001] Настоящее изобретение относится к устройству обнаружения движущихся тел и к системе обнаружения движущихся тел.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

[0002] В прошлом предлагалось устройство обнаружения помех, оснащенное камерой для формирования изображений окрестностей транспортного средства и предназначенное для того, чтобы преобразовывать изображения, снятые посредством камеры, в изображения с высоты птичьего полета, а также вычислять разность между изображениями с высоты птичьего полета, снятыми в различные моменты времени, обнаруживать трехмерные объекты, окружающие транспортное средство, на основе этих разностей. В этом устройстве обнаружения помех в случаях, в которых трехмерный объект, такой как другое транспортное средство, присутствует в изображениях с высоты птичьего полета, другое транспортное средство становится явным в качестве разности, за счет чего другое транспортное средство или другой трехмерный объект может обнаруживаться на основе этой характеристики (см. патентный документ 1).

ДОКУМЕНТЫ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ

Патентные документы

[0003] Патентный документ 1. Выложенная заявка на патент (Япония) 2008-227646

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

[0004] Тем не менее, в случаях, в которых технология, раскрытая в патентном документе 1, применяется к технологии для оценки того, является трехмерный объект движущимся телом или стационарным телом, стационарные тела иногда ошибочно оцениваются в качестве движущихся тел. В частности, в устройстве обнаружения помех, раскрытом в патентном документе 1, в случаях, в которых транспортное средство поворачивает, стационарное тело может отображаться движущимся вследствие этого поворота, что создает вероятность того, что стационарное тело оценивается некорректно в качестве движущегося тела.

[0005] Настоящее изобретение направлено на решение этой проблемы предшествующего уровня техники и имеет цель предоставления устройства обнаружения движущихся тел и способа обнаружения движущихся тел, за счет которых можно повышать точность обнаружения движущихся тел.

[0006] Устройство обнаружения движущихся тел настоящего изобретения подсчитывает число пикселов, которые демонстрируют предварительно определенную разницу, в разностных изображениях для изображений вида с высоты птичьего полета, снятых в различные моменты времени, чтобы добиваться частотного распределения, за счет этого, формируя информацию форм разностных сигналов; и, на основе этой информации форм разностных сигналов, обнаруживает трехмерные объекты, присутствующие в предварительно определенной области, а также вычисляет скорость движения трехмерных объектов из временного варьирования формы сигнала в информации форм разностных сигналов. Затем, на основе скорости движения трехмерных объектов, обнаруживается то, являются или нет трехмерные объекты движущимися телами. Кроме того, устройство обнаружения движущихся тел обнаруживает поворот транспортного средства, и в случаях, в которых определено, что транспортное средство поворачивает, обнаружение трехмерных объектов на основе информации форм разностных сигналов и обнаружение трехмерных объектов в качестве движущихся тел запрещается по сравнению со случаями, в которых транспортное средство не поворачивает.

[0007] Согласно настоящему изобретению, в случаях, в которых определено, что транспортное средство поворачивает, чувствительность обнаружения для движущихся тел уменьшается по сравнению со случаями, в которых транспортное средство не поворачивает. Следовательно, даже когда транспортное средство поворачивает, что приводит к тому, что стационарные объекты отображаются движущимися в изображениях, может предотвращаться ошибочная оценка стационарных объектов в качестве движущихся тел вследствие сниженной точности оценки движущихся тел. Следовательно, может повышаться точность оценки движущихся тел.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0008] Фиг.1 является упрощенным схематичным видом устройства обнаружения движущихся тел согласно настоящему варианту осуществления, показывающим пример случая, в котором устройство обнаружения движущихся тел устанавливается на транспортном средстве.

Фиг.2 является видом сверху, показывающим транспортное средство, показанное на Фиг.1, показанное при движении.

Фиг.3 является блок-схемой, показывающей подробности компьютера, показанного на Фиг.1.

Фиг.4 является видом сверху, показывающим общее представление обработки посредством модуля формирования разностных изображений, показанного на Фиг.3, при этом (a) показывает транспортные средства в движении, а (b) показывает общее представление позиционного совмещения.

Фиг.5 является упрощенной схемой, показывающей формирование формы разностного сигнала посредством модуля формирования форм разностных сигналов, показанного на Фиг.3.

Фиг.6 является схемой, показывающей примеры форм разностных сигналов, сформированных посредством модуля формирования форм разностных сигналов, показанного на Фиг.3, при этом (a) показывает пример формы разностного сигнала, полученной во время движения вперед по прямой транспортного средства, а (b)-(e) показывают примеры форм разностных сигналов, полученных во время поворота транспортного средства, причем (c) показывает первый пример сниженной чувствительности обнаружения для движущихся тел, (d) показывает второй пример сниженной чувствительности обнаружения для движущихся тел, и (e) показывает третий пример сниженной чувствительности обнаружения для движущихся тел.

Фиг.7 является блок-схемой последовательности операций способа, показывающей способ обнаружения движущихся тел, согласно настоящему варианту осуществления.

Фиг.8 является блок-схемой, показывающей подробности компьютера, согласно второму варианту осуществления.

Фиг.9 является блок-схемой, показывающей подробности компьютера, согласно третьему варианту осуществления.

Фиг.10 является видом сверху транспортного средства, показывающим общее представление работы устройства обнаружения движущихся тел, согласно третьему варианту осуществления, и показывающим транспортное средство по мере того, как оно движется через участок дороги с круговым движением.

Фиг.11 является графиком, показывающим кривизну поворота в ходе движения через участок дороги с круговым движением, показанный на Фиг.10.

Фиг.12 является графиком, показывающим чувствительность при движении через участок дороги с круговым движением, показанный на Фиг.10, при этом (a) показывает сравнительный пример, а (b) показывает состояние чувствительности устройства обнаружения движущихся тел, согласно третьему варианту осуществления.

Фиг.13 является блок-схемой последовательности операций способа, показывающей способ обнаружения движущихся тел, согласно третьему варианту осуществления.

Фиг.14 является блок-схемой, показывающей подробности компьютера, согласно четвертому варианту осуществления.

Фиг.15 является схемой, описывающей работу модуля вычисления яркостного различия, согласно четвертому варианту осуществления, при этом (a) является схемой, показывающей позиционные взаимосвязи линии интереса, опорной линии, точки интереса и опорной точки в изображении вида с высоты птичьего полета, а (b) является схемой, показывающей позиционные взаимосвязи линии интереса, опорной линии, точки интереса и опорной точки в реальном пространстве.

Фиг.16 является схемой, описывающей подробную работу модуля вычисления разности яркости, согласно четвертому варианту осуществления, при этом (a) является схемой, показывающей область обнаружения в изображении вида с высоты птичьего полета, а (b) является схемой, показывающей позиционные взаимосвязи линии интереса, опорной линии, точки интереса и опорной точки в изображении вида с высоты птичьего полета.

Фиг.17 является схемой, описывающей способ формирования формы разностного сигнала края посредством модуля формирования форм сигналов краев.

Фиг.18 является блок-схемой последовательности операций способа, показывающей способ обнаружения движущихся тел, согласно четвертому варианту осуществления.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

[0009] Предпочтительные варианты осуществления настоящего изобретения описываются ниже на основе чертежей. Фиг.1 является упрощенным схематичным видом устройства 1 обнаружения движущихся тел, согласно настоящему варианту осуществления, показывающим пример случая, в котором устройство 1 обнаружения движущихся тел устанавливается на транспортном средстве V. Устройство 1 обнаружения движущихся тел, показанное на Фиг.1, представляет водителю транспортного средства V информацию различных типов из результатов формирования изображений окрестностей транспортного средства V и содержит камеру 10 (средство формирования изображений), датчик 20 и компьютер 30.

[0010] Камера 10, показанная на Фиг.1, прикрепляется в таком месте на высоте h в задней части транспортного средства V, что оптическая ось ориентирована вниз под углом θ от горизонтали. Камера 10 спроектирована с возможностью снимать области обнаружения из этой позиции. Датчик 20 содержит, например, датчик скорости транспортного средства для обнаружения скорости движения транспортного средства V и датчик угла поворота при рулении для обнаружения управляющего ввода на рулевое колесо. На основе изображений, снятых посредством камеры 10, компьютер 30 обнаруживает движущиеся тела (например, другие транспортные средства, мотоциклы и т.п.), присутствующие сзади транспортного средства V.

[0011] Устройство обнаружения движущихся тел дополнительно содержит предупреждающее устройство (не проиллюстрировано) для выдачи предупреждений водителю транспортного средства V в случаях, если имеется вероятность вхождения в контакт движущегося тела, обнаруженного посредством компьютера 30, с транспортным средством V и т.п.

[0012] Фиг.2 является видом сверху, показывающим транспортное средство, показанное на Фиг.1, показанное при движении. Как показано на Фиг.2, камера 10 допускает формирование изображений сзади транспортного средства V. Области A1, A2 обнаружения (предварительно определенные области), предназначенные для обнаружения других транспортных средств и других таких движущихся тел, устанавливаются в полосах движения, смежных с полосой движения, по которой движется транспортное средство V, и компьютер 30 обнаруживает то, присутствуют или нет движущиеся тела в областях A1, A2 обнаружения. Эти области A1, A2 обнаружения устанавливаются из относительных позиций относительно транспортного средства V. Области A1, A2 обнаружения могут устанавливаться в смежных полосах движения посредством использования технологии автоматического распознавания разметки полос движения и т.п.

[0013] Фиг.3 является блок-схемой, показывающей подробности компьютера 30, показанного на Фиг.1. На Фиг.3, также проиллюстрированы камера 10 и датчик 20 для того, чтобы прояснять взаимосвязи соединений. Как следует понимать из Фиг.3, датчик 20 сконструирован посредством датчика 21 скорости транспортного средства и датчика 22 угла поворота при рулении; тем не менее, ограничений на это нет, и также могут быть дополнительно предоставлены другие датчики.

[0014] Как показано на Фиг.3, компьютер 30 содержит модуль 31 преобразования точки наблюдения, модуль 32 формирования разностных изображений (средство формирования разностных изображений), модуль 33 формирования форм разностных сигналов (средство формирования форм разностных сигналов) и модуль 34 обнаружения движущихся тел (средство обнаружения движущихся тел).

[0015] Модуль 31 преобразования точки наблюдения вводит захваченные данные изображений, полученные посредством формирования изображений посредством камеры 10 и включающие в себя области A1, A2 обнаружения, и выполняет преобразование точки наблюдения в данные изображений с высоты птичьего полета для входных захваченных данных изображений, как они должны быть видны в состоянии просмотра с высоты птичьего полета. Это состояние просмотра с высоты птичьего полета означает состояние при просмотре с точки наблюдения гипотетической камеры, которая, например, смотрит вертикально вниз сверху в воздухе. Такое преобразование точки наблюдения выполняется способом, раскрытым, например, в выложенной заявке на патент (Япония) 2008-219063.

[0016] Модуль 32 формирования разностных изображений последовательно вводит данные изображений с высоты птичьего полета, полученные посредством преобразования точки наблюдения посредством модуля 31 преобразования точки наблюдения, и совмещает позиции входных данных изображений с высоты птичьего полета, снятых в различные моменты времени. Фиг.4 является видом сверху, показывающим общее представление обработки посредством модуля 32 формирования разностных изображений, показанного на Фиг.3, при этом (a) показывает транспортные средства V в движении, а (b) показывает общее представление позиционного совмещения.

[0017] Допустим, что, как показано на Фиг.4(a), в текущее время транспортное средство V спозиционировано в V1, тогда как в непосредственно предшествующий момент времени транспортное средство V было спозиционировано в V2. Также допустим, что другое транспортное средство V спозиционировано по направлению сзади от транспортного средства V и движется параллельно транспортному средству V, и что в текущее время это другое транспортное средство V спозиционировано в V3, тогда как в непосредственно предшествующий момент времени другое транспортное средство V было спозиционировано в V4. Дополнительно допустим, что с непосредственно предшествующего момента времени транспортное средство V движется на расстояние d. "Непосредственно предшествующий момент времени" может означать предыдущий момент времени, предшествующий текущему времени, согласно предварительно определенной длительности (например, одному циклу управления), и может быть предыдущим моментом времени любой длительности, предшествующим текущему.

[0018] В этом состоянии изображение PBt с высоты птичьего полета в текущий момент времени является таким, как показано на Фиг.4(b). В этом изображении PBt с высоты птичьего полета разметка полос движения, нанесенная на поверхности дороги, отображается в прямоугольной форме, относительно точно отражая состояние при просмотре сверху. Тем не менее, для другого транспортного средства V3 реализуется наблюдение в перспективном ракурсе. Аналогично, в изображении PBt-1 с высоты птичьего полета, снятом в непосредственно предшествующий момент времени, разметка полос движения, нанесенная на поверхности дороги, отображается в прямоугольной форме, относительно точно отражая состояние при просмотре сверху, но для другого транспортного средства V4 реализуется наблюдение в перспективном ракурсе.

[0019] Модуль 32 формирования разностных изображений выполняет позиционное совмещение вышеописанных изображений PBt, PBt-1 с высоты птичьего полета по данным. В это время, модуль 32 формирования разностных изображений смещает изображение PBt-1 с высоты птичьего полета, снятое в непосредственно предшествующий момент времени, сопоставляя его по позиции с изображением PBt с высоты птичьего полета в текущее время. Величина смещения d' является величиной, эквивалентной проезжаемому расстоянию d, показанному на Фиг.4(a), и определяется на основе сигнала из датчика скорости 20 и длительности от непосредственно предшествующего момента времени до текущего момента времени.

[0020] В настоящем варианте осуществления, модуль 32 формирования разностных изображений выполняет позиционное совмещение, в виде с высоты птичьего полета, позиций изображений с высоты птичьего полета, снятых в различные моменты времени, получая изображение с высоты птичьего полета, в котором позиции совмещены. Этот процесс "позиционного совмещения" может быть выполнен на уровне точности, согласно классу обнаруживаемого объекта и требуемой точности обнаружения. Например, процесс может быть строгим процессом позиционного совмещения позиции, заключающим в себе совмещение на основе данного момента времени и данной позиции; или менее строгим процессом позиционного совмещения, заключающим в себе просто выявление координат изображений вида с высоты птичьего полета.

[0021] После позиционного совмещения, модуль 32 формирования разностных изображений вычисляет разность, которая должна быть ассоциирована с каждым пикселом изображений PBt, PBt-1 с высоты птичьего полета, и извлекает те пикселы, для которых абсолютное значение вышеуказанной разности равно или превышает предварительно определенное значение, указывая их в качестве разностных пикселов. Модуль 32 формирования разностных изображений затем формирует разностное изображение PDt из этих разностных пикселов.

[0022] Следует обратиться снова к Фиг.3. Модуль 33 формирования форм разностных сигналов формирует форму разностного сигнала на основе данных разностных изображений PDt, сформированных посредством модуля 32 формирования разностных изображений.

[0023] Фиг.5 является упрощенной схемой, показывающей формирование формы разностного сигнала посредством модуля 33 формирования форм разностных сигналов, показанного на Фиг.3. Как показано на Фиг.5, из секций, соответствующих областям A1, A2 обнаружения в пределах разностного изображения PDt, модуль 33 формирования форм разностных сигналов формирует форму DWt разностного сигнала. В это время, модуль 33 формирования форм разностных сигналов формирует форму DWt разностного сигнала вдоль направления перспективного ракурса трехмерных объектов вследствие преобразования точки наблюдения. В примере по Фиг.5, для удобства описание использует только область A1 обнаружения.

[0024] Если более конкретно, во-первых, модуль 33 формирования форм разностных сигналов задает линию La, находящуюся в направлении перспективного ракурса трехмерных объектов в данных форм DWt разностных сигналов. Модуль 33 формирования форм разностных сигналов затем подсчитывает число разностных пикселов DP, показывающих предварительно определенную разницу, которые находятся на линии La. Здесь, в случаях, в которых пикселные значения формы DWt разностного сигнала являются абсолютными значениями разностей пикселных значений между изображениями PBt, PBt-1 с высоты птичьего полета, разностные пикселы DP являются пикселами, которые превышают предварительно определенное значение; или в случаях, в которых пикселные значения формы DWt разностного сигнала представляются посредством нулей и единиц, являются пикселами, имеющими значение "1".

[0025] После подсчета числа разностных пикселов DP модуль 33a формирования форм разностных сигналов находит точку CP пересечения линии La и линии L1. Затем модуль 33 формирования форм разностных сигналов, при ассоциировании точки CP пересечения и подсчитанного числа, определяет позицию на горизонтальной оси (позицию на оси в вертикальном направлении в плоскости страницы на Фиг.5) на основе позиции точки CP и определяет позицию на вертикальной оси (позицию на оси поперечного направления в плоскости страницы на Фиг.5) из подсчитанного числа.

[0026] Затем, аналогичным образом, модуль 33 формирования форм разностных сигналов задает линию, находящуюся в направлении перспективного ракурса трехмерных объектов, подсчитывает число разностных пикселов DP, определяет позицию на горизонтальной оси на основе позиции точки CP пересечения и определяет позицию на вертикальной оси из подсчитанного числа (числа разностных пикселов DP). Модуль 33 формирования форм разностных сигналов последовательно повторяет вышеописанный процесс, чтобы добиваться частотного распределения, и формирует форму DWt разностного сигнала.

[0027] Как показано на Фиг.5, линии La и Lb, находящиеся в направлении перспективного ракурса трехмерных объектов, отличаются с точки зрения расстояния, на которое они перекрывают область A1 обнаружения. Следовательно, если область A1 обнаружения поддерживается заполненной разностными пикселами DP, число разностных пикселов DP на линии La должно превышать число разностных пикселов DP на линии Lb. Следовательно, в случаях определения позиции на вертикальной оси из подсчитанного числа разностных пикселов DP, модуль 33 формирования форм разностных сигналов выполняет нормализацию на основе расстояния перекрытия области A1 обнаружения и линий La и Lb в направлении перспективного ракурса трехмерных объектов. В качестве конкретного примера, на Фиг.5 предусмотрено шесть разностных пикселов DP, находящихся на линии La, и пять разностных пикселах DP, находящихся на линии Lb. Следовательно, при определении позиции на вертикальной оси из подсчитанного числа на Фиг.5, модуль 33 формирования форм разностных сигналов выполняет нормализацию посредством деления подсчитанного числа на расстояние перекрытия или другого такого способа. Таким образом, как показано посредством формы DWt разностного сигнала, значения формы DWt разностного сигнала, соответствующей линиям La и Lb в направлении перспективного ракурса трехмерных объектов, допускают практически равные значения.

[0028] Модуль 34 обнаружения движущихся тел обнаруживает движущиеся тела на основе данных форм DWt разностных сигналов, к примеру, как показано на Фиг.5. В ходе обнаружения движущегося тела этот модуль 34 обнаружения движущихся тел сначала выполняет процесс обработки пороговых значений. Конкретнее, модуль 34 обнаружения движущихся тел сравнивает среднее значение формы DWt разностного сигнала с предварительно определенным пороговым значением, и если среднее значение равно или превышает пороговое значение, определяет то, что объект возможно является движущимся телом. С другой стороны, если среднее значение не равно или превышает пороговое значение, модуль 34 обнаружения движущихся тел определяет то, что отсутствует вероятность того, что объект является движущимся телом. Здесь, в случаях, в которых форма DWt разностного сигнала обусловлена искажением, маловероятно, что среднее значение равно или превышает пороговое значение. Следовательно, модуль 34 обнаружения движущихся тел сначала выполняет процесс обработки пороговых значений и выполняет определение в отношении вероятности движущегося тела. Тем не менее, модуль 34 обнаружения движущихся тел не ограничен этим и вместо этого, например, может определять то, что объект возможно является движущимся телом в случаях, в которых отношение площади поверхности, равное или превышающее предварительно определенное пороговое значение в форме DWt разностного сигнала, равно или превышает предварительно определенное отношение, или в ином случае определяет то, что отсутствует вероятность представления объекта как движущегося тела.

[0029] После того, как модуль 34 обнаружения движущихся тел определяет то, что трехмерный объект, указываемый посредством формы DWt разностного сигнала, возможно является движущимся телом, форма DWt-1 разностного сигнала непосредственно предшествующего момента времени и эта форма DWt разностного сигнала ассоциируются, и за счет этого вычисляется оцененная скорость движущегося тела. Например, в случае, если трехмерный объект является другим транспортным средством V, разностные пикселы DP легко получаются в секциях шин другого транспортного средства V, и, следовательно, форма DWt разностного сигнала легко стремится иметь два максимальных значения. Следовательно, посредством извлечения отклонения между максимальными значениями формы DWt-1 разностного сигнала непосредственно предшествующего момента времени и этой формы DWt разностного сигнала может извлекаться относительная скорость другого транспортного средства V относительно транспортного средства V. Таким образом, модуль 34 обнаружения движущихся тел извлекает оцененную скорость трехмерного объекта. Затем, на основе оцененной скорости, модуль 34 обнаружения движущихся тел определяет то, является трехмерный объект, представленный посредством формы DWt разностного сигнала, движущимся телом или стационарным телом.

[0030] Компьютер 30 дополнительно содержит модуль 35 обнаружения поворотов (средство обнаружения поворотов) и модуль 36 задания чувствительности (средство задания чувствительности). Модуль 35 обнаружения поворотов обнаруживает поворот транспортного средства V, обнаруживая поворот транспортного средства из угла поворота при рулении, обнаруженного посредством датчика 22 угла поворота при рулении. Модуль 36 задания чувствительности варьирует чувствительность обнаружения для движущихся тел посредством модуля 34 обнаружения движущихся тел. Вместо базирования на угле поворота при рулении, модуль 35 обнаружения поворотов, наоборот, может выполнять определение в отношении того, проезжается или нет поворот в данный момент, на основе навигации и т.п.

[0031] Фиг.6 является схемой, показывающей примеры форм DWt разностных сигналов, сформированных посредством модуля 33 формирования форм разностных сигналов, показанного на Фиг.3, при этом (a) показывает пример формы DWt разностного сигнала, полученной во время движения вперед по прямой транспортного средства, а (b)-(e) показывают примеры DW форм разностных сигналов, полученных во время поворота транспортного средства, причем (c) показывает первый пример сниженной чувствительности обнаружения для движущихся тел, (d) показывает второй пример сниженной чувствительности обнаружения для движущихся тел, и (e) показывает третий пример сниженной чувствительности обнаружения для движущихся тел.

[0032] Во-первых, допустим, что получена форма DWt разностного сигнала, к примеру, как показано на Фиг.6(a). В это время, модуль 34 обнаружения движущихся тел выполняет пороговый процесс, к примеру, как описано выше. В примере, показанном на Фиг.6(a), среднее значение формы DWt разностного сигнала не равно или превышает пороговое значение TH. Следовательно, модуль 34 обнаружения движущихся тел определяет то, что форма DWt разностного сигнала не является формой DWt разностного сигнала движущегося тела и обусловлена, например, искажением (в частности, стационарными телами со сложной текстурой, такими как травяное покрытие, стены и т.п.).

[0033] Тем не менее, когда транспортное средство V поворачивает, форма DWt разностного сигнала стремится становиться большей по размеру, как показано на Фиг.6(b). Причина состоит в том, что в результате поворота стационарные тела появляются в изображениях так, как будто они движутся, упрощая получение разностей. В частности, в примере, показанном на Фиг.6(b), среднее значение формы DWt разностного сигнала равно или превышает пороговое значение TH. Следовательно, стационарные тела достаточно просто распознаются некорректно в качестве движущихся тел.

[0034] Соответственно, модуль 36 задания чувствительности уменьшает чувствительность обнаружения движущихся тел во время поворота. Конкретнее, модуль 36 задания чувствительности повышает предварительно определенное пороговое значение TH способом, показанным на Фиг.6(b) (пороговое значение до варьирования показывается посредством TH'). Таким образом, среднее значение формы DWt разностного сигнала более не равно или превышает пороговое значение TH, что делает очень небольшой вероятность того, что модуль 34 обнаружения движущихся тел некорректно распознает стационарное тело в качестве движущегося тела.

[0035] Кроме того, предпочтительно, чтобы модуль 36 задания чувствительности повышал пороговое значение TH способом, показанным на Фиг.6(c) или Фиг.6(d). В частности, модуль 36 задания чувствительности повышает пороговое значение TH, соответствующее задней стороне транспортного средства V, в большей степени, чем пороговое значение TH, соответствующее передней стороне транспортного средства V. Устройство 1 обнаружения движущихся тел, согласно настоящему варианту осуществления, спроектировано с возможностью обнаруживать движущиеся тела сзади транспортного средства V, и, следовательно, при повороте, разности в захваченных изображениях стремятся быть больше в направлении задней стороны, чем в направлении передней стороны транспортного средства. Соответственно, посредством повышения порогового значения TH, соответствующего задней стороне транспортного средства V, способом, описанным выше, пороговое значение TH может задаваться надлежащим образом, и может еще дополнительно повышаться точность обнаружения движущихся тел.

[0036] В таких случаях, модуль 34 обнаружения движущихся тел может задавать линейное пороговое значение TH, как показано на Фиг.6(c), или задавать ступенчатое пороговое значение TH, как показано на Фиг.6(d).

[0037] Дополнительно, модуль 36 задания чувствительности обнаруживает поворот посредством обнаружения угла поворота при рулении, обнаруженного посредством датчика 22 угла поворота при рулении, и при больших углах поворота при рулении понижает чувствительность обнаружения движущихся тел посредством модуля 34 обнаружения движущихся тел. Причина состоит в том, что более резкий поворот формирует большее явное движение стационарных тел в изображениях, еще более упрощая получение разности. Конкретнее, при больших углах поворота при рулении, модуль 36 задания чувствительности повышает предварительно определенное пороговое значение TH, как показано на Фиг.6(e). В частности, когда сравниваются пример, показанный на Фиг.6(e), и пример, показанный на Фиг.6(b), видно, что пороговое значение TH, показанное на Фиг.6(e), является более высоким. Посредством повышения порогового значения TH при больших углах поворота при рулении модуль 36 задания чувствительности может задавать пороговые значения еще более надлежащим способом.

[0038] Модуль 36 задания чувствительности может уменьшать чувствительность с учетом поперечной G-силы, позиции акселератора и операции торможения, рассматриваемых в дополнение к углу поворота при рулении. Например, когда происходит движение в продольном направлении вследствие операции торможения или варьирования позиции акселератора, форма DWt разностного сигнала стремится становиться большей еще более простым образом. Аналогично, с варьированиями поперечной G-силы, форма DWt разностного сигнала стремится становиться большей еще более простым образом.

[0039] Далее описывается способ обнаружения движущихся тел, согласно настоящему варианту осуществления. Фиг.7 является блок-схемой последовательности операций способа, показывающей способ обнаружения движущихся тел, согласно настоящему варианту осуществления. Как показано на Фиг.7, во-первых, компьютер 30 обнаруживает скорость транспортного средства на основе сигнала из датчика 20 скорости транспортного средства (S1).

[0040] Затем, на основе сигнала из датчика скорости транспортного средства 22, модуль обнаружения поворотов 36 определяет то, поворачивает или нет транспортное средство V (S2). В случае определения того, что транспортное средство V не поворачивает (S2: "Нет"), процесс переходит к этапу S43.

[0041] С другой стороны, в случае определения того, что транспортное средство V поворачивает (S2: "Да"), модуль 36 задания чувствительности, действуя на основе абсолютной величины угла поворота при рулении, задает целевое значение порогового значения TH (S3). Затем, модуль 34 обнаружения движущихся тел определяет то, обнаруживаются или нет движущиеся тела в данный момент (S4).

[0042] В случае определения того, что движущееся тело в данный момент обнаруживается (S4: "Да"), модуль 36 задания чувствительности задает первое предельное значение (предельное значение, служащее в качестве верхнего предела) в отношении величины варьирования при варьировании чувствительности (S5). Процесс затем переходит к этапу S7. С другой стороны, в случае определения того, что движущееся тело в данный момент не обнаруживается (S4: "Нет"), модуль 33b задания областей задает предельное значение равным второму предельному значению (S6). Процесс затем переходит к этапу S7. Здесь, первое предельное значение меньше второго предельного значения. Следовательно, может предотвращаться ситуация, в которой пороговое значение внезапно варьируется в ходе обнаружения движущихся тел, так что движущиеся тела более не могут обнаруживаться.

[0043] Затем, модуль 36 задания чувствительности варьирует пороговое значение TH (S7). В частности, модуль 36 задания чувствительности варьирует пороговое значение TH в диапазоне, который не превышает предельное значение, которое задано на этапе S5 или S6, чтобы обеспечивать аппроксимацию значения с целевым значением, которое извлечено на этапе S3.

[0044] После этого, модуль 32 формирования разностных изображений обнаруживает разности (S8). В это время, модуль 32 формирования разностных изображений формирует данные PDt разностных изображений таким способом, который описан со ссылкой на Фиг.4.

[0045] Затем, на основе данных PDt разностных изображений, сформированных на этапе S8, модуль 33 формирования форм разностных сигналов формирует форму DWt разностного сигнала способом, описанным выше со ссылкой на Фиг.5 (S9). Модуль 34 обнаружения движущихся тел затем ассоциирует форму DWt-1 разностного сигнала непосредственно предшествующего момента времени и эту форму DWt разностного сигнала и за счет этого вычисляет оцененную скорость трехмерного объекта (S10).

[0046] После этого, модуль 34 обнаружения движущихся тел определяет то, является или нет оцененная скорость, которая вычислена на этапе 10, скоростью, которая предназначена для обнаружения (S11). Устройство 1 обнаружения движущихся тел настоящего варианта осуществления спроектировано с возможностью обнаруживать другие транспортные средства, мотоциклы и т.п., с которыми имеется вероятность контакта во время смены полосы движения. Следовательно, модуль 34 обнаружения движущихся тел определяет то, является или нет оцененная скорость на этапе S11 надлежащей скоростью для другого транспортного средства, мотоцикла и т.п.

[0047] В случае определения того, что оцененная скорость является надлежащей для другого транспортного средства, мотоцикла и т.п. (S11: "Да"), модуль 34 обнаружения движущихся тел определяет то, что трехмерный объект, представленный посредством формы DWt разностного сигнала, является движущимся телом, предназначенным для обнаружения (т.е. другим транспортным средством, мотоциклом и т.п.) (S12). Процесс, показанный на Фиг.7, после этого завершается. С другой стороны, в случае определения того, что оцененная скорость не является скоростью, подходящей для другого транспортного средства, мотоцикла и т.п. (S11: "Нет"), модуль 33 обнаружения движущихся тел определяет то, что трехмерный объект, представленный посредством формы DWt разностного сигнала, не является движущимся телом, предназначенным для обнаружения, и процесс, показанный на Фиг.7, завершается.

[0048] Вышеуказанным способом, в устройстве 1 обнаружения движущихся тел и способе обнаружения движущихся тел, согласно настоящему варианту осуществления, в случаях, в которых обнаружен поворот транспортного средства V, чувствительность обнаружения движущихся тел понижается по сравнению со случаями, в которых транспортное средство V не поворачивает. Следовательно, несмотря на то, что стационарные тела в изображениях выглядят движущимися, когда транспортное средство V поворачивает, поскольку чувствительность определения относительно движущихся тел понижена, стационарные тела не оцениваются ошибочно в качестве движущихся тел. Следовательно, может повышаться точность обнаружения движущихся тел.

[0049] Кроме того, в случаях, в которых обнаружен поворот транспортного средства V, предварительно определенное пороговое значение TH повышается по сравнению со случаями, в которых транспортное средство V не поворачивает, тем самым понижая чувствительность обнаружения движущихся тел. Следовательно, несмотря на то, что стационарные тела в изображениях выглядят движущимися по мере того как транспортное средство V поворачивает и что формы разностных сигналов представляются большими, несмотря на ассоциирование со стационарными объектами, вследствие повышенного порогового