Способ получения нанокапсул солей металлов

Изобретение относится в области нанотехнологии и фармацевтической химии. При получении нанокапсул солей металлов в качестве оболочки используется каррагинан. Массовое соотношение соль металла:каррагинан составляет 1:3. При осуществлении способа получения нанокапсул соль металла диспергируют в суспензию каррагинана в бутаноле в присутствии препарата Е472с при перемешивании 1200 об/с. Далее приливают 1,2-дихлорэтан, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 1 ил., 1 табл., 5 пр.

Реферат

Изобретение относится к области нанотехнологии и ветеринарии.

Ранее были известны способы получения микрокапсул солей.

В пат. 2359662, МПК А61К 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ не применимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул солей металлов, отличающийся тем, что в качестве оболочки нанокапсул используется каррагинан при получении нанокапсул методом осаждения нерастворителем с применением 1,2-дихлорэтана в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием 1,2-дихлорэтана в качестве осадителя, а также использование каррагинана в качестве оболочки частиц.

Результатом предлагаемого метода являются получение нанокапсул солей в полимерной оболочке.

ПРИМЕР 1. Получение нанокапсул сульфата железа в каррагинане, соотношение ядро: оболочка 1:3

100 мг сульфата железа диспергируют в суспензию 300 мг каррагенана в бутаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного в вещества при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,368 г порошка нанокапсул. Выход составил 92%.

ПРИМЕР 2. Получение нанокапсул сульфата цинка в каррагинане, соотношение ядро: оболочка 1:3

100 мг сульфата цинка диспергируют в суспензию 300 мг каррагинана в бутаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,376 г порошка нанокапсул. Выход составил 94%.

ПРИМЕР 3. Получение нанокапсул карбоната кальция в каррагинане, соотношение ядро: оболочка 1:3

100 мг карбоната кальция диспергируют в суспензию 300 мг каррагенана в бутаноле, в присутствии 0,01 г препарата Е472с при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4 Получение нанокапсул карбоната магния в каррагинане, соотношение ядро:оболочка 1:3

100 мг карбоната магния диспергируют в суспензию 300 мг каррагенана в бутаноле, в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/с. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

Пример 5. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd. (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length: Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Получены нанокапсулы солей с достаточно высокими выходами. Предложенная методика вполне пригодна для применения в промышленных масштабах ввиду минимальных потерь и простоты исполнения.

Статистические характеристики распределений приведены в табл. 1.

Способ получения нанокапсул солей металлов в каррагинане, характеризующийся тем, что в качестве оболочки нанокапсул используется каррагинан, массовое соотношение соль металла:каррагинан составляет 1:3, при этом соль металла диспергируют в суспензию каррагинана в бутаноле в присутствии препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/с, далее приливают 1,2-дихлорэтан, полученную суспензию отфильтровывают и сушат при комнатной температуре.