Применение cry1da в сочетании с cry1ca для управления устойчивыми насекомыми

Иллюстрации

Показать все

Изобретение относится к области биохимии, в частности к трансгенному растению, которое обладает устойчивостью к насекомому кукурузная листовая совка, содержащему ДНК, кодирующую белок Cry1Da, и ДНК, кодирующую белок Cry1Сa, а также к его семени. Также изобретение относится к множеству растений на поле, включающему растения, не содержащие Bacillus thuringiensis, и множество вышеуказанных растений, а также к смеси семян, содержащей семена растений, не содержащих Bt, и множество вышеуказанных семян. Представлен способ контроля кукурузной листовой совки при помощи приведения в контакт указанного насекомого с белком Cry1Сa и белком Cry1Da. Изобретение позволяет эффективно замедлять или предотвращать развитие устойчивости у насекомых кукурузная листовая совка к белку Cry. 5 н. и 13 з.п. ф-лы, 1 ил., 4 пр.

Реферат

УРОВЕНЬ ТЕХНИКИ

Люди выращивают кукурузу для использования при производстве пищи и энергии. Люди также выращивают большое количество других видов зерновых, включая сою и хлопок. Насекомые поедают и повреждают растения и тем самым подрывают усилия людей. Миллиарды долларов ежегодно тратятся на контроль насекомых-вредителей и, помимо этого, миллиарды долларов теряются в виде ущерба, нанесенного насекомыми. Синтетические органические химические инсектициды являются основным инструментом контроля насекомых-вредителей, но биологические инсектициды, например обладающие инсектицидным действием белки, полученные из Bacillus thuringiensis (Bt), играют важную роль в тех же областях применения. Возможность получения устойчивых к насекомым растений путем трансформации генами обладающих инсектицидным действием Bt белков, совершила революцию в современном сельском хозяйстве и повысила важность и ценность обладающих инсектицидным действием белков и их генов.

Несколько Bt белков были использованы для создания устойчивых к насекомым трансгенных растений, которые к настоящему времени успешно зарегистрированы и выведены на рынок. Указанные белки включают Cry1Ab, Cry1Ac, Cry1F и Cry3Bb у кукурузы, Cry1Ac и Cry2Ab у хлопка и Cry3A у картофеля.

Коммерческие продукты, экспрессирующие эти белки, экспрессируют один белок за исключением случаев, когда желателен комбинированный инсектицидный спектр действия двух белков (например, Cry1Ab и Cry3Bb у кукурузы комбинируют для обеспечения устойчивости, соответственно, к чешуекрылым насекомым-вредителям и корневым червям), или когда независимое действие белков позволяет использовать их в качестве средства, замедляющего развитие устойчивости в целевой популяции насекомых (например, Cry1Ac и Cry2Ab у хлопка комбинируют для обеспечения контроля развития устойчивости у табачной листовертки-почкоеда). См. также публикацию заявки на патент США № 2009/0313717, относящуюся к белку Cry2 плюс Vip3Aa, Cry1F, или Cry1A для контроля Helicoverpa zea или armigerain. WO 2009/132850 относится к использованию Cry1F или Cry1A и Vip3Aa для контроля Spodoptera frugiperda. Публикация заявки на патент США №2008/0311096 частично относится к использованию Cry1Ab для контроля ECB, устойчивого к Cry1F.

Таким образом, некоторые свойства трансгенных растений, устойчивых к насекомым, которые привели к быстрому и широкому внедрению этой технологии, также вызвали опасения, что популяции насекомых-вредителей выработают устойчивость к обладающим инсектицидным действием белкам, продуцируемым этими растениями. Было предложено несколько стратегий для сохранения утилитарности связанных с устойчивостью к насекомым признаков, основанных на Bt, которые включали введение белков в высоких дозах в комбинации с организацией убежищ, и поочередное или одновременное введение различных токсинов (McGaughey et al. (1998), “B.t. Resistance Management,” Nature Biotechnol, 16:144-146).

Белки, выбранные для использования в наборе для управления устойчивостью насекомых (IRM,) должны проявлять свое исектицидное действие независимо таким образом, чтобы устойчивость, развившаяся к одному белку, не вызывала появления устойчивости ко второму белку (т.е. чтобы отсутствовала перекрестная устойчивость к белкам). Например, если популяция насекомого-вредителя, которая проявляет устойчивость к “Белку А”, является чувствительной к “Белку В”, можно сделать вывод, что перекрестная устойчивость отсутствует и что комбинация Белка А и Белка В будет эффективной для замедления развития устойчивости к Белку А, применяемому изолированно.

При отсутствии обладающих устойчивостью популяций насекомых, может быть проведен анализ на основе других характеристик, которые, как предполагается, связаны с механизмом действия и потенциалом развития перекрестной устойчивости. Были выдвинуты предположения, согласно которым для идентификации обладающих инсектицидным действием белков, которые, вероятно, не обладают свойством перекрестной устойчивости, можно использовать рецептор-опосредованное связывание (van Mellaert et al. 1999). Ключевой прогнозирующий параметр отсутствия перекрестной устойчивости, естественно присущий такому подходу, заключается в том, что обладающие инсектицидным действием белки не конкурируют за рецепторы у чувствительных к ним видов насекомых.

Если два Bt токсина конкурируют за один и тот же рецептор, то в случае мутации этого рецептора у насекомого, при которой один из токсинов больше не связывается с этим рецептором и, следовательно, больше не обладает инсектицидным действием в отношении этого насекомого, это насекомое может стать устойчивым также и ко второму токсину (который конкурентно связывается с тем же рецептором). При этом насекомое рассматривается как обладающее перекрестной устойчивостью к обоим Bt токсинам. Однако если два токсина связываются с различными рецепторами, это может служить указанием на то, что насекомое может не быть одновременно устойчивым к этим двум токсинам.

Например, белок Cry1Fa применим для контроля многих чешуекрылых насекомых-вредителей, включая мотылька кукурузного (ECB; Ostrinia nubilalis (Hubner)) и кукурузную листовую совку (FAW; Spodoptera frugiperda), и проявляет активность в отношении огневки сахарного тростника (SCB; Diatraea saccharalis). Белок Cry1Fa, вырабатываемый в трансгенных растениях кукурузы, содержащих фактор TC1507, является ответственным за развитие устойчивости к доминирующим в данной отрасли насекомым, т.е. для контроля FAW. Cry1Fa также используется в продуктах Herculex®, SmartStax™ и WideStrike™.

Дополнительные Cry токсины перечислены на веб-сайте официального комитета по номенклатуре B.t. (Crickmore et al.; lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/). В настоящее время существует примерно 60 основных групп “Cry” токсинов (Cry1-Cry59) с дополнительными Cyt токсинами, VIP токсинами и т.п. Многие группы с числовыми обозначениями имеют подгруппы, обозначенные заглавными буквами, а обозначенные заглавными буквами подгруппы имеют подгруппы, обозначенные прописными буквами. (Например, Cry1 имеет подгруппы A-L, а Cry1A имеет подгруппы a-i).

Краткое описание изобретения

Настоящее изобретение частично относится к неожиданному открытию, заключающемуся в том, что Cry1Da и Cry1C не конкурируют за участки связывания в мембранных препаратах, полученных из клеток кишечника кукурузной листовой совки (FAW; Spodoptera frugiperda). Специалист в данной области техники поймет, с учетом настоящего раскрытия, что растения, вырабатывающие оба этих белка (включая части полноразмерных белков, обладающих инсектицидным действием), могут замедлить или предотвратить развитие устойчивости к данным обладающим инсектицидным действием белкам по отдельности.

Таким образом, настоящее изобретение частично относится к применению белка Cry1Da в комбинации с белком Cry1Ca. Растения (и площадь угодий, засеянных такими растениями), которые вырабатывают оба этих белка, включены в объем настоящего изобретения.

Настоящее изобретение также относится к пакетам или “пирамидам” из трех (или более) токсинов, в которых Cry1Da и Cry1Ca являются основной парой. В некоторых предпочтительных вариантах осуществления пирамид комбинация выбранных токсинов обеспечивает активность по отношению к FAW без развития перекрестной устойчивости. Некоторые предпочтительные комбинации-пирамиды с “тремя местами действия” включают основную пару белков, плюс Cry1Fa, Vip3Ab, Cry1Be или Cry1E в качестве третьего белка, воздействующего на FAW. Эти конкретные тройные пакеты, согласно настоящему изобретению, неожиданно обеспечивают три места действия у FAW. Это может способствовать смягчению или устранению требования к площади убежищ (рефугий).

В соответствии с настоящим изобретением также могут быть добавлены дополнительные токсины/гены. Например, если Cry1Fa или Cry1Be входят в пакет вместе с парой белков по изобретению (оба белка Cry1Fa и Cry1Be проявляют активность как по отношению к FAW, так и по отношению к мотыльку кукурузному (ECB)), то добавление двух дополнительных белков в этот тройной пакет, в котором два дополнительных белка нацелены на ECB, обеспечит три места действия у FAW и три места действия у ECB. Указанные два добавленных белка (четвертый и пятый белки) могут быть выбраны из группы, состоящей из Cry2A, Cry1I, DIG-3 и Cry1Ab, что дает в результате пакет из пяти белков, имеющих по три места действия у двух насекомых (ECB и FAW).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение частично относится к неожиданному открытию, заключающемуся в том, что Cry1Da и Cry1Ca не конкурируют друг с другом за участки связывания в мембранных препаратах, полученных из клеток кишечника кукурузной листовой совки (FAW; Spodoptera frugiperda). Таким образом, белок Cry1Da может быть использован в комбинации с белком Cry1Ca в трансгенной кукурузе (и других растениях, например, хлопке и сое) для замедления или предотвращения развития у FAW устойчивости к каждому из указанных белков по отдельности. Рассматриваемая пара белков может быть эффективной при защите растений (таких растений, как маис и соя) от повреждений, наносимых кукурузной листовой совкой, устойчивой к Cry. Другими словами, одна из областей применения настоящего изобретения относится к защите кукурузы и других экономически важных видов растений от повреждений и потери урожая, вызванных популяциями кукурузной листовой совки, у которых может развиться устойчивость к Cry1Da или Cry1Ca.

В настоящем изобретении, таким образом, раскрывается пакет для управления устойчивостью насекомыми (IRM), содержащий Cry1Da и Cry1Ca, предназначенный для предотвращения или ослабления развития у FAW устойчивости к каждому или обоим этим белкам.

Настоящее изобретение обеспечивает композиции для контроля чешуекрылых насекомых-вредителей, содержащих клетки, продуцирующие обладающий инсектицидным действием белок Cry1Da и обладающий инсектицидным действием белок Cry1Ca.

Изобретение также относится к хозяину, трансформированному для продуцирования как обладающего инсектицидным действием белка Cry1Da, так и обладающего инсектицидным действием белка Cry1Ca, причем указанный хозяин представляет собой микроорганизм или клетку растения. Рассматриваемый полинуклеотид(ы), предпочтительно, находится в генетической конструкции под управлением промотора(ов), не принадлежащего Bacillus thuringiensis. Рассматриваемые полинуклеотиды могут содержать кодоны, используемые для усиленной экспрессии в растениях.

Дополнительно предполагается, что изобретение обеспечивает способ контроля чешуекрылых насекомых-вредителей, содержащий приведение в контакт указанных насекомых-вредителей с эффективным количеством композиции, которая содержит белок, содержащий ядро токсина Cry1Da, и белок, содержащий ядро токсина Cry1Ca.

Один из вариантов осуществления изобретения содержит растение маиса, содержащее экспрессируемый в растении ген, кодирующий обладающий инсектицидным действием белок Cry1Ca, и экспрессируемый в растении ген, кодирующий обладающий инсектицидным действием белок Cry1Da.

Другой вариант осуществления изобретения содержит растение маиса, в котором экспрессируемый в растении ген, кодирующий обладающий инсектицидным действием белок Cry1Ca, и экспрессируемый в растении ген, кодирующий обладающий инсектицидным действием белок Cry1Da, были введены в указанное растение маиса путем интрогрессии.

Как описано в Примерах, исследования конкурентного связывания с рецептором с использованием меченного радиоактивным изотопом белка Cry1Da показали, что белок Cry1Ca не конкурирует за связывание в тканях FAW, в которых происходит связывание Cry1Da. Эти результаты также указывают на то, что комбинация белков Cry1Da и Cry1Ca может представлять собой эффективное средство для ослабления развития устойчивости в популяциях FAW к каждому из этих белков. Таким образом, частично основываясь на данных, представленных в настоящем документе, можно предположить, что совместное продуцирование (пакетирование) белков Cry1Ca и Cry1Da может быть использовано для получения IRM пакета с высокими дозами для FAW.

К этой паре могут быть добавлены другие белки. Например, рассматриваемое изобретение также частично относится к тройным пакетам или “пирамидам”, состоящим из трех (или более) токсинов, где Cry1Da и Cry1Ca являются основной парой. В некоторых предпочтительных вариантах осуществления пирамиды, выбранные токсины имеют три отдельных места действия у FAW. Некоторые предпочтительные комбинации для пирамиды с “тремя местами действия” включают рассматриваемую основную пару белков плюс Cry1Fa, Vip3Ab, Cry1Be или Cry1E в качестве третьего белка для воздействия на FAW. Под “отдельными местами действия” подразумевается то, что каждый из данных белков не вызывает развития перекрестной устойчивости с другими белками. Эти конкретные тройные пакеты по настоящему изобретению неожиданно обеспечивают три места действия у FAW. Это может способствовать смягчению или устранению требования к площади убежищ.

Согласно настоящему изобретению также могут быть добавлены дополнительные токсины/гены. Например, если Cry1Fa или Cry1Be вводят в пакет вместе с парой белков по изобретению (оба белка Cry1Fa и Cry1Be проявляют активность как по отношению к FAW, так и по отношению к мотыльку кукурузному (ECB)); при этом добавление двух дополнительных белков в этот тройной пакет, в котором два дополнительных белка нацелены на ECB, обеспечит три места действия у FAW и три места действия у ECB. Эти два добавленных белка (четвертый и пятый белок) могут быть выбраны из группы, состоящей из Cry2A, Cry1I, DIG-3 (см. заявку на патент США № 61/284278 (подана 16 декабря 2009) и US 2010 00269223) и Cry1Ab. В результате, получается пакет из пяти белков, имеющий по три места действия у двух насекомых (ECB и FAW).

Таким образом, одна из возможных схем обработки представляет собой использование рассматриваемой пары белков в комбинации с третьим токсином/геном и использование этого тройного пакета для ослабления развития у FAW устойчивости к каждому из этих токсинов. Соответственно, рассматриваемое изобретение также относится к тройным пакетам или “пирамидам”, состоящим из трех (или более) токсинов. В некоторых предпочтительных вариантах осуществления пирамиды, выбранные токсины имеют три отдельных места действия у FAW.

Среди прочих схем обработки по настоящему изобретению могут быть использованы два, три или более белков из рассматриваемых белков в регионах произрастания кукурузы, в которых FAW может формировать популяции с развившейся устойчивостью.

Что касается использования Cry1Fa плюс Cry1C, в заявке на патент США № 61/284281 (подана 16 декабря 2009) показано, что Cry1C активен по отношению к FAW, устойчивой к Cry1F. Что касается использования Cry1Fa плюс Cry1D, в заявке на патент США № 61/284252 (подана 16 декабря 2009) показано, что Cry1D активен по отношению к FAW, устойчивой к Cry1F. В этих двух заявках также показано, что Cry1C не конкурирует с Cry1F за связывание в мембранных препаратах FAW, и что Cry1D не конкурирует с Cry1F за связывание в мембранных препаратах FAW. С учетом того, что Cry1Fa активен по отношению к FAW и ECB, Cry1Da плюс Cry1Ca плюс Cry1Fa неожиданно обеспечивают, согласно настоящему изобретению, три места действия у FAW. Это может способствовать смягчению или устранению требования к площади убежищ.

Cry1Fa содержится в продуктах Herculex®, SmartStax™ и WideStrike™. Рассматриваемая пара генов (Cry1Da и Cry1Ca) может быть скомбинирована, например с содержащим Cry1Fa продуктом, таким как Herculex®, SmartStax™ и WideStrike™. Соответственно, рассматриваемая пара белков может играть значительную роль в уменьшении давления отбора на эти и другие белки. Рассматриваемая пара белков может быть использована в комбинациях из трех генов для кукурузы и других растений (например, хлопка и сои).

Как уже указывалось выше, согласно настоящему изобретению также могут быть добавлены дополнительные токсины/гены. В отношении использования Cry1E (для контроля FAW), см. заявку на патент США № 61/284278 (подана 16 декабря 2009). В отношении использования Cry1Ab (для контроля ECB), см. публикацию заявки на патент США № 2008/0311096.

Растения (и площади угодий, засеянные такими растениями), которые вырабатывают любую из рассматриваемых комбинаций белков, включены в объем настоящего изобретения. Также могут быть добавлены дополнительные токсины/гены; однако, обсуждаемые выше конкретные пакеты неожиданно обеспечивают множество мест действия у FAW и ECB. Это может способствовать смягчению или устранению требования к площади убежищ. Следовательно, засеянное таким образом поле, площадь которого превышает десять акров, входит в объем настоящего изобретения.

Для получения последовательностей любых генов и белков, раскрытых, или упомянутых в настоящем документе, также может быть использован GENBANK. См. Приложение А ниже. Релевантные последовательности также доступны из патентов. Например, патент США № 5188960 и патент США № 5827514 описывают белки, содержащие ядро токсина Cry1Fa, которые являются подходящими для осуществления настоящего изобретения. Патент США № 6218188 описывает оптимизированные для растений последовательности ДНК, кодирующие белки, содержащие ядро токсина Cry1Fa, которые подходят для использования в настоящем изобретении.

Комбинации белков, описанных в настоящем документе, могут быть использованы для контроля чешуекрылых насекомых-вредителей. Взрослые чешуекрылые, например, бабочки и мотыльки, в основном питаются цветочным нектаром и являются важными опылителями. Практически все личинки чешуекрылых, т.е. гусеницы, питаются растениями, и многие из них являются важными насекомыми-вредителями. Гусеницы поедают внутреннюю часть листвы, корни или стебель растения, лишая растение возможности получать питательные вещества и часто разрушая физическую опорную структуру растения. Помимо этого, гусеницы поедают плоды, ткани и хранящиеся зерно и муку, придавая этим продуктам нетоварный вид или серьезно снижая их ценность. Как используется в настоящем документе, под чешуекрылыми насекомыми-вредителями подразумеваются различные стадии жизненного цикла насекомого-вредителя, включая стадии личинки.

Некоторые химерные токсины по настоящему изобретению содержат полную N-концевую часть ядра токсина Bt и, в некоторой точке от конца части, содержащей ядро токсина, белок переходит в гетерологичную последовательность протоксина. N-концевая часть токсина Bt, обладающая инсектицидной активностью, называется “ядром” токсина. Переход от сегмента ядра токсина к сегменту гетерологичного протоксина может находиться приблизительно в месте соединения токсин/протоксин или, в качестве альтернативы, может быть сохранена часть естественного протоксина (простирающаяся за пределы части ядра токсина) с переходом в гетерологичную часть, протоксин, расположенную далее.

В качестве примера, один из химерных токсинов по настоящему изобретению представляет собой часть, относящуюся к ядру токсина Cry1Da (приблизительно 600 аминокислот) и/или гетерологичный протоксин (остальные аминокислоты до С-конца). В одном из предпочтительных вариантов осуществления, часть химерного токсина, содержащую протоксин, получают из белка-токсина Cry1Ab. В предпочтительном варианте осуществления часть химерного токсина, содержащую протоксин, получают из белка-токсина Cry1Ab.

Специалист в данной области техники признает, что Bt токсины, даже в рамках определенного класса, такого как Cry1Ca, немного различаются по длине и точному положению перехода от ядра токсина к части, относящейся к протоксину. Обычно, токсины Cry1Ca имеют длину от примерно 1150 до примерно 1200 аминокислот. Переход от части, относящейся к ядру токсина, к части, относящейся к протоксину, обычно находится в пределах от 50% до 60% полной длины токсина. Химерный токсин рассматриваемого изобретения полностью включает указанную N-концевую часть ядра токсина. Таким образом, химерный токсин содержит по меньшей мере 50% полной длины белка-токсина Cry1 Bt, что обычно составляет по меньшей мере 590 аминокислот. Что касается части, относящейся к протоксину, то полная длина части, относящейся к протоксину Cry1Ab, простирается от конца части, относящейся к ядру токсина, до С-конца молекулы.

Гены и токсины. Гены и токсины, используемые по настоящему изобретению, включают не только раскрытые последовательности полной длины, но также фрагменты этих последовательностей, варианты, мутанты и слитые белки, которые сохраняют характеристики пестицидной активности токсинов, примеры которых приведены в настоящем документе. В настоящем документе, термин “варианты” или “вариации” генов относится к нуклеотидным последовательностям, которые кодируют одни и те же токсины или которые кодируют токсины-эквиваленты, обладающие пестицидной активностью. В настоящем документе, термин “токсины-эквиваленты” относится к токсинам, имеющим такую же или по существу такую же биологическую активность по отношению к целевым насекомым-вредителям, что и заявленные токсины.

В настоящем документе используются следующие ограничительные признаки: примерно 95% (для Cry1Da и Cry1Ca), 78% (для Cry1D и Cry1C) и 45% (для Cry1) идентичность последовательностей согласно “Revision of the Nomenclature for the Bacillus thuringiensis Pesticidal Crystal Proteins,” N. Crickmore, D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D.H. Dean. Microbiology and Molecular Biology Reviews (1998) Vol.62:807-813. Эти ограничения применимы только в отношении ядра токсинов.

Для специалиста в данной области техники очевидно, что гены, кодирующие активные токсины, могут быть идентифицированы и получены несколькими способами. Конкретные гены или части генов, проиллюстрированные в настоящем документе, могут быть получены из изолятов, депонированных в депозитарии культур. Эти гены или их части, или варианты также могут быть сконструированы синтетически, например, с использованием синтезатора генов. Вариации генов могут быть легко сконструированы стандартными методами для осуществления точечных мутаций. Фрагменты этих генов также могут быть получены с использованием коммерчески доступных экзонуклеаз или эндонуклеаз согласно стандартным процедурам. Например, для последовательного отщепления нуклеотидов от концов этих генов могут быть использованы такие ферменты, как Bal31, или сайт-направленный мутагенез. Гены, кодирующие активные фрагменты, также могут быть получены с использованием различных рестрикционных ферментов. Для непосредственного получения активных фрагментов указанных белков-токсинов могут быть использованы протеазы.

Фрагменты и эквиваленты, которые сохраняют пестицидную активность проиллюстрированных токсинов, также находятся в пределах объема настоящего изобретения. В силу избыточности генетического кода аминокислотные последовательности, раскрытые в настоящем документе, могут кодироваться множеством различных ДНК-последовательностей. Специалисту в данной области техники не составит труда создать альтернативные ДНК-последовательности, кодирующие такие же или по существу такие же токсины. Такие варианты ДНК-последовательностей находятся в пределах объема настоящего изобретения. В настоящем документе “по существу такие же” последовательности обозначают последовательности, имеющие замены, делеции, добавления или вставки, которые существенно не влияют на пестицидную активность. Это определение также охватывает фрагменты генов, кодирующие белки, которые сохраняют пестицидную активность.

Еще один способ идентификации генов, кодирующих токсины, и частей генов, пригодных согласно настоящему изобретению, состоит в использовании олигонуклеотидных зондов. Такие зонды представляют собой детектируемые нуклеотидные последовательности. Эти последовательности могут быть детектируемыми в силу наличия соответствующей метки или могут быть выполнены с возможностью их естественной флуоресценции, как описано в международной заявке WO93/16094. Как известно из уровня техники, если зонд и образец нуклеиновой кислоты гибридизуются, формируя сильную связь между двумя указанными молекулами, можно сделать достаточно обоснованное предположение, что зонд и образец являются по существу гомологичными. Предпочтительно, гибридизацию проводят в жестких условиях методом, хорошо известным из уровня техники, например, описанным в Keller, G. FL, M. M. Manak (1987) DNA Probes, Stockton Press, New York, N.Y., pp. 169-170. Некоторые примеры комбинаций концентрации соли и температуры являются следующими (в порядке возрастания жесткости): 2X SSPE или SSC при комнатной температуре; 1X SSPE или SSC при 42°C; 0,1X SSPE или SSC при 42°C; 0,1X SSPE или SSC при 65°C. Детектирование зонда обеспечивает средство для определения известным способом, произошла ли гибридизация. Такой зондовый анализ обеспечивает быстрый способ идентификации кодирующих токсин генов по настоящему изобретению. Нуклеотидные сегменты, используемые в качестве зондов, согласно изобретению, могут синтезироваться в ДНК-синтезаторе и с помощью стандартных процедур. Данные нуклеотидные последовательности также могут использоваться в качестве ПЦР-праймеров для амплификации генов по изобретению.

Варианты токсинов. В настоящем документе, в частности, приведены примеры некоторых токсинов по изобретению. Поскольку эти токсины являются всего лишь примерами токсинов по изобретению, очевидно, что настоящее изобретение содержит варианты или эквивалентные токсины (и нуклеотидные последовательности, кодирующие эквивалентные токсины), имеющие пестицидную активность, такую же или аналогичную пестицидной активности токсина, приведенного в качестве примера. Эквивалентные токсины обладают гомологией по аминокислотам с приведенным в качестве примера токсином. Такая гомология по аминокислотам обычно превышает 75%, предпочтительно, превышает 90% и, наиболее предпочтительно, превышает 95%. Гомология по аминокислотам является наибольшей в критических областях, которые ответственны за биологическую активность или участвуют в определении трехмерной конфигурации, которая, в конечном счете, и отвечает за биологическую активность. В этом отношении, определенные аминокислотные замены являются приемлемыми и допустимыми, если эти замены находятся в областях, которые не являются критичными для активности или представляют собой консервативные аминокислотные замены, которые не влияют на трехмерную конфигурацию молекулы. Например, аминокислоты могут быть отнесены к следующим классам: неполярные, незаряженные полярные, основные и кислые. Консервативные замены, в которых аминокислота одного класса заменяется аминокислотой из того же класса, находятся в пределах объема настоящего изобретения при условии, что такая замена не изменяет существенно биологическую активность соединения. Ниже приводится список примеров аминокислот, принадлежащих каждому классу.

Класс аминокислот Примеры аминокислот
неполярные Ala, Val, Leu, Ile, Pro, Met, Phe, Trp
незаряженные полярные Gly, Ser, Thr, Cys, Tyr, Asn, Gln
кислые Asp, Glu
основные Lys, Arg, His

В некоторых примерах также могут быть использованы неконсервативные замены. При этом критическим фактором является то, что такие замены не должны существенно ухудшать биологическую активность токсина.

Рекомбинантные хозяева. Гены, кодирующие токсины по настоящему изобретению, могут быть введены во множество различных микроорганизмов-хозяев или растений-хозяев. Экспрессия гена токсина приводит в результате, прямо или опосредованно, к внутриклеточному продуцированию и поддержанию пестицида. Для создания штамма Bt, экспрессирующего оба токсина по изобретению, могут быть использованы конъюгационный перенос и рекомбинантный перенос. Один или оба гена токсинов могут быть перенесены также в другие организмы-хозяева, которые могут затем использоваться для получения синергического эффекта. При использовании подходящих микроорганизмов-хозяев, например Pseudomonas, такие микроорганизмы можно применять в местах нахождения насекомого-вредителя, где они будут размножаться и попадать в кишечник насекомого, что приведет в результате к контролю насекомого-вредителя. В качестве альтернативы, микроорганизмы, содержащие ген токсина, могут быть обработаны в условиях, продлевающих активность токсина и стабилизирующих клетку. Затем обработанные клетки, которые сохраняют токсическую активность, вносят в среду обитания целевого насекомого-вредителя.

Если ген Bt токсина вводят с помощью подходящего вектора в микроорганизм-хозяин, а указанный хозяин затем вводят в среду обитания в живом состоянии, то принципиальным моментом является использование определенных микроорганизмов-хозяев. Выбираются такие микроорганизмы-хозяева, в отношении которых известно, что они обитают в “фитосфере” (филлоплане, филлосфере, ризосфере и/или ризоплане) одной или более представляющих интерес зерновых культур. Такие микроорганизмы выбирают таким образом, чтобы они обладали способностью успешно конкурировать в конкретной среде обитания (зерновой культуре или других местах обитания насекомых) с дикими типами микроорганизмов, обеспечивали стабильное поддержание и экспрессию полипептида-пестицида и, желательно, обеспечивали улучшенную защиту пестицида от разложения и инактивации под действием окружающей среды.

В отношении огромного количества микроорганизмов известно, что они обитают в филлоплане (поверхности листьев растений) и/или в ризосфере (почве, окружающей корневую систему растения) множества важных зерновых культур. Эти микроорганизмы включают бактерии, водоросли и грибы. Особый интерес представляют такие микроорганизмы, как бактерии, например, относящиеся к родам Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylophilius, Agrobactenum, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc и Alcaligenes; грибы, в частности, дрожжи, например, относящиеся к видам Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula и Aureobasidium. Особый интерес представляют такие виды, обитающих в фитосфере бактерий, как Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylinum, Agrobactenium tumefaciens, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus и Azotobacter vinlandii, такие виды обитающих в фитосфере дрожжей, как Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S. pretoriensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae и Aureobasidium pollulans. Особый интерес представляют пигментированные микроорганизмы.

Существует широкий спектр способов введения Bt генов, кодирующего токсин, в микроорганизм-хозяин в условиях, обеспечивающих стабильную поддержку и экспрессию этого гена. Эти способы хорошо известны специалистам в данной области техники и описаны, например, в патенте США № 5135867, который включен в настоящий документ в виде ссылки.

Обработка клеток. Клетки Bacillus thuringiensis или рекомбинантные клетки, экспрессирующие Bt токсины, могут быть обработаны с целью продления активности токсина и стабилизации клетки. Формируемая микрокапсула с пестицидом содержит Bt токсин или токсины внутри клеточной структуры, которая была стабилизирована и защищает токсин при внесении микрокапсулы в среду обитания целевого насекомого-вредителя. Подходящие клетки-хозяева могут включать либо клетки прокариот, либо эукариот, и обычно ограничены только теми клетками, которые не вырабатывают вещества, токсичные для высших организмов, таких как млекопитающие. Тем не менее, могут быть использованы организмы, вырабатывающие вещества, токсичные для высших организмов, если эти токсичные вещества являются нестабильными, или вносимое количество является достаточно низким, настолько, что при этом отсутствует какая-либо вероятность интоксикации млекопитающего-хозяина. В качестве хозяев особый интерес представляют прокариоты и низшие эукариоты, такие как грибы.

При обработке клетки обычно являются интактными и по существу находятся в пролиферативной форме, а не в форме спор, хотя в некоторых случаях могут быть использованы споры.

Обработка клеток микроорганизмов, т.е. клеток, содержащих ген или гены Bt токсина, может выполняться с использованием химических или физических средств или с использованием комбинации химических и/или физических средств при условии, что эти методы не оказывают негативного влияния на свойства токсина, а также не ухудшают способность клетки защищать токсин. Примерами химических реагентов являются галогенирующие агенты, в частности, галогены с атомными номерами 17-80. Более точно, можно использовать йод в мягких условиях в течение времени, достаточного для достижения желаемых результатов. Другие подходящие методы включают обработку альдегидами, такими как глутаральдегид; противоинфекционными средствами, такими как зефиран хлорид и цетилпиридинхлорид; спиртами, такими как изопропиловый спирт и этанол; различными гистологическими фиксаторами, такими как Люголь-йод, фиксатор Буэна, различные кислоты и фиксатор Helly (См. Humason, Gretchen L., Animal Tissue Techniques, W. H. Freeman and Company, 1967); или комбинацией физических (тепло) и химических агентов, которые защищают и способствуют пролонгированию активности токсина, продуцируемого в клетке при введении этой клетки животному-хозяину. Примерами физических средств являются коротковолновое излучение, такое как гамма-излучение и рентгеновское излучение, заморозка, УФ-облучение, лиофилизация и прочие. Способы обработки клеток микроорганизмов описаны в патентах США №№ 4695455 и 4695462, которые включены в настоящий документ в виде ссылки.

Клетки обычно имеют повышенную стабильность структуры, что увеличивает их устойчивость к условиям окружающей среды. Если пестицид находится в проформе, способ обработки клетки следует выбирать таким образом, чтобы патогеном целевого насекомого-вредителя не подавлялся процессинг от проформы к зрелой форме пестицида. Например, формальдегид будет сшивать белки и может подавлять процессинг проформы полипептида-пестицида. Способ обработки клетки должен способствовать сохранению по меньшей мере существенной доли биодоступности или биоактивности токсина.

Представляющие особый интерес характеристики при выборе клетки-хозяина с целью продуцирования, включают легкость введения Bt гена или генов в клетку хозяина, доступность экспрессирующей системы, эффективность экспрессии, стабильность пестицида в клетке-хозяине и наличие вспомогательных генетических возможностей. Представляющие особый интерес характеристики в случае использования в виде пестицидной микрокапсулы включают защитные свойства в отношении пестицида, такие как толстые клеточные стенки, пигментация и внутриклеточная упаковка или формирование включений; выживание в водной среде; отсутствие токсичности для млекопитающего; привлекательность для поглощения насекомыми-вредителями; легкость в уничтожении и фиксации без повреждения токсина и тому подобное. Также может рассматриваться легкость в создании и обращении, экономичность, стабильность при хранении и тому подобное.

Выращивание клеток. Клетку-хозяин, содержащую инсектицидный Bt ген или гены, можно выращивать в любой подходящей питательной среде, в которой ДНК-конструкция обеспечивает селективное преимущество, обеспечивая такую селективную среду, что все или по существу все клетки сохраняют Bt ген. Затем эти клетки могут быть собраны известными методами. С другой стороны, клетки можно обрабатывать до их сбора.

Bt клетки, продуцирующие токсины по изобретению, могут быть культивированы с использованием стандартных сред и методов ферментации, известных в данной области техники. После завершения цикла ферментации бактерии могут быть собраны сначала путем выделения спор и кристаллов Bt из ферментационного бульона способами, хорошо известными в данной области. Восстановленные споры и кристаллы Bt могут быть представлены в составах в виде смачиваемого порошка, жидкого концентрата, гранул, или в виде других составов с добавлением поверхностно-активных веществ, диспергирующих веществ, инертных наполнителей и других компонентов для облегчения обращения с ними и их применения по отношению с конкретными целевыми насекомыми-вредителями. Такие составы и процедуры нанесения хорошо известны в данной области.

Составы. Сформированные гранулы-приманки, содержащие аттрактант и споры, кристаллы и токсины Bt изолятов, или рекомбинантные микробы, содержащие гены, полученные из Bt изолятов, раскрытых в настоящем документе, могут быть внесены в почву. Сформированный продук