Резиновая смесь, вулканизированная резина и шина, изготовленная с их использованием

Иллюстрации

Показать все

Изобретение относится к резиновой смеси, вулканизированной резине и шине. Резиновая смесь включает каучуковый компонент и волокно, выполненное из гидрофильной смолы. Волокно сформировано со слоем покрытия его поверхности. Слой покрытия выполнен из смолы, имеющей сродство к каучуковому компоненту. Вариант резиновой смеси использует волокно, в котором образуется полость. Резиновая смесь включает пенообразователь. Изобретение позволяет улучшить стойкость к разрушению получаемой шины из резиновой смеси при сохранении хороших характеристик отвода воды и улучшить характеристики шины на обледенелом дорожном покрытии и ее износостойкость. 5 н. и 13 з.п. ф-лы, 3 ил., 3 табл., 45 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к резиновой смеси, которая может обеспечить превосходную стойкость к разрушению при сохранении хорошего отвода воды и к шине с ее использованием, в частности, к шине с отличными характеристиками на обледенелом дорожном покрытии.

Настоящее изобретение также относится к резиновой смеси и вулканизированной резине, которая может обеспечить хороший отвод воды, также как к шине с их использованием, в частности, к шине с хорошо сбалансированными характеристиками шины на обледенелом дорожном покрытии и износостойкостью.

Известный уровень техники

Обычно, с точки зрения повышения безопасности транспортных средств, проводят исследования для повышения характеристик шин, таких как тормозные характеристики и ходовые качества, не только на сухом дорожном покрытии, но и на других различных дорожных покрытиях, таких как мокрое дорожное покрытие и обледенелое и заснеженное дорожное покрытие.

Например, для повышения характеристик шины на обледенелом и заснеженном дорожном покрытии, JP 11-060770 и JP 2001-233993 A (PTL 1-2) каждый раскрывает шину, в которой используется резиновая смесь для протектора, включающая волокна, включающая смолу, в которой удлиненные пузырьки воздуха, покрытые этой смолой, образуются после вулканизации, так что они могут функционировать в качестве дренажных каналов по мере износа протектора, обеспечивая тем самым улучшенную эффективность отвода воды. Также были выполнены попытки обеспечить более хорошие характеристики отвода воды при использовании гидрофильного материала в качестве этой смолы и использования сродства к воде.

Список цитируемых материалов

Патентная литература

PTL 1:JP 11-060770

PTL 2:JP 2001-233993

Краткое изложение существа изобретения

(Техническая проблема)

Однако в случае использования гидрофильной смолы трудно обеспечить равномерное диспергирование смолы в гидрофобном каучуке и, таким образом, в результате у шины может быть более низкая стойкость к разрушению и износостойкость, хотя ее характеристики отвода воды улучшаются гидрофильными группами, находящимися на ее поверхности.

Кроме того, температура плавления многих гидрофильных смол близка или выше температуры вулканизации и, таким образом трудно вспенивать в расплавленном состоянии пенообразователем. Таким образом, требуется дальнейшее улучшение до повышения характеристик отвода воды формированием удлиненных пузырьков воздуха. Кроме того, из-за ее низкого сродства к каучуку, полученный каучук может иметь более низкую прочность и пониженную износостойкость

В связи с вышеизложенным целью настоящего изобретения является получение резиновой смеси, которая может улучшить стойкость к разрушению получаемой шины при сохранении хороших характеристик отвода воды, и шина с ее использованием.

Кроме того, другой целью настоящего изобретения является создание резиновой смеси и вулканизированного каучука, включающих полости, которые легко могут быть вспенены в расплавленном состоянии при вулканизации и функционировать в качестве дренажных каналов, а также шины с ее использованием.

(Решение проблемы)

Для решения вышеописанных проблем авторы настоящего изобретения обнаружили резиновую смесь, содержащую комплекс (волокно), который выполнен из гидрофильного полимера и сформирован отдельным слоем покрытия. Настоящее изобретение было выполнено на основе этого наблюдения. То есть, резиновая смесь настоящего изобретения включает: каучуковый компонент; и волокно, изготовленное из гидрофильной смолы, при этом волокно выполнено слоем покрытия на ее поверхности, слой покрытия выполнен из смолы, имеющей сродство к каучуковому компоненту.

Кроме того, резиновая смесь настоящего изобретения включает: каучуковый компонент и гидрофильную смолу, в которой резиновая смесь включает комплекс, комплекс формируется нанесением покрытия, по меньшей мере, на часть гидрофильной смолы, смолы, обладающей сродством к каучуковому компоненту, так что полости образуются в комплексе. Резиновая смесь предпочтительно включает дополнительно пенообразователь, причем резиновая смесь, содержащая пенообразователь вспенивается перемешиванием и вулканизацией и смола, имеющая сродство к каучуковому компоненту, является смолой с низкой температурой плавления, имеющей температуру плавления ниже, чем наиболее высокая температура вулканизации.

В резиновой смеси также предпочтительно, чтобы вся окружность гидрофильной смолы была покрыта смолой, имеющей сродство к каучуковому компоненту. Комплекс предпочтительно изготовлен из волокна, имеющего структуру ядро-оболочка, структура ядро-оболочка включает часть ядра, выполненную из гидрофильного полимера, и часть оболочки, выполненную из смолы, имеющей сродство к каучуковому компоненту.

Гидрофильная смола предпочтительно включает атом кислорода, азота или серы и она содержит, по меньшей мере, один заместитель, выбранный из группы, состоящей из -ОН, -СООН, -OCOR (R является алкильной группой), -NH2, -NCO и -SH. Кроме того, гидрофильная смола может быть сополимером этилена и винилового спирта, гомополимером винилового спирта, поли(мет)акрилатной смолой, полиамидной смолой, смолой на основе алифатического полиамида, смолой на основе ароматического полиамида, полиэфирной смолой, полиолефиновой смолой, смолой на основе поливинилового спирта, смолой на основе целлюлозы или акриловой смолой.

Содержание комплекса (волокна), выполненного из гидрофильной смолы, предпочтительно составляет 0,1-100 частей масс. на 100 частей масс. каучукового компонента. Смола, имеющая сродство к каучуковому компоненту, предпочтительно содержит 50% масс. или менее полярных компонентов относительно всех ее компонентов и эта смола является смолой на основе полиолефина. Смола с низкой температурой плавления предпочтительно содержит 50% масс. или менее полярных компонентов относительно всех ее компонентов и эта смола с низкой температурой плавления является смолой на основе полиолефина. Кроме того, смола на основе полиолефина может быть смолой на основе полиэтилена, смолой на основе полипропилена, полиолефиновым иономером или α-полиолефином модифицированным малеиновым ангидридом. Резиновая смесь предпочтительно дополнительно включает пенообразователь и вулканизированный каучук, полученный вулканизацией полученной резиновой смеси, имеет пустоты, формируемые со степенью вспенивания 1-50%. В вулканизированной резине настоящего изобретения слой покрытия, выполненный из гидрофильной смолы, предпочтительно находится полностью или частично на внутренней поверхности полости. Шина в соответствии с настоящим изобретением изготовлена с использованием вышеописанной резиновой смеси или вулканизированного каучука и может быть использована для деталей протектора.

(Положительный эффект изобретения)

Резиновая смесь настоящего изобретения обеспечивает повышение адгезионной способности между каучуком и волокном (комплекс гидрофильной смолы и слой покрытия) при одновременном повышении диспергируемости волокна (комплекс) в каучуковом компоненте за счет эффектов, создаваемых гидрофильной смолой (волокно, выполненное из гидрофильного полимера) и слоем покрытия, который выполнен из смолы, имеющей сродство к каучуковому компоненту, и сформированного на поверхности гидрофильной смолы (волокно), и создает превосходную стойкость к разрушению получаемой шины при сохранении хорошей характеристики отвода воды (обеспечивается возможность формирования полостей в комплексе при вулканизации, приводящая к превосходной характеристики отвода воды при сохранении хорошей долговечности). Соответственно, у такой шины улучшена эффективность торможения на мокром дорожном покрытии и обледенелом и заснеженном дорожном покрытии, и, в частности, чрезвычайно полезна в качестве шины, имеющей отличные характеристики шины на льду.

Краткое описание чертежей

Фиг.1 представляет продольный разрез фильеры, установленной на двухшнековом экструдере.

Фиг.2 представляет продольный разрез в перспективе волокна, которое выполнено из гидрофильного полимера и сформировано слоем покрытия, выполненного из смолы, имеющей сродство к каучуковому компоненту.

Фиг.3 представляет продольный разрез комплекса, который выполнен из гидрофильного полимера и сформирован слоем покрытия, выполненного из смолы, имеющей сродство к каучуковому компоненту.

Описание осуществлений

Настоящее изобретение будет конкретно описано ниже соответственно со ссылкой на прилагаемые чертежи. Резиновая смесь настоящего изобретения включает: каучуковый компонент и волокно, выполненное из гидрофильной смолы, причем волокно выполнено со слоем покрытия на его поверхности, слой покрытия выполнен из смолы, имеющей сродство к каучуковому компоненту.

Кроме того, резиновая смесь настоящего изобретения включает: каучуковый компонент и гидрофильную смолу, причем резиновая смесь включает комплекс, комплекс сформированный покрытием, по меньшей мере, части гидрофильной смолы смолой, имеющей сродство к каучуковому компоненту, так чтобы полости были сформированы в комплексе.

Каучуковые компоненты, используемые в резиновой смеси настоящего изобретения, конкретно не ограничены и могут включать натуральный каучук (NR), а также синтетические каучуки, такие как изопреновый каучук (IR), бутадиен-стирольный сополимерный каучук (SBR) бутадиеновый каучук (BR), этилен-пропилен-диеновый каучук (EPDM), хлоропреновый каучук (CR), галогенированный бутилкаучук и акрилонитрил-бутадиеновый каучук (NBR), среди них предпочтительными являются натуральный каучук (NR), стирол-бутадиеновый каучук (SBR) и бутадиеновый каучук (BR). Эти каучуковые компоненты могут быть использованы отдельно или в комбинации двух или более.

В дополнение к вышеописанным каучуковым компонентам, резиновая смесь настоящего изобретения включает волокно (комплекс), которое выполнено из гидрофильной смолы и сформировано слоем покрытия на его поверхности. Использование гидрофильных смол в волокне (комплекс), может привести к достаточному сродству к воде, что вносит большой вклад в придание отличной характеристики отвода воды полученной шины. То есть, когда гидрофильное волокно расположено на поверхности резины, резиновая поверхность становится, по меньшей мере, частично гидрофильной, что может привести к повышению эффективности отвода воды. Хотя такое сродство потенциально может влиять на обеспечение хорошей диспергируемости волокна (комплекс) в каучуковом компоненте, диспергируемость волокна (комплекс) в каучуковом компоненте может быть улучшена чрезвычайно эффективно формированием слоя покрытия на поверхность волокна (комплекс), как описано ниже, тем самым обеспечивая хорошие характеристики отвода воды (и/или долговечность) полученной шины. Это также может придать шине превосходную стойкость к разрушению. Кроме того, гидрофильная смола, используемая в настоящем изобретении, предпочтительно является нерастворимой в воде. В случае, если будет использована водорастворимая гидрофильная смола, смола будет растворяться в воде на дороге, когда смола находится на поверхности резины и, следовательно, поверхность резины может утратить свою гидрофильность, что приводит к пониженным характеристикам отвода воды, в этом случае не может быть получен достаточный искомый эффект настоящего изобретения.

Все смолы, которые могут иметь сродство к воде, без ограничений могут быть использованы в качестве гидрофильной смолы, т.е. включающие гидрофильную группу в молекуле, и предпочтительно представляют смолы, включающие атом кислорода, азота или серы и их конкретные примеры включают смолы, включающие, по меньшей мере, одним заместитель, выбранный из -ОН, -СООН, -OCOR (R является алкильной группой), -NH2, -NCO или -SH. Среди них предпочтительными заместителями являются -ОН, -СООН, -OCOR, -NH2 и -NCO.

Более конкретные примеры вышеописанных гидрофильных смол включают сополимер этилена и винилового спирта, гомополимер винилового спирта, поли(мет)акрилатную смолу или смолы ее сложных эфиров, полиамидную смолу, полиэтиленгликолевую смолу, карбоксивиниловый сополимер, сополимер стирола и малеиновой кислоты, поливинилпирролидоновую смолу, сополимеры винилпирролидон-винилацетат, меркаптоэтанол, полиэфирную смолу, полиолефиновую смолу, смолу на основе поливинилового спирта, смолу на основе целлюлозы, и акриловую смолу. Среди них сополимер этилена и винилового спирта, гомополимер винилового спирта, поли(мет)акрилатная смола, полиамидная смола, смола на основе алифатического полиамида, смола на основе ароматического полиамида, полиэфирная смола, полиолефиновая смола, смола на основе поливинилового спирта, смола на основе целлюлозы и акриловая смола являются предпочтительными, и сополимер этилена и винилового спирта является более предпочтительным.

Комплекс (волокно) выполненный из вышеописанной гидрофильной смолы сформирован слоем покрытия на его поверхности. Слой покрытия выполнен из смолы, имеющей сродство к каучуковому компоненту, предпочтительно смолы с низкой температурой плавления, имеющей температуру плавления ниже, чем максимальная температура вулканизации (который будет также упоминаться как ″смола с низкой точкой плавления″). Слой покрытия, сформированный таким образом, позволяет самой гидрофильной смоле эффективно сохранять сродство к воде, при этом с высоким сродством к каучуковому компоненту вблизи комплекса (волокно). Кроме того, пенообразователь, содержащийся в резиновой смеси, может быть дополнением к гидрофильной смоле, которую иначе было бы трудно расплавить в процессе вулканизации, что облегчает формирование полостей в комплексе (волокно). То есть, может быть обеспечена хорошая дисперсность комплекса (волокно) в каучуковом компоненте и достаточный эффект отвода воды может быть вызван гидрофильной смолой. Кроме того, если полость находится в комплексе (волокно), полость может полностью функционировать в качестве дренажного канала. Кроме того, в процессе вулканизации, когда такая смола (смола с низкой температурой плавления), которая имеет температуру плавления Tm ниже, чем температура вулканизации, используется в качестве смолы, имеющей сродство к каучуковому компоненту, такая смола с низкой температурой плавления может плавиться при вулканизации и превращаться в слой покрытия с текучестью, которая обеспечивает адгезию комплекса (волокно) к резине. Эта конфигурация может легко привести к шине с хорошими характеристиками отвода воды и более хорошей стойкостью к разрушению (хорошие характеристики отвода воды и хорошая долговечность). Следует отметить, что такой слой покрытия обычно имеет толщину 0,001-10 мкм, предпочтительно 0,001-5 мкм, хотя она может изменяться в зависимости от содержания гидрофильной смолы, среднего диаметра комплекса (волокно) и т.д. Формированием слоя покрытия с толщиной в вышеописанном диапазоне, может быть получен при необходимости достаточный эффект настоящего изобретения. Кроме того, вышеописанный слой покрытия может быть сформирован полностью или частично на поверхности комплекса (волокно): а именно, его хватает для формирования слоя покрытия с долей не менее 50% всей поверхности волокна.

Могут быть использованы в качестве смолы все смолы, имеющей сродство к каучуковому компоненту, которые имеют, например, параметр растворения (значение SP), близкий к значению для каучукового компонента.

В данном описании смола с низкой температурой плавления относится к смоле, которая имеет температуру плавления ниже, чем максимальная температура вулканизации, где максимальная температура вулканизации указывает на самую высокую температуру, которая достигается резиновой смесью во время вулканизации резиновой смеси. Например, когда вышеописанную резиновую смесь вулканизируют в пресс-форме, максимальная температура вулканизации относится к самой высокой температуре, которая достигается резиновой смесью в течение времени от момента, когда резиновую смесь помещают в форму, до извлечения из пресс-формы для охлаждения, и эта максимальная температура вулканизации может быть измерена, например, термопарой введенной в резиновую смесь. Особые ограничения не накладываются на верхний предел температуры плавления вышеописанной смолы с низкой температурой плавления. Однако предпочтительно верхний предел выбирают с учетом вышеуказанных пунктов и, как правило, ниже, чем максимальная температура вулканизации на 10°С или более, более предпочтительно на 20°C или более. Промышленно применяемая температура вулканизации резиновой смеси обычно составляет до около 190°C. Например, если максимальная температура вулканизации задается равной этой температуре 190°C, температура плавления вышеуказанной смолы с низкой температурой плавления выбирают в диапазоне обычно 190°C или ниже, с температурой плавления предпочтительно 180°C или ниже и более предпочтительно 170°C.

Следует отметить, что температура плавления вышеуказанной смолы может быть измерена, например, известным устройством для определения точки плавления, и, например, пик температуры плавления, измеряемой с помощью устройства измерения DSC может быть использован в качестве температуры плавления.

В частности, вышеописанная смола с низкой температурой плавления предпочтительно является смолой, которая включает 50% масс. или менее полярных компонентов относительно всех ее компонентов, и более предпочтительно смолой на основе полиолефина. Такая смола, содержащая полярные компоненты в количестве, в вышеописанном диапазоне относительно количества всех компонентов смолы с низкой температурой плавления, имеет значение SP, которое несколько отличается от значения для каучукового компонента, а также температуру плавления несколько ниже, чем максимальная температура вулканизации. Эта смола может обеспечить хорошее сродство к каучуковому компоненту в достаточной степени, и, при смешивании с пенообразователем она может легко расплавиться в процессе вулканизации для облегчения вспенивания вулканизированной резины. Соответственно, можно более надежно улучшить диспергируемость комплекса (волокно), выполненного из гидрофильной смолы в каучуковом компоненте, обеспечивая формирование полостей в комплексе (волокно).

Структура вышеописанной смолы на основе полиолефина может быть разветвленной или линейной. Смола на основе полиолефина также может быть иономерной смолой, полученной сшивкой молекул сополимера этилен-метакрилат с ионами металлов. Их конкретные примеры включают полиэтилен, полипропилен, полибутен, полистирол, сополимер этилен-пропилен, сополимер этилен-этилакрилат, этилен-пропилен-диеновый терполимер, сополимер этилен-винилацетат и их иономерные смолы. Эти смолы могут быть использованы индивидуально или в комбинации из двух или более. Среди них предпочтительными являются смола на основе полиэтилена, смола на основе полипропилена, полиолефиновый иономер и α-полиолефин модифицированный малеиновым ангидридом. Когда используется полиолефиновый иономер или α-полиолефин модифицированный малеиновым ангидридом, он также будет связан с гидроксильной группой гидрофильной смолы, что обеспечивает дальнейшее улучшение прочности резины.

Для изготовления волокна, которое выполнено из гидрофильной смолы и сформировано слоем покрытия, выполненным из смолы, имеющей сродство к каучуковому компоненту, соответственно используют два двухшнековых экструдера оснащенных фильерой 1, как показано на фиг.1 (a) и 1 (b). Гидрофильную смолу экструдируют из выпускной фильеры 2 и в то же время смолу, имеющую сродство к каучуковому компоненту, экструдируют из выпускной фильеры 3. Экструдированные смолы формуются в невытянутую нить, которую в свою очередь подвергают горячей вытяжке для придания формы волокна. Смолу, имеющую сродство к каучуковому компоненту, загружают в бункер предпочтительно в количестве 0,1-80 частей масс., предпочтительно 0,1-20 частей масс. на 100 частей масс. гидрофильного смолы, хотя количество может варьироваться в зависимости от длины и диаметра полученного волокна. Эти смолы могут загружаться в количествах в пределах вышеописанного диапазона, так что слой покрытия способный достичь искомого эффекта может быть эффективно сформирован на поверхность волокна, которое выполнено из гидрофильной смолы и получено процессом вытяжки.

Для изготовления комплекса (волокно), который выполнен из гидрофильной смолы и сформирован слоем покрытия, выполненного из вышеописанной смолы с низкой температурой плавления, может быть использован такой способ, который включает смешивание этих смол с использованием вальцов, формованием из расплава смеси для формирования невытянутой нити и горячей вытяжкой для получения формы волокна. Также возможен другой способ, который включает смешивание вышеописанных смол с использованием двух двухшнековых экструдеров, оснащенных фильерой 1, как показано на фиг.1 (a) и 1 (b), и затем выполнение последующих стадий для получения материала в форме волокна, аналогично вышеописанному способу. В этом случае гидрофильную смолу экструдируют из выпускной фильеры 2 и в то же время смолу с низкой температурой плавления экструдируют из выпускной фильеры 3 и невытянутую нить формируют из экструдируемых смол. Эти смолы предпочтительно загружают в смесительные вальцы или бункер так, что вышеуказанная смола с низкой температурой плавления загружается в количестве 5-300 частей масс., предпочтительно 10-150 частей масс. на 100 частей масс. гидрофильной смолы, хотя количество может варьировать в зависимости от длины и диаметра полученного комплекса (волокно). Эти смолы могут быть загружены в количествах в пределах вышеописанного диапазона, так что слой покрытия обеспечивающий искомый эффект может быть эффективно сформирован на поверхности комплекса (волокна) выполненного из гидрофильной смолы, который был получен процессом вытяжки.

Предпочтительно, чтобы получаемое волокно имело среднюю длину обычно 0,1-500 мм, предпочтительно 0,1-7 мм и средний диаметр обычно 0,001-2 мм, предпочтительно 0,005-0,5 мм. При средней длине и среднем диаметре в пределах вышеописанного диапазона комплексы (волокно) не может чрезмерно спутываться и влиять на хорошую диспергируемость. Предпочтительно также, чтобы соотношение геометрических размеров обычно составляло 10-4000 и предпочтительно 50-2000. В соответствии с использованием в описании, соотношение относится к отношению главной оси к малой оси комплекса (волокно).

Кроме того, содержание комплекса (волокно), который выполнен из гидрофильного полимера и сформирован слоем покрытия, обычно составляет 0,1-100 частей масс., предпочтительно 0,1-50 частей масс. на 100 частей масс. каучукового компонента. Если содержание комплекса (волокно), который выполнен из гидрофильного полимера и сформирован слоем покрытия находится в пределах вышеописанного диапазона, можно получить достаточную стойкость к разрушению при сохранении хороших характеристик отвода воды и создания хороших характеристик отвода воды посредством полостей, сформированных в комплексе (волокно).

Предпочтительно, чтобы резиновая смесь настоящего изобретения дополнительно включала пенообразователь. Пенообразователь содержащийся в резиновой смеси позволяет газу, полученному из пенообразователя во время процесса вулканизации, поступать в гидрофильную смолу через слой покрытия, выполненного из расплавленной смолы с низкой температурой плавления, где форма пузырьков воздуха соответствует форме комплекса (волокно), т.е. легко может быть сформирована удлиненная форма. Такие воздушные пузырьки, присутствующие в резине с формой, соответствующей форме комплекса (волокно) могут функционировать как дренажные каналы по мере износа шины, придавая шине более хорошие характеристики отвода воды.

Конкретные примеры вышеописанного пенообразователя включают: азодикарбонамид (ADCA), динитрозопентаметилентетрамин (DPT), динитрозопентастиролтетрамин, производное бензолсульфонилгидразида и p,p′-оксибисбезолсульфонилгидразид (OBSH), бикарбонат аммония, бикарбонат натрия и карбонат аммония, которые дают диоксид углерода; соединение нитрозосульфонилазо, N,N′-диметил-N,N′-динитрозофталимид, толуолсульфонилгидразид, p-толуолсульфонилсемикарбазид и p,p′-оксибисбензолсульфонилсемикарбазид, которые дают азот. Среди них азодикарбонамид (ADCA) и динитрозопентаметилентетрамин (DPT) являются предпочтительными с точки зрения и более предпочтительным является азодикарбонамид (ADCA). Эти пенообразователи могут быть использованы отдельно или в комбинации из двух или более. Кроме того, содержание пенообразователя не имеет особых ограничений и предпочтительно составляет 0,1-20 частей масс. на 100 частей масс. каучукового компонента. Следует отметить, что вышеописанный пенообразователь может содержаться в вышеописанном комплексе (волокно).

Кроме того, в вышеописанном пенообразователе предпочтительно использовать комбинацию, например, мочевины, стеарата цинка, бензолсульфината цинка и оксида цинка в качестве добавки. Эти примеры могут быть использованы отдельно или в комбинации двух или более. Комбинация пенообразователя с добавкой может способствовать реакции вспенивания для повышения полноты реакции и предотвратить чрезмерный износ стечением времени.

Следует отметить, что вулканизированный каучук, полученный вулканизацией резиновой смеси, содержащей вышеописанный пенообразователь, имеет степень вспенивания обычно 1-50% и предпочтительно 5-40%. В случае резиновой смеси, содержащий пенообразователь, если степень вспенивания становится слишком большой, чрезмерно большие пустоты формируются на поверхности резины, и в этом случае не может быть получена достаточно большая площадь контакта, тогда как, если степень вспенивания находится в пределах вышеописанного диапазона, то можно обеспечить образование пузырьков воздуха так, чтобы они эффективно функционировали в качестве дренажных каналов, при сохранении умеренного количества воздушных пузырьков, и в этом случае не может быть снижена долговечность. В соответствии с использованием в описании степень вспенивания вулканизированной резины относится к средней степени вспенивания Vs, которая специально рассчитана по следующей формуле (I):

где ρ1 представляет плотность (г/см3) вулканизированной резины (вспененная резина) и ρ0 представляет плотность (г/см3) части твердой фазы вулканизированной резины (вспененная резина).

Примеры волокна 10, которое выполнено из гидрофильного полимера и сформировано с вышеописанным слоем покрытия, проиллюстрированы в продольном разрезе на фиг. 2(а) и 2(b). Как показано на фиг. 2(а), гидрофильная смола, которая расположена по существу в центре волокна 10, может быть покрыта смолой В, имеющий сродство к каучуковому компоненту так, что внешняя окружность смолы окружена смолой В, или в качестве альтернативы, как показано на фиг. 2(b), гидрофильная смола может быть рассредоточена в различных частях смолы В так, что ее поверхность покрыта смолой В.

Примеры волокна 100, включающего полости (пустоты), которое выполнено из гидрофильного полимера и сформировано вышеописанным слоем покрытия, полученного вулканизацией, проиллюстрированы продольным разрезом на фиг. 3(а) и 3(b). Как показано на фиг. 3(а), гидрофильная смола, которая расположена по существу вблизи центра волокна 100, включающего полости, может быть покрыта смолой с низкой точкой плавления В2, обладающей сродством к каучуковому компоненту и температурой плавления ниже, чем максимальная температура вулканизации, так, что внешняя окружность смолы окружена смолой В2 с полостью X удлиненной формы, сформированной во внутренней центральной части волокна 100, включающего полости, или в качестве альтернативы, как показано на фиг.3 (b), внутренняя окружность смолы B2 с низкой точкой плавления может быть частично покрыта гидрофильной смолой A. Эти полости X эффективно функционируют в качестве дренажных каналов. Такие полости X могут быть образованы газом, полученным в процессе вулканизации резиновой смеси, смешанной с пенообразователем. Средний диаметр вышеописанный полости X предпочтительно составляет обычно 0,01-1 мм, предпочтительно 0,05-0,7 мм, хотя средний диаметр может меняться в зависимости от среднего диаметра комплексов (волокно). Если средний диаметр полостей находится в пределах вышеописанного диапазона, то можно получить эти полости, действующие в достаточной степени в качестве дренажных каналов, при этом эффективно предотвращая снижение долговечности, что могло бы быть вызвано тем, что полости X составляют слишком большую часть волокна, включающего полости 100.

В резиновой смеси настоящего изобретения вышеописанный каучуковый компонент может включать комплекс (волокно) выполненный из гидрофильной смолы и необязательно вышеописанный пенообразователь и добавки, а также другие компаундируемые компоненты, которые обычно используют в резиновой промышленности, включая, например, наполнитель, такой как газовая сажа, мягчитель, стеариновая кислота, противостаритель, оксид цинка, ускоритель вулканизации и вулканизатор, не отступая от существа настоящего изобретения.

Шину в соответствии с настоящим изобретением изготавливают с использованием вышеописанной резиновой смеси. Вышеописанная шина может быть получена вулканизацией с использованием невулканизированной резиновой смеси после формования, или проведением процесса подвулканизации и т.п., чтобы получить полувулканизированную резину из невулканизированной резиновой смеси и затем проведением окончательного процесса вулканизации после формования этой полувулканизированной резины, в зависимости от типов и деталей используемой шины. Помимо других деталей шины, резиновую смесь настоящего изобретения предпочтительно применяют для деталей протектора с точки зрения полного использования хороших характеристик отвода воды и превосходной стойкости к разрушению. Следует отметить, что обычный воздух или воздух с регулируемым парциальным давлением кислорода, а также инертный газ, такой как азот, аргон и гелий можно использовать в качестве газа для заполнения шины

Примеры

Настоящее изобретение будет более подробно описано ниже со ссылкой на примеры его осуществления. Однако настоящее изобретение ни в коей мере не ограничено раскрытыми примерами. Следует отметить, что оценка примеров и сравнительных примеров проводится по следующим параметрам.

<Адгезивность резина-волокно>

Сто (100) волокон собирают в пучок и скручивают 30 раз на 10 см в пряжу, которую затем помещают в резину и вулканизируют для получения образца. Растягивающее усилие (кгс/дюйм) необходимое чтобы вытянуть пряжу из образца, измеряют при RT (комнатная температура), и полученный результат считается адгезивностью резина-волокно и оценивается показателем 100, представляющий результат сравнительного примера 1. Следует отметить, что любой пенообразователь, содержащийся в резиновой смеси, удаляют до экспериментов.

<Диспергируемость>

Подсчитывают количество волокон, которые видны в поле зрения микроскопа (VHX-500, поставляемый Keyence Corporation) при увеличении ×100. Этот подсчет повторяется в общей сложности в десяти различных полях зрения с той же резиной. Затем рассчитывают среднее число волокон и стандартное отклонение количества волокон, присутствующих в каждой области, для оценки диспергируемости.

<Предел прочности при растяжении (Tb)>

Предел прочности при растяжении (МПа) измеряют в соответствии с JIS K 6251.

<Удлинение при разрыве (Eb)>

Удлинение при разрыве (%) измеряют в соответствии с JIS K 6251.

<Износостойкость (показатель)>

С использованием транспортного средства с тестируемыми шинами (размер шины: 195/65R15), как описано ниже, измеряют глубину остающихся канавок протектора после пробега 10000 км на поверхности дорожного покрытия и длину пробега, которая уменьшает протектора из каждой рецептуры на 1 мм, рассчитывают для относительного сравнения. Полученные результаты приведены в таблице 1, оцениваемые показателем 100, представляющим результат сравнительного примера 1. Большие значения показателя представляют более хорошую износостойкость. Результаты оценки показаны в таблице 1.

<Характеристики на обледенелой дороге (показатель)>

Четыре тестируемые шины (размер шины: 195/65R15), описанные далее, устанавливают на бытовой легковой автомобиль с рабочим объемом двигателя 1600 СС для оценки характеристик торможения на обледенелой дороге при температуре льда -1°C. С использованием шины сравнительного примера 1 в качестве контроля, рассчитывают характеристики торможения на обледенелой дороге по следующему уравнению: характеристики торможения на обледенелой дороге = (тормозной путь контрольной шины/тормозной путь других примеров) ×100. Большие значения показателя представляют более хорошие характеристики на обледенелой дороге. Результаты оценки показаны в таблице 1.

<Адгезивность резина-смола>

Сто (100) комплексов (волокно) собирают в пучок и скручивают 30 раз на 10 см в пряжу, которую затем помещают в резину и вулканизируют для получения образца. Растягивающее усилие (кгс/дюйм) необходимое чтобы вытянуть комплексы (волокно) из образца, измеряют при RT (комнатная температура), и полученный результат считается адгезивностью резина-смола и оценивается показателем 100, представляющий результат сравнительного примера 1. Следует отметить, что любой пенообразователь, содержащийся в резиновой смеси, удаляют до экспериментов.

<Адгезивность смола-смола>

Усилие (кгс/дюйм) отрыва каждой смолы, покрытой вышеописанным комплексом (волокно) измеряют при RT (комнатной температуре), и полученный результат считается адгезивностью смола-смола и оценивается показателем 100, представляющим результат примера 1А. Смолу, используемую в вышеописанном комплексе (волокно) формуют в листы 5-10 мм толщиной, соединяют вместе и затем нагревают при 200°C в течение 5 минут для их соединения. Продукт проверяют на отслаивание в соответствии с JIS K 6854-1 (отслаивание под 90°) и полученный результат оценивается показателем 100, представляющим результат примера А1.

<Средний диаметр и число удлиненных пустот>

Каждую из полученных резиновых смесей вулканизируют при 170°С в течение 15 минут для определения поперечной сшивки, причем пять случайных частей полости в смоле селективно выбирают и их диаметры измеряют для получения среднего значения.

<Степень вспенивания>

Степень вспенивания рассчитывают оп вышеприведенному уравнению (I).

<Диспергируемость>

Подсчитывают количество комплексов (волокно), которые видны в поле зрения микроскопа (VHX-500, поставляемый Keyence Corporation) при увеличении ×100. Этот подсчет повторяется в общей сложности в десяти различных полях зрения с той же резиной для оценки диспергируемости на основе стандартного отклонения количества комплексов (волокно).

<Предел прочности при растяжении>

В соответствии с JIS K 6251 предел прочности при растяжении (МПа) измеряют при комнатной температуре с использованием образца JIS No 3 со скоростью 500 мм/мин.

<Предел прочности при растяжении после компенсации степени вспенивания>

На основании полученных результатов вышеуказанный предел прочности при растяжении рассчитывают при степени вспенивания 0% по формуле (II) предел прочности при растяжении после компенсации степени вспенивания = предел прочности при растяжении/{100 - степень вспенивания)/100} (МПа)

<Относительное удлинение при растяжении>

В соответствии с JIS K 6251 относительное удлинение при растяжении (%) измеряют при комнатной температуре с использованием образца JIS No 3 со скоростью 500 мм/мин.

<Твердость резины>

Твердость резины (показатель) измеряют с помощью твердомера типа А в соответствии с JIS K 6253.

<Характеристики на обледенелой дороге (показатель с компенсацией степени вспенивания)>

Четыре тестируемые шины для легкового автомобиля (размер шины: 195/65R15), каждая изготовлена обычным способом с получением резиновой смеси каждой рец