Способ получения полидиенов

Изобретение относится к способу получения полидиенов. Способ получения полидиена включает стадии: (i) получения активного катализатора путем объединения лантанидсодержащего соединения, алкилирующего агента и источника галогена, по существу, в отсутствие амина и (ii) полимеризации сопряженного диенового мономера в присутствии активного катализатора и амина, где амин вводят до того, как заполимеризовалось 5% сопряженного диенового мономера. Изобретение включает вариант способа. Технический результат - способ протекает при скоростях, применяемых в промышленности без значительного риска неуправляемой полимеризации и засорения реактора, способ обеспечивает получение полимера с высоким содержанием цис-1,4-связи и высокой функциональностью. 2 н. и 15 з.п. ф-лы, 9 пр.

Реферат

Настоящая заявка испрашивает приоритет на основании предварительной заявки на патент США №61/385742, поданной 23 сентября 2010 года, которая в полном объеме включена в настоящую заявку посредством ссылки.

Область техники

Один или более вариантов реализации настоящего изобретения относятся к способу получения полидиенов.

Уровень техники

Синтетически полученные полимеры, такие как полидиены, используют в области техники, связанной с производством шин. Синтетические полимеры, подвергаемые деформационно-индуцированной кристаллизации, обеспечивают предпочтительные свойства, такие как предел прочности на разрыв и сопротивление истиранию. Соответственно, преимущественным образом, использовали цис-1,4-полидиены с высоким содержанием цис-1,4-связи, проявляющие повышенную способность подвергаться деформационно-индуцированной кристаллизации. Кроме того, при производстве шин применяли некоторые функционализированные полимеры для получения вулканизатов, демонстрирующих пониженный гистерезис, т.е. меньшую потерю механической энергии вследствие превращения ее в тепло. Полагают, что указанная функциональная группа функционализированных полимеров уменьшает количество свободных концов полимерной цепи за счет взаимодействия с частицами наполнителя и может также снижать агломерацию наполнителя. Таким образом, цис-1,4-полидиены преимущественным образом функционализировали с получением вулканизатов, которые подвергали деформационно-индуцированной кристаллизации и которые демонстрировали пониженный гистерезис. Способность функционализировать полимер, в частности на конце его цепи, зависит от реакционной способности указанного полимера. Как правило, только часть полимерных молекул в любой данной пробе может взаимодействовать с функционализирующими агентами. Поэтому желательно разработать способ получения цис-1,4-полидиенов с повышенным содержанием цис-1,4-связи и более высоким процентным содержанием химически активных концевых групп цепи для функционализации.

Полидиены можно получить посредством полимеризации в растворе, при которой сопряженный диеновый мономер полимеризуют в инертном растворителе или разбавителе. Растворитель служит для солюбилизации реагирующих веществ и продуктов, действует в качестве носителя для реагирующих веществ и продукта, способствует переносу теплоты полимеризации и помогает замедлить скорость полимеризации. Растворитель также обеспечивает более легкое перемешивание и перемещение полимеризационной смеси (также называемой цементом), поскольку вязкость цемента уменьшается в присутствии растворителя. Тем не менее, присутствие растворителя вызывает ряд затруднений. Растворитель необходимо отделять от полимера и затем рециркулировать для повторного использования или иным образом удалять в виде отходов. Стоимость извлечения и рециркуляции растворителя значительно увеличивает стоимость получаемого полимера, и всегда существует опасность, что повторно используемый растворитель после очистки может все же содержать некоторые примеси, которые буду отравлять катализатор полимеризации. Кроме того, некоторые растворители, такие как ароматические углеводороды, могут вызывать экологические проблемы. Далее, затруднения, связанные с удалением растворителя, если таковые существуют, могут влиять на чистоту полимерного продукта.

Полидиены можно также получать посредством полимеризации в массе (также называемой масс-полимеризацией), при которой сопряженный диеновый мономер полимеризуют в отсутствие или по существу в отсутствие какого-либо растворителя, и в результате мономер сам выступает в качестве разбавителя. Поскольку при полимеризации в массе растворитель по существу не требуется, снижается риск загрязнения и упрощается отделение продукта. Полимеризация в массе обеспечивает ряд экономических преимуществ, в том числе более низкие капитальные затраты на новые производственные мощности, более низкие энергетические затраты при работе предприятия и меньшее количество сотрудников, необходимое для работы предприятия. Отсутствие растворителя также обеспечивает преимущества с точки зрения охраны окружающей среды, поскольку происходит уменьшение выбросов и загрязнения сточных вод.

Несмотря на свои многочисленные преимущества, полимеризация в массе требует очень тщательного контроля температуры, при этом также необходимо мощное и усовершенствованное оборудование для перемешивания, поскольку вязкость полимеризационной смеси может стать очень высокой. В отсутствие добавляемого разбавителя высокая вязкость цемента и экзотермические эффекты могут сильно затруднять контроль температуры. Соответственно, могут возникать участки местного перегрева, приводящие к разрушению, гелеобразованию и/или обесцвечиванию полимерного продукта. В крайнем случае, неконтролируемое повышение скорости полимеризации может привести к разрушительным "неуправляемым" реакциям. Для облегчения контроля температуры при полимеризации в массе желательно, чтобы катализатор обеспечивал скорость реакции, достаточно высокую с точки зрения экономических соображений, но достаточно медленную для обеспечения возможности удаления тепла, выделяющегося в результате экзотермического эффекта полимеризации, и обеспечения безопасности процесса.

Как известно, для получения сопряженных диеновых полимеров с высоким содержанием цис-1,4-связей можно применять каталитические системы на основе лантанида, включающие лантанидсодержащее соединение, алкилирующий агент и источник галогена. Тем не менее, применительно к полимеризации сопряженных диенов в массе, каталитические системы на основе лантанида, в частности системы, содержащие алюмоксановое соединение в качестве каталитического компонента, часто вызывают чрезмерно высокие скорости полимеризации, что очень затрудняет контроль температуры и ставит под угрозу безопасность процесса. Следовательно, желательно разработать способ замедления полимеризации в массе сопряженных диенов, катализируемой катализаторами на основе лантанида.

Краткое описание изобретения

В одном или более из вариантов реализации настоящего изобретения предложен способ получения полидиена, включающий стадии: (i) получения активного катализатора путем объединения лантанидсодержащего соединения, алкилирующего агента и источника галогена по существу в отсутствие амина; и (ii) полимеризации сопряженного диенового мономера в присутствии активного катализатора и амина.

В других вариантах реализации настоящего изобретения предложен способ получения полидиена, включающий стадии: (i) получения предварительного получаемого катализатора путем введения лантанидсодержащего соединения, алкилирующего агента, источника галогена и, возможно, мономера; (ii) независимо от стадии (i), введения амина в сопряженный диеновый мономер; и (iii) полимеризации сопряженного диенового мономера с помощью предварительно полученного катализатора.

Подробное описание иллюстративных вариантов реализации изобретения

Варианты реализации настоящего изобретения основаны, по меньшей мере частично, на обнаружении способа получения высокомолекулярных цис-1,4-полидиенов, включающего полимеризацию сопряженных диенов с применением катализатора на основе лантанида в присутствии амина. Хотя в уровне техники рассматривается включение аминов в каталитические системы на основе лантанида, используемые при полимеризации диенов, в настоящем изобретении было экспериментально установлено, что содержание цис-1,4-связи в полидиенах неожиданным образом может быть повышено путем получения активного катализатора по существу в отсутствие амина и последующей полимеризации мономера с применением активного катализатора в присутствии амина. Такие полимеры также преимущественно характеризуются узким распределением молекулярных масс и высоким процентным содержанием концевых групп цепи, содержащих химически активную концевую группу. Кроме того, присутствие амина является особенно предпочтительным в системах для полимеризации в массе, поскольку было обнаружено, что присутствие амина позволяет регулировать скорость полимеризации и тем самым облегчает контроль температуры и уменьшает риск протекания неуправляемых реакций при полимеризации в массе.

Практическое применение настоящего изобретения не обязательно ограничено выбором какой-либо конкретной каталитической системы на основе лантанида. Согласно одному или более вариантам реализации изобретения, используемые каталитические системы включают (а) лантанидсодержащее соединение, (b) алкилирующий агент и (с) источник галогена. Согласно другим вариантам реализации изобретения, вместо источника галогена можно использовать соединение, содержащее некоординирующийся анион или предшественник некоординирующегося аниона Согласно этим или другим вариантам реализации изобретения, наряду с ингредиентами или компонентами, перечисленными выше, можно использовать другие металлоорганические соединения, основания Льюиса и/или модификаторы катализаторов. Например, согласно одному из вариантов реализации изобретения, в качестве регулятора молекулярной массы можно использовать никельсодержащее соединение, как описано в патенте США №6699813, включенном в настоящую заявку посредством ссылки.

Примеры сопряженного диенового мономера включают 1,3-бутадиен, изопрен, 1,3-пентадиен, 1,3-гексадиен, 2,3-диметил-1,3-бутадиен, 2-этил-1,3-бутадиен, 2-метил-1,3-пентадиен, 3-метил-1,3-пентадиен, 4-метил-1,3-пентадиен и 2,4-гексадиен. При сополимеризации можно также использовать смеси двух или более сопряженных диенов.

Как упомянуто выше, каталитические системы, используемые в настоящем изобретении, включают лантанидсодержащее соединение. Лантанидсодержащие соединения, применяемые в настоящем изобретении, представляют собой такие соединения, которые содержат по меньшей мере один атом, выбранный из лантана, неодима, церия, празеодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия, лютеция и дидима. Согласно одному из вариантов реализации изобретения, указанные соединения могут включать неодим, лантан, самарий или дидим. В настоящей заявке термин "дидим" будет обозначать техническую смесь редкоземельных элементов, полученную из монацитового песка. Кроме того, лантанидсодержащие соединения, применяемые в настоящем изобретении, могут находиться в форме элементарного лантанида.

Атом лантанида в лантанидсодержащих соединениях может находиться в различных степенях окисления, в том числе, но не ограничиваясь ими, степенях окисления 0, +2, +3 и +4. Согласно одному из вариантов реализации изобретения, можно использовать трехвалентное лантанидсодержащее соединение, в котором атом лантанида находится в степени окисления +3. Подходящие лантанидсодержащие соединения включают, но не ограничиваются ими, карбоксилаты лантанида, органофосфаты лантанида, органофосфонаты лантанида, органофосфинаты лантанида, карбаматы лантанида, дитиокарбаматы лантанида, ксантаты лантанида, р-дикетонаты лантанида, алкоксиды или арилоксиды лантанида, галогениды лантанида, псевдо-галогениды лантанида, оксигалогениды лантанида и органолантанидные соединения.

Согласно одному или более вариантам реализации изобретения, лантанидсодержащие соединения могут быть растворимы в углеводородных растворителях, таких как ароматические углеводороды, алифатические углеводороды или циклоалифатические углеводороды. Однако в настоящем изобретении можно также использовать лантанидсодержащие соединения, нерастворимые в углеводороде, поскольку их можно суспендировать в полимеризующей среде с образованием каталитически активных соединений.

Для простоты иллюстрирования, дальнейшее рассмотрение подходящих лантанидсодержащих соединений будет сконцентрировано на соединениях неодима, хотя специалисты в данной области техники будут способны выбрать похожие соединения, основанные на других металлических лантанидах.

Подходящие карбоксилаты неодима включают, но не ограничиваются ими, формиат неодима, ацетат неодима, актилат неодима, метактилат неодима, валерат неодима, глюконат неодима, цитрат неодима, фумарат неодима, лактат неодима, малеат неодима, оксалат неодима, 2-этилгексаноат неодима, неодеканоат неодима (известный также как версатат неодима), нафтенат неодима, стеарат неодима, олеат неодима, бензоат неодима и пиколинат неодима.

Подходящие органофосфаты неодима включают, но не ограничиваются ими, дибутилфосфат неодима, дипентилфосфат неодима, дигексилфосфат неодима, дигептилфосфат неодима, диоктилфосфат неодима, бис(1-метилгептил)фосфат неодима, бис(2-этилгексил)фосфат неодима, дидецилфосфат неодима, дидодецилфосфат неодима, диоктадецилфосфат неодима, диолеилфосфат неодима, дифенилфосфат неодима, бис(n-нонилфенил)фосфат неодима, бутил(2-этилгексил)фосфат неодима, (1-метилгептил)(2-этилгексил)фосфат неодима и (2-этилгексил)(n-нонилфенил)фосфат неодима.

Подходящие органофосфонаты неодима включают, но не ограничиваются ими, бутилфосфонат неодима, пентилфосфонат неодима, гексилфосфонат неодима, гептилфосфонат неодима, октилфосфонат неодима, (1-метилгептил)фосфонат неодима, (2-этилгексил)фосфонат неодима, децилфосфонат неодима, додецилфосфонат неодима, октадецилфосфонат неодима, олеилфосфонат неодима, фенилфосфонат неодима, (n-нонилфенил)фосфонат неодима, бутилбутилфосфонат неодима, пентилпентилфосфонат неодима, гексилгексилфосфонат неодима, гептилгептилфосфонат неодима, октилоктилфосфонат неодима, (1-метилгептил)(1-метилгептил)фосфонат неодима, (2-этилгексил)(2-этилгексил)фосфонат неодима, децилдецилфосфонат неодима, додецилдодецилфосфонат неодима, октадецилоктадецилфосфонат неодима, олеилолеилфосфонат неодима, фенилфенилфосфонат неодима, (n-нонилфенил)(n-нонилфенил)фосфонат неодима, бутил(2-этилгексил)фосфонат неодима, (2-этилгексил)бутилфосфонат неодима, (1-метилгептил)(2-этилгексил)фосфонат неодима, (2-этилгексил)(1-метилгептил)фосфонат неодима, (2-этилгексил)(n-нонилфенил)фосфонат неодима и (n-нонилфенил) (2-этилгексил)фосфонат неодима.

Подходящие органофосфинаты неодима включают, но не ограничиваются ими, бутилфосфинат неодима, пентилфосфинат неодима, гексилфосфинат неодима, гептилфосфинат неодима, октилфосфинат неодима, (1-метилгептил)фосфинат неодима, (2-этилгексил)фосфинат неодима, децилфосфинат неодима, додецилфосфинат неодима, октадецилфосфинат неодима, олеилфосфинат неодима, фенилфосфинат неодима, (n-нонилфенил)фосфинат неодима, дибутилфосфинат неодима, дипентилфосфинат неодима, дигексилфосфинат неодима, дигептилфосфинат неодима, диоктилфосфинат неодима, бис(1-метилгептил)фосфинат неодима, бис(2-этилгексил)фосфинат неодима, дидецилфосфинат неодима, дидодецилфосфинат неодима, диоктадецилфосфинат неодима, диолеилфосфинат неодима, дифенилфосфинат неодима, бис(n-нонилфенил)фосфинат неодима, бутил(2-этилгексил)фосфинат неодима, (1-метилгептил)(2-этилгексил)фосфинат неодима и (2-этилгексил)(n-нонилфенил)фосфинат неодима.

Подходящие карбаматы неодима включают, но не ограничиваются ими, диметилкарбамат неодима, диэтилкарбамат неодима, диизопропилкарбамат неодима, дибутилкарбамат неодима и дибензилкарбамат неодима.

Подходящие дитиокарбаматы неодима включают, но не ограничиваются ими, диметилдитиокарбамат неодима, диэтилдитиокарбамат неодима, диизопропилдитиокарбамат неодима, дибутилдитиокарбамат неодима и дибензилдитиокарбамат неодима.

Подходящие ксантаты неодима включают, но не ограничиваются ими, метилксантат неодима, этилксантат неодима, изопропилксантат неодима, бутилксантат неодима и бензилксантат неодима.

Подходящие β-дикетонаты неодима включают, но не ограничиваются ими, ацетилацетонат неодима, трифторацетилацетонат неодима, гексафторацетилацетонат неодима, бензоилацетонат неодима и 2,2,6,6-тетраметил-3,5-гептандионат неодима.

Подходящие алкоксиды или арилоксиды неодима включают, но не ограничиваются ими, метилат неодима, этилат неодима, изопропилат неодима, 2-этилгексоксид неодима, неодима фенолят, неодима нонилфенолят и нафтоксид неодима.

Подходящие галогениды неодима включают, но не ограничиваются ими, фторид неодима, хлорид неодима, бромид неодима и иодид неодима; подходящие псевдо-галогениды неодима включают, но не ограничиваются ими, цианид неодима, цианат неодима, тиоцианат неодима, азид неодима и ферроцианид неодима; и подходящие оксигалогениды неодима включают, но не ограничиваются ими, оксифторид неодима, оксихлорид неодима и оксибромид неодима. Основание по Льюису, такое как тетрагидрофуран ("THF"), можно использовать как средство для повышения растворимости перечисленных классов соединений неодима в инертных органических растворителях. При использовании галогенидов лантанида, оксигалогенидов лантанида или других лантанидсодержащих соединений, содержащих атом галогена, лантанидсодержащее соединение может также служить в качестве всего или части источника галогена в упомянутой выше каталитической системе.

В настоящей заявке термин органолантанидное соединение относится к любому лантанидсодержащему соединению, содержащему по меньшей мере одну связь лантанид-углерод. Преимущественно, но не исключительно, такие соединения представляют собой соединения, содержащие циклопентадиенильные ("Ср"), замещенные циклопентадиенильные, аллильные и замещенные аллильные лиганды. Подходящие органолантанидные соединения включают, но не ограничиваются ими, Cp3Ln, Cp2LnR, Cp2LnCl, CpLnCl2, CpLn(циклооктатетраен), (C5Me5)2LnR, LnR3, Ln(аллил)3 и Ln(аллил)2Cl, где Ln представляет собой атом лантанида и R представляет собой гидрокарбильную группу. Согласно одному или более вариантам реализации изобретения, гидрокарбильные группы, применяемые в настоящем изобретении, могут содержать гетероатомы, такие как, например, атомы азота, кислорода, бора, кремния, серы и фосфора.

Как упомянуто выше, каталитические системы, используемые в настоящем изобретении, могут включать алкилирующий агент. Согласно одному или более вариантам реализации изобретения, алкилирующие агенты, которые также можно назвать гидрокарбоксилирующими агентами, включают металлоорганические соединения, которые могут перенести одну или более гидрокарбильных групп к другому металлу. Как правило, такие агенты включают металлоорганические соединения электроположительных металлов, таких как металлы Групп 1, 2 и 3 (металлы Групп IA, IIA и IIIA). Алкилирующие агенты, подходящие для настоящего изобретения, включают, но не ограничиваются ими, алюминийорганические и магнийорганические соединения. В настоящей заявке, термин алюминийорганическое соединение относится к любому соединению алюминия, содержащему по меньшей мере одну связь алюминий-углерод. Согласно одному или более вариантам реализации изобретения, можно использовать алюминийорганические соединения, растворимые в углеводородном растворителе. В настоящей заявке, термин магнийорганическое соединение относится к любому соединению магния, которое содержит по меньшей мере одну связь магний-углерод. Согласно одному или более вариантам реализации изобретения, можно использовать магнийорганические соединения, растворимые в углеводороде. Как более подробно будет описано ниже, некоторые виды подходящих алкилирующих агентов могут быть в форме галогенида. Когда алкилирующий агент содержит атом галогена, указанный агент также может служить в качестве всего или части источника галогена в упомянутой выше каталитической системе.

Согласно одному или более вариантам реализации изобретения, алюминийорганические соединения, которые можно использовать, включают соединения, представленные общей формулой AlRnX3-n, где каждый R независимо может представлять собой одновалентную органическую группу, присоединенную к атому алюминия через атом углерода, каждый Х может независимо представлять собой атом водорода, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу и где п может представлять собой целое число в диапазоне от 1 до 3. Когда алюминийорганическое соединение содержит атом галогена, указанное соединение может служить в каталитической системе в качестве как алкилирующего агента, так и по меньшей мере части источника галогена. Согласно одному или более вариантам реализации изобретения, каждый R может независимо представлять собой гидрокарбильную группу, такую как, например, алкильную, циклоалкильную, замещенную циклоалкильную, алкенильную, циклоалкенильную, замещенную циклоалкенильную, арильную, замещенную арильную, аралкильную, алкарильную, аллильную и алкинильную группы, при этом каждая группа содержит от 1 атома углерода, или соответствующего минимального количества атомов углерода, необходимого для образования указанной группы, до примерно 20 атомов углерода. Указанные гидрокарбильные группы могут содержать гетероатомы, в том числе, но не ограничиваясь ими, атомы азота, кислорода, бора, кремния, серы и фосфора.

Типы алюминийорганических соединений, которые представлены общей формулой AlRnX3-n, включают, но не ограничиваются ими, тригидрокарбилалюминий, гидрид дигидрокарбилалюминия, дигидрид гидрокарбилалюминия, карбоксилат дигидрокарбилалюминия, бис(карбоксилат) гидрокарбилалюминия, алкоксид дигидрокарбилалюминия, диалкоксид гидрокарбилалюминия, галогенид дигидрокарбилалюминия, дигалогенид гидрокарбилалюминия, арилоксид дигидрокарбилалюминия и диарилоксид гидрокарбилалюминия. Согласно одному из вариантов реализации изобретения, алкилирующий агент может представлять собой тригидрокарбилалюминий, гидрид дигидрокарбилалюминия и/или дигидрид гидрокарбилалюминия. Согласно одному из вариантов реализации изобретения, когда алкилирующий агент включает алюминийорганический гидрид, вышеупомянутый источник галогена можно обеспечить за счет галогенида олова, как описано в патенте США №7008899, который в полном объеме включен в настоящую заявку посредством ссылки.

Подходящие соединения тригидрокарбилалюминия включают, но не ограничиваются ими, триметилалюминий, триэтилалюминий, триизобутилалюминий, три-н-пропилалюминий, триизопропилалюминий, три-н-бутилалюминий, три-трет-бутилалюминий, три-н-пентилалюминий, тринеопентилалюминий, три-н-гексилалюминий, три-н-октилалюминий, трис(2-этилгексил)алюминий, трициклогексилалюминий, трис(1-метилциклопентил)алюминий, три-н-толилалюминий, трис(2,6-диметилфенил)алюминий, трибензилалюминий, диэтилфенилалюминий, диэтил-н-толилалюминий, диэтилбензилалюминий, этилдифенилалюминий, этилди-н-толилалюминий и этилдибензилалюминий.

Подходящие гидридные соединения дигидрокарбилалюминия включают, но не ограничиваются ими, гидрид диэтилалюминия, гидрид ди-н-пропилалюминия, гидрид диизопропилалюминия, гидрид ди-н-бутилалюминия, гидрид диизобутилалюминия, гидрид ди-н-октилалюминия, гидрид дифенилалюминия, гидрид ди-н-толилалюминия, гидрид дибензилалюминия, гидрид фенилэтилалюминия, гидрид фенил-н-пропилалюминия, гидрид фенилизопропилалюминия, гидрид фенил-н-бутилалюминия, гидрид фенилизобутилалюминия, гидрид фенил-н-октилалюминия, гидрид n-толилэтилалюминия, гидрид n-толил-н-пропилалюминия, гидрид n-толилизопропилалюминия, гидрид n-толил-н-бутилалюминия, гидрид n-толилизобутилалюминия, гидрид n-толил-н-октилалюминия, гидрид бензилэтилалюминия, гидрид бензил-н-пропилалюминия, гидрид бензилизопропилалюминия, гидрид бензил-н-бутилалюминия, гидрид бензилизобутилалюминия и гидрид бензил-н-октилалюминия.

Подходящие дигидриды гидрокарбилалюминия включают, но не ограничиваются ими, дигидрид этилалюминия, дигидрид н-пропилалюминия, дигидрид изопропилалюминия, дигидрид н-бутилалюминия, дигидрид изобутилалюминия и дигидрид н-октилалюминия.

Подходящие галогенидные соединения дигидрокарбилалюминия включают, но не ограничиваются ими, хлорид диэтилалюминия, хлорид ди-н-пропилалюминия, хлорид диизопропилалюминия, хлорид ди-н-бутилалюминия, хлорид диизобутилалюминия, хлорид ди-н-октилалюминия, хлорид дифенилалюминия, хлорид ди-н-толилалюминия, хлорид дибензилалюминия, хлорид фенилэтилалюминия, хлорид фенил-н-пропилалюминия, хлорид фенилизопропилалюминия, хлорид фенил-н-бутилалюминия, хлорид фенилизобутилалюминия, хлорид фенил-н-октилалюминия, хлорид n-толилэтилалюминия, хлорид n-толил-н-пропилалюминия, хлорид n-толилизопропилалюминия, хлорид n-толил-н-бутилалюминия, хлорид n-толилизобутилалюминия, хлорид n-толил-н-октилалюминия, хлорид бензилэтилалюминия, хлорид бензил-н-пропилалюминия, хлорид бензилизопропилалюминия, хлорид бензил-н-бутилалюминия, хлорид бензилизобутилалюминия и хлорид бензил-н-октилалюминия.

Подходящие дигалогенидные соединения гидрокарбилалюминия включают, но не ограничиваются ими, дихлорид этилалюминия, дихлорид н-пропилалюминия, дихлорид изопропилалюминия, дихлорид н-бутилалюминия, дихлорид изобутилалюминия и дихлорид н-октилалюминия.

Другие алюминийорганические соединения, применяемые в качестве алкилирующих агентов, которые могут быть представлены общей формулой AlRnX3-n включают, но не ограничиваются ими, гексаноат диметилалюминия, октоат диэтилалюминия, 2-этилгексаноат диизобутилалюминия, неодеканоат диметилалюминия, стеарат диэтилалюминия, олеат диизобутилалюминия, бис(гексаноат) метилалюминия, бис(октоат) этилалюминия, бис(2-этилгексаноат) изобутилалюминия, бис(неодеканоат) метилалюминия, бис(стеарат) этилалюминия, бис(олеат) изобутилалюминия, метилат диметилалюминия, метилат диэтилалюминия, метилат диизобутилалюминия, этилат диметилалюминия, этилат диэтилалюминия, этилат диизобутилалюминия, фенолят диметилалюминия, фенолят диэтилалюминия, фенолят диизобутилалюминия, диметилат метилалюминия, диметилат этилалюминия, диметилат изобутилалюминия, диэтилат метилалюминия, диэтилат этилалюминия, диэтилат изобутилалюминия, дифенолят метилалюминия, дифенолят этилалюминия и дифенолят изобутилалюминия.

Другим классом алюминийорганических соединений, подходящих для применения в настоящем изобретении в качестве алкилирующего агента, являются алюмоксаны. Алюмоксаны могут представлять собой олигомерные линейные алюмоксаны, которые можно отобразить общей формулой:

и олигомерные циклические алюмоксаны, которые можно изобразить общей формулой:

где х может представлять собой целое число в диапазоне от 1 до примерно 100 или от примерно 10 до примерно 50; y может представлять собой целое число в диапазоне от 2 до примерно 100 или от примерно 3 до примерно 20; и где каждый R может независимо представлять собой одновалентную органическую группу, присоединенную к атому алюминия через атом углерода. Согласно одному из вариантов реализации изобретения, каждый R может независимо представлять собой гидрокарбильную группу, в том числе, но не ограничиваясь ими, алкильную, циклоалкильную, замещенную циклоалкильную, алкенильную, циклоалкенильную, замещенную циклоалкенильную, арильную, замещенную арильную, аралкильную, алкарильную, аллильную и алкинильную группы, при этом каждая группа содержит от 1 атома углерода, или соответствующего минимального количества атомов углерода, необходимого для образования указанной группы, до примерно 20 атомов углерода. Такие гидрокарбильные группы также могут содержать гетероатомы, в том числе, но не ограничиваясь ими, атомы азота, кислорода, бора, кремния, серы и фосфора. Следует отметить, что количество молей алюмоксана, применяемое в настоящей заявке, относится к количеству молей атомов алюминия, а не к количеству молей олигомерных алюмоксановых молекул. Такое правило обычно используют в области техники, связанной с каталитическими системами, в которых применяют алюмоксаны.

Алюмоксаны можно получить при взаимодействии соединений тригидрокарбилалюминия с водой. Такую реакцию можно осуществить согласно известным способам, таким как, например, (1) способ, в котором соединение тригидрокарбилалюминия растворяют в органическом растворителе и затем приводят в контакт с водой, (2) способ, в котором соединение тригидрокарбилалюминия реагирует с кристаллизационной водой, содержащейся, например, в солях металлов или водой, адсорбированной в неорганических или органических соединениях или (3) способ, в котором соединение тригидрокарбилалюминия реагирует с водой в присутствии мономера или раствора мономера, который подлежит полимеризации.

Подходящие алюмоксановые соединения включают, но не ограничиваются ими, метилалюмоксан ("МАО"), модифицированный метилалюмоксан ("ММАО"), этилалюмоксан, н-пропилалюмоксан, изопропилалюмоксан, бутилалюмоксан, изобутилалюмоксан, н-пентилалюмоксан, неопентилалюмоксан, н-гексилалюмоксан, н-октилалюмоксан, 2-этилгексилалюмоксан, циклогексилалюмоксан, 1-метилциклопентилалюмоксан, фенилалюмоксан и 2,6-диметилфенилалюмоксан. Модифицированный метилалюмоксан можно получить путем замещения примерно от 20 до 80 процентов метильных групп метилалюмоксана на С212 гидрокарбильные группы, предпочтительно, на изобутильные группы, с помощью методов, известных специалистам в данной области техники.

Алюмоксаны можно использовать по отдельности или в комбинации с другими алюминийорганическими соединениями. Согласно одному из вариантов реализации изобретения, метилалюмоксан и по меньшей мере одно другое алюминийорганическое соединение (например, AlRnX3-n), такое как гидрид диизобутилалюминия, можно использовать в комбинации. В публикации патента США №2008/0182954, которая в полном объеме включена в настоящую заявку посредством ссылки, приведены другие примеры, в которых можно использовать комбинации алюмоксанов и алюминийорганических соединений.

Как упомянуто выше, алкилирующие агенты, применяемые в настоящем изобретении, могут представлять собой магнийорганические соединения. Согласно одному или более вариантам реализации изобретения, магнийорганические соединения, которые можно использовать в настоящем изобретении, включают соединения, представленные общей формулой MgR2, где каждый R может независимо представлять собой одновалентную органическую группу, присоединенную к атому магния через атом углерода. Согласно одному или более вариантам реализации изобретения, каждый R может независимо представлять собой гидрокарбильную группу, в том числе, но не ограничиваясь ими, алкильную, циклоалкильную, замещенную циклоалкильную, алкенильную, циклоалкенильную, замещенную циклоалкенильную, арильную, аллильную, замещенную арильную, аралкильную, алкарильную и алкинильную группы, при этом каждая группа содержит от 1 атома углерода, или соответствующего минимального количества атомов углерода, необходимого для образования указанной группы, до примерно 20 атомов углерода. Такие гидрокарбильные группы также могут содержать гетероатомы, в том числе, но не ограничиваясь ими, атомы азота, кислорода, кремния, серы и фосфора.

Подходящие магнийорганические соединения, которые можно представить общей формулой MgR2 включают, но не ограничиваются ими, диэтилмагний, ди-н-пропилмагний, диизопропилмагний, дибутилмагний, дигексилмагний, дифенилмагний и дибензилмагний.

Другой класс магнийорганических соединений, которые можно использовать в качестве алкилирующего агента, может быть представлен общей формулой RMgX, где R может представлять собой одновалентную органическую группу, присоединенную к атому магния через атом углерода, и Х может представлять собой атом водорода, атом галогена, карбоксилатную группу, алкоксидную группу или арилоксидную группу. Когда магнийорганическое соединение содержит атом галогена, указанное соединение может служить в каталитических системах в качестве как алкилирующего агента, так и по меньшей мере части источника галогена. Согласно одному или более вариантам реализации изобретения, R может представлять собой гидрокарбильную группу, в том числе, но не ограничиваясь ими, алкильную, циклоалкильную, замещенную циклоалкильную, алкенильную, циклоалкенильную, замещенную циклоалкенильную, арильную, аллильную, замещенную арил, аралкильную, алкарильную и алкинильную группы, при этом каждая группа содержит от 1 атома углерода, или соответствующего минимального количества атомов углерода, необходимого для образования указанной группы, до примерно 20 атомов углерода. Указанные гидрокарбильные группы могут также содержать гетероатомы, в том числе, но не ограничиваясь ими, атомы азота, кислорода, бора, кремния, серы и фосфора. Согласно одному из вариантов реализации изобретения, Х может представлять собой карбоксилатную группу, алкоксидную группу или арилоксидную группу, при этом каждая группа содержит от 1 до примерно 20 атомов углерода.

Типы магнийорганических соединений, которые могут быть представлены общей формулой RMgX, включают, но не ограничиваются ими, гидрид гидрокарбилмагния, галогенид гидрокарбилмагния, карбоксилат гидрокарбилмагния, алкоксид гидрокарбилмагния и арилоксид гидрокарбилмагния.

Подходящие магнийорганические соединения, которые могут быть представлены общей формулой RMgX, включают, но не ограничиваются ими, гидрид метилмагния, гидрид этилмагния, гидрид бутилмагния, гидрид гексилмагния, гидрид фенилмагния, гидрид бензилмагния, хлорид метилмагния, хлорид этилмагния, хлорид бутилмагния, хлорид гексилмагния, хлорид фенилмагния, хлорид бензилмагния, бромид метилмагния, бромид этилмагния, бромид бутилмагния, бромид гексилмагния, бромид фенилмагния, бромид бензилмагния, гексаноат метилмагния, гексаноат этилмагния, бутилмагния гексаноат, гексилмагния гексаноат, гексаноат фенилмагния, гексаноат бензилмагния, этилат метилмагния, этилат этилмагния, этилат бутилмагния, этилат гексилмагния, этилат фенилмагния, этилат бензилмагния, фенолят метилмагния, фенолят этилмагния, фенолят бутилмагния, фенолят гексилмагния, фенолят фенилмагния и фенолят бензилмагния.

Как упомянуто выше, каталитические системы, используемые в настоящем изобретении, могут включать источник галогена. В настоящей заявке, термин источник галогена относится к любому веществу, содержащему по меньшей мере один атом галогена. Согласно одному или более вариантам реализации изобретения, по меньшей мере часть источника галогена может быть обеспечена или описанным выше лантанидсодержащим соединением и/или описанным выше алкилирующим агентом, когда указанные соединения содержат по меньшей мере один атом галогена. Другими словами, лантанидсодержащее соединение может служить в качестве как лантанидсодержащего соединения, так и по меньшей мере части источника галогена. Подобным образом, алкилирующий агент может служить как в качестве алкилирующего агента, так и по меньшей мере части источника галогена.

Согласно другому варианту реализации изобретения, по меньшей мере часть источника галогена может присутствовать в каталитических системах в форме отдельного и отличного от других галогенсодержащего соединения. В качестве источника галогена можно использовать различные соединения или их смеси, содержащие один или более атомов галогена. Примеры атомов галогена включают, но не ограничиваются ими, фтор, хлор, бром и йод. Можно также использовать комбинацию двух или более атомов галогена. Галогенсодержащие соединения, растворимые в углеводородном растворителе, подходят для применения в настоящем изобретении. Однако галогенсодержащие соединения, нерастворимые в углеводородах, могут быть суспендированы в полимеризующей системе с образованием каталитически активных соединений и, следовательно, также подходят для применения в настоящем изобретении.

Подходящие типы галогенсодержащих соединений, которые можно использовать, включают, но не ограничиваются ими, элементарные галогены, смешанные галогены, галогеноводороды, органические галогениды, неорганические галогениды, галогениды металлов и металлоорганические галогениды.

Элементарные галогены, подходящие для приме