Оптическая система с подвижной линзой для офтальмологического хирургического лазера

Иллюстрации

Показать все

Изобретение относится к области медицины. Лазерная офтальмологическая хирургическая система доставки лазерного луча содержит: источник лазерного излучения для генерирования хирургического лазерного луча с параметрами лазерного излучения, подлежащего доставке и фокусированию в фокальное пятно в хирургической целевой области, посредством указанной системы доставки лазерного луча, XY-сканер для сканирования фокального пятна хирургического лазерного луча в направлении XY, поперечном оптической оси указанной системы доставки лазерного луча; Z-сканер для сканирования фокального пятна хирургического лазерного луча вдоль оптической оси офтальмологической хирургической системы доставки лазерного луча; подсистему оптической когерентной томографии для формирования изображения хирургической целевой области посредством сканирования визуализирующим лучом хирургической целевой области; и вычислительный контроллер для изменения параметров лазерного излучения между первым этапом и вторым этапом многоэтапной хирургической процедуры. Применение изобретения позволит повысить точность доставки излучения во время проведения хирургических операций. 6 з.п. ф-лы, 19 ил., 13 табл.

Реферат

Перекрестная ссылка на родственную заявку

По данной заявке испрашивается приоритет заявки «Оптическая система для офтальмологического хирургического лазера» под серийным номером: 12/511964, поданной 29 июля 2009 г., которая полностью включена в настоящее описание путем ссылки.

Область, к которой относится изобретение

Данное изобретение относится к системе для хирургического вмешательства на переднем сегменте глаза с использованием фемтосекундного лазера, конкретнее, к вариантам осуществления, сводящим к минимуму оптические искажения лазерного луча, во время сканирования и фокусирования лазерного луча в глаз.

Предпосылки изобретения

В данной заявке описываются примеры и варианты осуществления технологий и систем для лазерной хирургии на переднем сегменте глаза для доступа к хрусталику посредством фотодеструкции, вызванной лазерными импульсами. В различных хирургических процедурах на хрусталике для его удаления используются разнообразные технологии для разрушения хрусталика на мелкие фрагменты, которые могут быть удалены из глаза через маленькие разрезы. В данных процедурах используются ручные инструменты, ультразвук, нагретые жидкости или лазеры и имеют тенденцию характеризоваться существенными недостатками, включая необходимость введения в глаз зондов для осуществления фрагментации, и ограниченную точность, связанную с такими методиками фрагментации хрусталика.

Фотодекструктивная лазерная технология может обеспечивать подачу лазерных импульсов в хрусталик для оптической фрагментации хрусталика без введения зонда и, таким образом, может обеспечить возможность усовершенствованного удаления хрусталика. Вызванная лазером фотодеструкция широко использовалась в лазерной офтальмологической хирургии, и Nd:YAG лазеры часто использовались в качестве источников лазерного излучения, включая применение для фрагментации хрусталика через вызванную лазером фотодеструкцию. В некоторых существующих системах используются наносекундные лазеры с энергией импульсов в несколько МДж (E. H. Ryan et al. Americal Journal of Ophthalmology 104: 382-386, October 1987; R. R. Kruger et al. Ophthalmology 108: 2122-2129, 2001), и пикосекундные лазеры с несколькими десятками мкДж (A. Gwon et al. J. Cataract Refract Surg. 21, 282-286, 1995). Эти относительно длительные импульсы выдают относительно большие количества энергии в участки хирургического вмешательства, что приводит к значительным ограничениям точности и управления процедурой, в то же время, создавая относительно высокий уровень риска нежелательных исходов.

Параллельно, в родственной области хирургии роговицы, было признано, что более короткая длительность импульсов и лучшая фокусировка могут быть достигнуты путем использования импульсов длительностью в сотни фемтосекунд вместо наносекундных и пикосекундных импульсов. Фемтосекундные импульсы выдают гораздо меньше энергии на импульс, значительно увеличивая точность и безопасность процедуры.

В настоящее время, несколько компаний разрабатывают фемтосекундную лазерную технологию на коммерческой основе для офтальмологических процедур на роговице, таких как лоскутная пластика по методу LASIK и роговичные трансплантаты. Эти компании включают Intralase Corp./Advanced Medical Optics, США, 20/10 Perfect Vision Optische Gerate GmbH, Германия, Carl Zeiss Meditec, Inc., Германия, и Ziemer Ophthalmic Systems AG, Швейцария.

Однако указанные системы сконструированы в соответствии с требованиями хирургии роговицы. Решающее значение имеет то, что диапазон глубины фокуса лазерного луча обычно составляет менее чем примерно 1 мм, толщины роговицы. В сущности, данные конструкции не обеспечивают решения существенных проблем выполнения хирургических вмешательств на хрусталике глаза.

Краткое изложение сущности изобретения

Вкратце и обобщенно, офтальмологическая хирургическая лазерная система включает источник лазерного излучения для генерирования лазерного луча, XY-сканер для сканирования фокального пятна принятого лазерного луча в направлении XY, по существу поперечном оптической оси лазерной системы, и группу линз, расположенную в оптическом канале между источником лазерного излучения и XY-сканером, для приема лазерного луча, сгенерированного источником лазерного излучения, для предварительной компенсации аберрации лазерного луча и для направления предварительно компенсированного лазерного луча в XY-сканер, где группа линз имеет подвижную линзу, перемещаемую в направлении Z по оптической оси.

В некоторых исполнениях, подвижная линза из группы линз может перемещаться в диапазоне перемещения по направлению Z с тем, чтобы фокальное пятно лазерной системы перемещалось по оптической оси в пределах диапазона сканирования по направлению Z, причем диапазон сканирования по направлению Z находится в диапазоне от 0,3 до 4 миллиметров.

В некоторых исполнениях, подвижная линза из группы линз может перемещаться в диапазоне перемещения по направлению Z с тем, чтобы фокальное пятно лазерной системы перемещалось по оптической оси в пределах диапазона сканирования по направлению Z, причем длина диапазона сканирования по направлению Z находится в диапазоне от 0,5 до 2 миллиметров.

В некоторых исполнениях, подвижная линза из группы линз может перемещаться в положение, где число Штреля S лазерной системы выше, чем величина S(movable), и число Штреля S лазерной системы ниже чем величина S(movable), по меньшей мере, в одной точке по диапазону перемещения в направлении Z подвижной линзы, где S(movable) составляет одну из величин 0,6; 0,7; 0,8 и 0,9.

В некоторых исполнениях, подвижная линза из группы линз может перемещаться в диапазоне перемещения по направлению Z для изменения числа Штреля S лазерной системы в диапазоне от S(min) до S(max), где S(min)=0,6, а S(max)=0,95.

В некоторых исполнениях, подвижная линза из группы линз может перемещаться в диапазоне перемещения по направлению Z для изменения числа Штреля S лазерной системы в диапазоне от S(min) до S(max), где S(min)=0,7, а S(max)=0,95.

В некоторых исполнениях число Штреля S соответствует, по меньшей мере, одной из пяти контрольных точек в целевой области, где указанные пять контрольных точек определяются их цилиндрическими координатами (z, r) в целевой области, как P1=(0,0), P2=(2,6), P3=(5,0), P4=(8,0), P5=(8,3), все в миллиметрах, под любым углом азимута, относительно передней и центральной точки целевой области, находящейся в координате (0,0).

В некоторых исполнениях XY-сканер сконфигурирован для перемещения фокального пятна лазерной системы в направлении XY со скоростью сканирования по направлениям XY целевой области, и группа линз и подвижная линза сконфигурированы для перемещения фокального пятна лазерного луча в направлении Z со скоростью сканирования по направлению Z в целевой области, где соотношение между скоростью сканирования по направлению Z и максимальной скоростью сканирования по направлениям XY больше, чем соотношение (коэффициент) скорости сканирования, где соотношение скорости сканирования составляет одну из величин 5%, 10% и 20%.

В некоторых исполнениях подвижная линза из группы линз сконфигурирована для перемещения фокального пятна лазерной системы в направлении Z на 0,5-1 миллиметр во время сканирования по направлению Z, где время сканирования по направлению Z находится в одном из диапазонов: от 10 до 100 наносекунд, от 100 наносекунд до 1 миллисекунды, от 1 до 10 миллисекунд и от 10 до 100 миллисекунд.

В некоторых исполнениях подвижная линза из группы линз может перемещаться в диапазоне перемещения по направлению Z для уменьшения первого критерия аберрации, по меньшей мере, на процентную долю перемещения P(movable), где первый критерий аберрации представляет собой один из коэффициента α 40 сферической аберрации, ошибки ω RMS (среднего квадратического значения) волнового фронта и радиуса r f фокального пятна, и величина процентной доли перемещения P(movable) составляет одну из величин 10%, 20%, 30% и 40%.

В некоторых исполнениях подвижная линза из группы линз может перемещаться в диапазоне перемещения по направлению Z для увеличения второго критерия аберрации, по меньшей мере, на процентную долю перемещения P(movable), где второй критерий аберрации представляет собой число Штреля S; и величина процентной доли перемещения P(movable) составляет одну из величин 10%, 20%, 30% и 40%.

В некоторых исполнениях, подвижная линза и группа линз сконфигурированы для обеспечения способности изменения одной из характеристик лазерной системы, по существу независимо от других трех характеристик, где характеристики лазерной системы включают числовую апертуру, глубину фокального пятна, критерий аберрации и диаметр луча, генерируемый лазерной системой.

В некоторых исполнениях группа линз включает вторую подвижную линзу, при этом первая и вторая подвижные линзы сконфигурированы для обеспечения способности изменения двух из характеристик лазерной системы, по существу независимо от других двух характеристик, где характеристики лазерной системы включают числовую апертуру, глубину фокального пятна, критерий аберрации и диаметр луча, генерируемый лазерной системой.

В некоторых исполнениях группа линз включает от одной до пяти линз.

В некоторых исполнениях, оптический блок включает три линзы с показателями преломления в диапазоне D1*α*t1, D2*α*t2 и D3*α*t3, разнесенные расстояниями d1/α и d2/α, где D1 находится в диапазоне от -3 мм до -5 мм, D2 находится в диапазоне от 3 мм до 5 мм, и D3 находится в диапазоне от -3,5 мм до -6 мм; d1 находится в диапазоне от 60 мм до 100 мм и d2 находится в диапазоне от 3 мм до 9 мм, где, по меньшей мере, одно из d1 и d2 представляет собой изменяемое расстояние; α находится в диапазоне от 0,3 до 3; и величины t1, t2 и t3 находятся в диапазоне от 0,8 до 1,2.

В некоторых исполнениях оптический блок включает четыре линзы с показателями преломления в диапазоне D1*α*t1, D2*α*t2, D3*α*t3 и D4*α*t4, разнесенные расстояниями d1/α, d2/α и d3/α, где D1 находится в диапазоне от -15 мм до -20 мм, D2 находится в диапазоне от -5 мм до -8 мм, D3 находится в диапазоне от -25 мм до -35 мм и D4 находится в диапазоне от 7 мм до 10 мм; d1 находится в диапазоне от 100 мм до 130 мм, d2 находится в диапазоне от 32 мм до 41 мм и d3 находится в диапазоне от 33 мм до 45 мм, где, по меньшей мере, одно из d1, d2 и d3 представляет собой изменяемое расстояние; α находится в диапазоне от 0,2 до 5; и величины t1, t2, t3 и t4 находятся в диапазоне от 0,7 до 1,3.

Обеспечивающая двойное сканирование хирургическая лазерная система включает источник лазерного излучения для генерирования лазерного луча, Z-сканер для приема лазерного луча от источника лазерного излучения, причем Z-сканер включает подвижный по направлению Z оптический элемент для регулирования глубины по направлению Z фокального пятна лазерной системы в целевой области с некоторой скоростью сканирования по направлению Z, и XY-сканер для приема лазерного луча из Z-сканера, причем XY-сканер включает подвижные по направлениям XY оптические элементы для регулирования поперечного положения по направлениям XY фокального пятна лазерной системы в целевой области с некоторой скоростью сканирования по направлениям XY; где положение фокального пятна может одновременно перемещаться в направлении Z и XY для охвата искривленной целевой линии, компонент Z радиуса искривленной целевой линии меньше, чем 1, 10 и 30 миллиметров, и скорость сканирования по направлениям XY больше, чем 0,1 метра в секунду в фокальной плоскости.

В некоторых исполнениях, перемещаемый по направлению Z элемент сконфигурирован для сканирования глубины Z фокального пятна с некоторой скоростью сканирования по направлению Z, и перемещаемые по направлениям XY элементы сконфигурированы для сканирования поперечного положения по направлениям XY фокального пятна с некоторой скоростью сканирования по направлениям XY, где отношение скорости сканирования по направлению Z к максимальной скорости сканирования по направлениям XY составляют одну из величин 5%, 10% и 20%.

В некоторых исполнениях Z-сканер сконфигурирован для перемещения глубины Z фокального пятна на расстояние от 0,5 мм до 1 мм во время сканирования по направлению Z, где время сканирования по направлению Z находится в одном из диапазонов 10-100 наносекунд, от 100 наносекунд до 1 миллисекунды, 1-10 миллисекунд и 10-100 миллисекунд.

Способ офтальмологического хирургического вмешательства включает генерирование хирургического лазерного луча, прием лазерного луча в формирователь луча, регулирование (управление) одной из характеристик лазерного луча, по существу независимо от других характеристик луча путем перемещения подвижной линзы в предварительном формирователе луча, где характеристики лазерной системы включают числовую апертуру, глубину по направлению Z фокального пятна, критерий аберрации и диаметр луча лазерной системы, испускание отрегулированного луча из формирователя луча по направлению к XY-сканеру и сканирование XY-сканером положения по направлениям XY фокального пятна в целевой области.

В некоторых исполнениях, этап регулирования включает регулирование глубины по направлению Z фокального пятна лазерного луча в целевой области с некоторой скоростью сканирования по направлению Z, а стадия сканирования включает сканирование положения по направлениям XY фокального пятна с некоторой скоростью сканирования по направлениям XY, где соотношение между скоростью сканирования по направлению Z и скоростью сканирования по направлениям XY составляет одну из величин 5%, 10% и 20%.

Краткое описание чертежей

Фиг. 1 иллюстрирует хирургическую систему подачи лазерного луча 1.

Фиг. 2 иллюстрирует гауссов волновой фронт G и аберрационный волновой фронт W.

Фиг. 3A-B иллюстрируют лучи в оптимальной и сканированной фокальной плоскости.

Фиг. 3C иллюстрирует определение радиус фокального пятна.

Фиг. 4 иллюстрирует связь между числом Штреля S и ошибкой RMS волнового фронта ω.

Фиг. 5 иллюстрирует контрольные точки для офтальмологической хирургии.

Фиг. 6A-B концептуально иллюстрируют работу прекомпенсатора 200.

Фиг. 7A-B иллюстрируют различные виды применения эффективной функциональности сканирования по направлению Z.

Фиг. 8A-D иллюстрируют исполнения прекомпенсатора 200.

Фиг. 9 иллюстрируют исполнение системы 1 подачи лазерного луча с двумя сканирующими по направлению Z сканерами.

Фиг. 10 иллюстрирует таблицу конфигураций, содержащих 0, 1 или 2 сканера глубины Z и 0, 1, или 2 модификатора NA.

Фиг. 11A-C иллюстрируют сканирующий по направлениям XY сканер с 2, 3 и 4 используемыми при сканировании зеркалами.

Фиг. 12A-D иллюстрируют аберрацию как функцию числовой апертуры и соответствующую оптическую числовую апертуру NA opt (z) как функцию фокальной глубины Z.

Фиг. 13A-B иллюстрируют две установки первого блока 400 расширителя луча и перемещаемого блока 500 расширителя луча.

Фиг. 14 иллюстрирует промежуточную фокальную плоскость сканирующего по направлению Z сканера 450.

Фиг. 15 иллюстрирует исполнение объектива 700.

Фиг. 16 иллюстрирует изогнутую фокальную плоскость в целевой области.

Фиг. 17 иллюстрирует номограмму угла наклона сканирующего по направлениям XY сканера(XY-сканера).

Фиг. 18 иллюстрирует номограмму положения перемещаемого расширителя луча.

Фиг. 19 иллюстрирует стадии способа вычислительного управления.

Детальное описание

Некоторые варианты осуществления настоящего изобретения включают системы для хирургического вмешательства на хрусталике глаза, в которых используются фемтосекундные лазерные импульсы. Некоторые интегрированные варианты осуществления также способны выполнять хирургические процедуры и на роговице, и на хрусталике. Выполнение офтальмологических хирургических вмешательств на хрусталике связано с требованиями, качественно отличающимися от роговичных процедур.

Ключевые различия между описанной в настоящей заявке хирургической лазерной системой и роговичными системами включают:

1. Фемтосекундные импульсы лазера должны генерироваться надежно. Фемтосекундные импульсы лазера с высокой частотой повторения позволяют использовать гораздо меньшей энергии на импульс, обеспечивая оператору системы возможность осуществлять гораздо более совершенное управление и производить точные манипуляции. Однако надежное генерирование фемтосекундных импульсов представляет собой гораздо более сложную проблему, чем генерирование наносекундных или пикосекундных импульсов, используемых в некоторых существующих системах.

2. Хирургический лазерный луч значительно преломляется при распространении на расстояние до 5 мм преломляющей среды, включая роговицу и переднюю камеру глаза, как раз для достижения хирургической мишени, хрусталика. Напротив, лазерный луч, используемый для хирургических вмешательств на роговице, фокусируется на глубине доли миллиметра, и, таким образом, по существу не преломляется при его проникновении в роговицу из хирургической системы.

3. Хирургическая система доставки лазерного луча сконфигурирована для сканирования всей хирургической области, например, от фронтальной/передней поверхности хрусталика на обычной глубине 5 мм до задней поверхности хрусталика обычно на глубине 10 мм. Данный 5-миллиметровый или более диапазон глубины сканирования, или «диапазон сканирования по направлению Z» значительно более обширный, чем 1-миллиметровый диапазон глубины сканирования, используемый для хирургических вмешательств на роговице. Обычно, хирургическая оптическая система (оптика), особенно используемая в настоящем изобретении оптика с высокой числовой апертурой, оптимизирована для фокусировки лазерного луча на определенной глубине функционирования. Во время процедур на роговице, сканирование на глубину 1 мм вызывает лишь умеренное отклонение от оптимизированной глубины функционирования. Напротив, при сканировании на глубину от 5 до 10 мм во время хирургического вмешательства на хрусталике, система приводится в действие далеко от фиксированной оптимизированной глубины функционирования. Поэтому, в системе подачи лазерного луча для хирургического вмешательства на хрусталике используется очень совершенная адаптивная оптика для обеспечения возможности сканирования обширного диапазона глубины сканирования, требуемой для операций на хрусталике.

4. Некоторые варианты осуществления являются интегрированными в том смысле, что они сконфигурированы для выполнения хирургического вмешательства и на роговице, и на хрусталике. В этих интегрированных вариантах осуществления, диапазон глубины сканирования может составлять до 10 мм, вместо 5 мм, создавая еще более сложные проблемы.

5. Во время роговичных хирургических процедур, таких как многие варианты LASIK, лазерный луч сканируется перпендикулярно оптической оси («в плоскости XY»). В типичных процедурах, диапазон сканирования по направлениям XY охватывает только центральную часть роговицы диаметром 10 мм. Однако в интегрированных хирургических системах, могут быть также образованы дополнительные разрезы. Один тип разрезов представляет собой входные разрезы, обеспечивающие доступ вовнутрь глаза для аспирационных игл и обычных хирургических инструментов. Другой тип разрезов представляет собой лимбические релаксирующие разрезы (LRI), которые включают выполнение пары разрезов у роговичного лимба непосредственно спереди от сосудистой аркады. Путем подбора длины, глубины и локализации этих дугообразных разрезов, можно вызвать изменения роговичного астигматизма. Входные разрезы и LRI могут быть размещены на периферии роговицы, обычно с диаметром 12 мм. Хотя увеличение диаметра сканирования по направлениям XY с 10 мм до 12 мм составляет лишь увеличение на 20%, по сравнению с обычным диаметром лоскутов LASIK, существенной проблемой является удерживание под контролем внеосевых аберраций системы подачи лазерного луча при таких диаметрах, поскольку внеосевые аберрации нарастают пропорционально более высоким оптическим силам диаметра поля в фокальной плоскости.

6. Лазерные хирургические процедуры на хрусталике могут потребовать управления совершенными системами визуализации. В некоторых системах визуализации, лимбические кровеносные сосуды идентифицируются для использования в качестве контрольных меток на глазу, для калибровки цикло-вращательного совмещения глаза во время хирургической операции, в некоторых случаях относительно контрольных координат, идентифицированных во время предоперационной диагностики глаза. Кровеносные сосуды, выбранные на периферии хирургической области, могут представлять собой те, которые меньше всего затронуты во время хирургического вмешательства и, таким образом, наиболее надежны. Однако системы визуализации, направленные на такие периферические кровеносные сосуды, требуют использования визуализирующей оптики для визуализации площади с радиусом больше чем 10 мм, например, 12 мм.

7. Лазерный луч создает различные аберрации при распространении по оптическому каналу внутри глаза. Системы подачи лазерного луча могут улучшить точность путем компенсации этих аберраций. Дополнительный аспект этих аберраций состоит в том, что они зависят от частоты света, феномена, именуемого «хроматической аберрацией». Компенсирование этих зависимых от частоты аберраций увеличивает сложность задач, связанных с системой. Сложность компенсирования данных хроматических аберраций увеличивается с увеличением полосы частот лазерного луча лазерной системы. Следует напомнить, что спектральная ширина полосы пропускания луча обратно пропорциональна длительности импульса. Соответственно, ширина полосы пропускания для фемтосекундных импульсов часто больше, чем ширина полосы пропускания на порядок величины или более, вызывая необходимость гораздо лучшей хроматической компенсации в фемтосекундных лазерных системах.

8. Хирургические процедуры с использованием фемтосекундной лазерной хирургической системы с высокой частотой повторения требуют высокой точности при позиционировании каждого импульса и в абсолютном смысле в отношении целевых локализаций в ткани-мишени, и в относительном смысле в отношении предыдущих импульсов. Например, может потребоваться, чтобы лазерная система перенаправляла луч лишь на несколько микрон в пределах интервала времени между импульсами, который может составлять порядка микросекунд. Ввиду короткого интервала времени между следующими друг за другом импульсами и высокого требования к точности размещения импульса, ручное нацеливание, которое используется в существующих хирургических системах с низкой частотой повторения для операций на хрусталике, больше не является адекватным или допустимым.

9. Система доставки лазерного луча сконфигурирована для подачи фемтосекундных лазерных импульсов в весь хирургический объем хрусталика глаза через преломляющую среду при сохранении их временной, спектральной и пространственной целостности.

10. Для обеспечения того, чтобы только ткань хирургической области получала лазерный луч с достаточно высокими значениями плотности энергии для вызова хирургических эффектов, таких как абляция ткани, система доставки лазерного луча имеет необычно высокую числовую апертуру (NA). Эта высокая NA приводит к небольшим размерам пятна и обеспечивает необходимый контроль и точность выполнения хирургической процедуры. Типичные диапазоны для числовой апертуры могут включать величины NA, больше чем 0,3, приводящие к размерам пятна 3 мкм или менее.

11. Учитывая сложность оптического канала лазера для хирургического вмешательства на хрусталике, система доставки лазерного луча достигает высокой точности и контроля путем включения высокоэффективной управляемой компьютером системы визуализации, тогда как системы для хирургических вмешательств на роговице могут достичь удовлетворительного контроля без таких систем визуализации или при низком уровне визуализации. Следует отметить, что, в целом, все хирургические и визуализирующие функции системы, а также обычные контролирующие лучи работают в различных спектральных частотных полосах. В качестве примера, хирургические лазеры могут работать при длинах волн в частотной полосе 1,0-1,1 мкм, контролирующих лучей - в частотной полосе видимого спектра 0,4-0,7 мкм, и визуализирующих лучей - в частотной полосе 0,8-0,9 мкм. Объединение каналов лучей или общие оптические компоненты возлагают жесткие хроматические требования на оптику лазерной хирургической системы.

Отличия 1-11 посредством нескольких примеров иллюстрируют, что офтальмологическая лазерная хирургия (i) на хрусталике (ii) с использованием фемтосекундных импульсов вносит требования, которые качественно отличаются от требований к роговичной хирургии и даже от требований к хирургии хрусталика с использованием лишь наносекундных или пикосекундных лазерных импульсов.

Фиг. 1 иллюстрирует систему 1 доставки лазерного луча. Перед ее детальным описанием, следует указать, что в некоторых вариантах осуществления комбинируется система доставки лазерного луча, показанная на фиг. 1, с системой визуализации или контроля. При некоторых хирургических процедурах на роговице, таких как при способах лечения LASIK, системы слежения за глазом устанавливают позиционные контрольные точки глаза такими визуальными ключами как идентификация центра радужной оболочки с помощью алгоритмов визуализации и обработки изображения, обычно на поверхности глаза. Однако существующие системы слежения за глазом распознают и анализируют признаки в двумерном пространстве при отсутствии информации о глубине, поскольку хирургические процедуры выполняются на роговице, являющейся самым наружным слоем глаза. Часто роговица даже уплотнена, что делает поверхность действительно двумерной.

Совершенно другая ситуация имеет место, когда луч лазера фокусируется в хрусталике, глубоко внутри глаза. Хрусталик может менять свое положение, форму, толщину и диаметр во время аккомодации не только между предыдущим измерением и операцией, но также во время операции. Прикрепление глаза к хирургическому инструменту механическими средствами может также изменить форму глаза неточно определенным образом. Такие прикрепляющие устройства могут включать фиксацию глаза присасывающим кольцом или апланацией глаза плоской или изогнутой линзой. Кроме того, движение пациента во время операции может внести дополнительные изменения. Данные изменения могут добавить смещение визуальных параметров внутри глаза, достигающее нескольких миллиметров. Поэтому, механическая привязка и фиксация поверхности глаза, такой как передняя поверхность роговицы и лимба, являются неудовлетворительными при выполнении прецизионного лазерного хирургического вмешательства на хрусталике или других внутренних частях глаза.

Для обращения к данной проблеме, система 1 подачи лазерного луча может комбинироваться с системой визуализации, как описано в одновременно рассматриваемой заявке на патент США под серийным номером 12/205844, поданной R.M. Kurtz, F. Raksi и M. Karavitis, которая включена в настоящее описание путем ссылки. Система визуализации сконфигурирована для визуализации частей изображения хирургической области с целью установления трехмерных позиционных контрольных точек на основании внутренних признаков глаза. Данные изображения могут быть созданы до операции и обновляться параллельно с хирургической процедурой для учета индивидуальных отклонений и изменений. Изображения могут использоваться для безопасного высокоточного и контролируемого направления лазерного луча в желательный участок.

В некоторых исполнениях, система визуализации может представлять собой систему оптической когерентной томографии (OCT). Визуализирующий луч системы визуализации может иметь отдельный визуализирующий оптический канал или оптический канал, частично или полностью разделяемый с хирургическим лучом. Системы визуализации с частично или полностью разделяемым оптическим каналом снижают стоимость и упрощают калибровку визуализирующей и хирургической систем. Визуализирующая система может также использовать тот же или другой источник света, что и лазер системы 1 подачи лазерного луча. Система визуализации может также иметь свои собственные лучевые сканирующие подсистемы или может использовать сканирующие подсистемы системы подачи лазерного луча. В представленной в качестве ссылки одновременно рассматриваемой заявке описываются несколько различных структур таких систем OCT.

Система 1 подачи лазерного луча может быть также исполнена в комбинации с оптикой визуального контроля. Оптика контроля может помочь оператору хирургического лазера наблюдать воздействия хирургического лазерного луча и регулировать луч в ответ на наблюдения.

Наконец, в некоторых исполнениях, в которых используется инфракрасный и, следовательно, невидимый хирургический лазерный луч, может использоваться дополнительный лазер слежения, работающий при видимых частотах. Лазер слежения, работающий в видимом диапазоне, может быть реализован для слежения за каналом инфракрасного хирургического лазера. Лазер слежения может работать при достаточно низкой энергии, чтобы не вызвать никакого разрушения целевой ткани (ткани-мишени). Оптика контроля может быть сконфигурирована для направления луча лазера слежения, отраженного от ткани-мишени, к оператору системы 1 подачи лазерного луча.

Как показано на фиг. 1, лучи, связанные с системой визуализации и оптикой визуального контроля, могут направляться в систему 1 подачи лазерного луча, например, через разделитель луча/дихроичное зеркало 600. В настоящей заявке не будут широко обсуждаться различные комбинации системы 1 подачи лазерного луча с системами визуализации, наблюдения и слежения. Большое число таких комбинаций, широко раскрытых во включенной в качестве ссылки заявке на патент США 12/205844, находится в пределах общего объема настоящей заявки.

Фиг. 1 иллюстрирует систему 1 подачи лазерного луча, которая включает лазерное устройство 100, прекомпенсатор 200, XY-сканер 300, первый блок 400 расширителя луча, подвижный блок 500 расширителя луча, разделитель луча/дихроичное зеркало 600, объектив 700 и интерфейс 800 пациента, где первый блок 400 расширителя луча и подвижный блок 500 расширителя луча будут совместно именоваться Z-сканером 450.

Во многих описанных ниже исполнениях используется условное обозначение, что направление Z представляет собой направление по существу вдоль оптического канала лазерного луча или вдоль оптической оси оптического элемента. Направления, поперечные направлению Z, именуются направлениями XY. Термин «поперечные» используется в более широком смысле для включения того, что в некоторых исполнениях поперечное направление и направление Z могут не быть строго перпендикулярными друг другу. В некоторых исполнениях, поперечные направления могут быть лучше описаны с точки зрения радиальных координат. Таким образом, термины поперечное, XY или радиальное направления обозначают аналогичные направления в описанных исполнениях, все приблизительно (но необязательно точно) перпендикулярные направлению Z.

1. Лазерное устройство 100

Лазерный устройство 100 может включать лазер для излучения лазерных импульсов с заданными параметрами лазерного излучения. Данные параметры лазерного излучения могут включать длительность импульсов в диапазоне от 1 фемтосекунды до 100 пикосекунд или в пределах диапазона от 10 фемтосекунд до 10 пикосекунд, или в некоторых вариантах осуществления, в диапазоне от 100 фемтосекунд до 1 пикосекунды. Лазерные импульсы могут иметь энергию на импульс в диапазоне от 0,1 мкДж до 1000 мкДж, в других вариантах осуществления, в диапазоне от 1 мкДж до 100 мкДж. Импульсы могут иметь частоту повторений в диапазоне от 10 кГц до 100 МГц, в других вариантах осуществления, в диапазоне от 100 кГц до 1 МГц. Другие варианты осуществления могут иметь параметры лазерного излучения, которые входят в пределы комбинации указанных диапазонов, таких как длительность импульса 1-1000 фемтосекунд. Параметры лазерного излучения для конкретной процедуры могут быть выбраны в пределах данных диапазонов, например, во время предоперационной процедуры, или на основании расчета, который основывается на определенных данных пациента, таких как его/ее возраста.

Примеры лазерного устройства 100 могут включать

Nd:стеклянный и Nd:Yag лазеры и другие лазеры из их широкого разнообразия. Рабочая длина волн лазерного устройства может находиться в инфракрасном или в видимом диапазоне. В некоторых вариантах осуществления, рабочая длина волн может находиться в диапазоне от 700 нм до 2 мкм. В некоторых случаях, рабочая длина волн может находиться в диапазоне 1,0-1,1 мкм, например, в инфракрасных лазерах на основе Yb или Nd.

В некоторых исполнениях, параметры лазерного излучения могут быть настраиваемыми и вариабельными. Параметры лазерного излучения могут быть настраиваемыми коротким временем переключения, таким образом, позволяя оператору хирургической системы 1 подачи лазерного луча изменять параметры лазерного излучения во время сложных хирургических вмешательств. Такое изменение параметров может инициироваться в ответ на считывание подсистемой регистрации или визуализации системы 1 подачи лазерного луча.

Другие изменения параметров могут выполняться в виде части многоэтапной процедуры, в течение которой система доставки лазерного луча может сначала использоваться для первой хирургической процедуры, за которой следует вторая, другая хирургическая процедура. Примеры включают сначала выполнение одного или более хирургических этапов в области хрусталика глаза, такого как стадия капсулотомии, с последующей второй хирургической процедурой в роговичной области глаза. Данные процедуры могут выполняться в различных последовательностях.

Лазеры, пульсирующие с высокой частотой повторения импульсов, работающие при частоте повторения импульсов от десятков до сотен тысяч залпов в секунду или выше с относительно низкой энергией на импульс, могут использоваться для хирургического применения с целью достижения определенных преимуществ. Такие лазеры используют относительно низкую энергию на импульс для локализации воздействия на ткань, вызываемого индуцированной лазером фотодеструкции. В некоторых исполнениях, например, степень разрушения ткани может быть ограничена несколькими микронами или несколькими десятками микрон. Данный локализованный эффект на ткани может повысить точность лазерного хирургического вмешательства и может быть желателен при определенных хирургических процедурах. В различных исполнениях таких хирургических вмешательств, многие сотни, тысячи или миллионы импульсов могут подаваться на последовательность участков, которые являются прилегающими, почти прилегающими или разделены регулируемыми расстояниями. Данные исполнения могут достичь определенных желательных хирургических эффектов, таких как разрезы, разделения и фрагментации ткани.

Параметры импульсов и картина сканирования могут быть выбраны различными способами. Например, они могут быть основаны на предоперационном измерении оптических или структурных свойств хрусталика. Лазерная энергия и разделение участков могут быть также выбраны на основании предоперационного измерения оптических и структурных свойств хрусталика или на основании зависимого от возраста алгоритма.

2. Прекомпенсатор 200

Фиг. 2 иллюстрирует, что волновой фронт лазерного луча может отклоняться от идеального поведения несколькими различными путями и по нескольким различным причинам. Большая группа таких отклонений называется аберрациями. Аберрации (и другие искажения волнового фронта) смещают точки действительного изображения от идеальных параксиальных гауссовых точек изображения. Фиг. 2 иллюстрирует волновые фронты света, выходящего через выходной зрачок ExP. Неискаженный сферический волновой фронт G испускается из зрачка и сходится в точку P1 в центре кривизны волнового фронта G. G также называется гауссовой эталонной сферой. Подвергшийся аберрации волновой фронт W отклоняется от G и сходится в другую точку P2. Аберрация ΔW подвергшегося аберраци