Зеркало, компенсирующее двулучепреломление в оптическом волокне, и датчик тока
Иллюстрации
Показать всеЗеркало содержит оптическое волокно, двулучепреломляющий элемент, линзу, магнит, фарадеевский вращатель, зеркало. Световой луч после оптического волокна разделяется двулучепреломляющим элементом на два перпендикулярно линейно поляризованных световых луча, которые сводятся линзой, проходят через фарадеевский вращатель, вследствие чего их плоскости поляризации поворачиваются на 45 градусов, и отражаются в одной точке на поверхности зеркала, повторно проходят через фарадеевский вращатель, вследствие чего плоскости их поляризации дополнительно поворачиваются на 45 градусов, снова падают на двулучепреломляющий элемент, объединяются в один световой луч, который падает на оптическое волокно. Величина сдвига необыкновенного луча в двулучепреломляющем элементе является равной или большей, чем удвоенный диаметр поля моды оптического волокна. Технический результат - упрощение сборки и юстировки и улучшение виброустойчивости. 3 н. и 1 з.п. ф-лы, 21 ил., 2 табл.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к зеркалу, компенсирующему двулучепреломление в оптическом волокне, которое используется для датчика тока, регистрирующего величину тока в энергосистеме, датчика магнитного поля, квантового криптографического устройства, передающего квантовые шифры между блоком передачи и блоком приема, которые соединены через линию передачи в области оптической связи, оптического переключателя, источника света, усилителя, интерферометра, сумматора/вычитателя и т.п., а также к датчику тока.
УРОВЕНЬ ТЕХНИКИ
На предшествующем уровне техники для измерения тока в силовом оборудовании энергосистемы широко использовался обмоточный трансформатор. Однако, размеры обмоточного трансформатора значительно увеличиваются при увеличении сетевого напряжения, подлежащего измерению, и, следовательно, существует проблема, состоящая в том, что увеличиваются затраты и пространство для установки. В частности, поскольку в коммутационном устройстве с газовой изоляцией, в которой используют изолирующий газ, называемом переключателем с газовой изоляцией (GIS), очень необходимы миниатюризация и экономия пространства, то в нем трудно установить крупногабаритный обмоточный трансформатор.
Поэтому, с учетом необходимости миниатюризации, экономии пространства, высокой изолирующей способности и устойчивости к помехам, на известном уровне техники были предложены и используются различные датчики тока, сконфигурированные так, что включают в себя оптическое волокно, установленное вокруг проводника тока, и выполняют измерение тока с использованием эффекта Фарадея в оптическом волокне. В датчике тока линейно поляризованный луч света падает на оптическое волокно; оптическое волокно сконфигурировано так, что расположено вокруг проводника, через который течет ток, подлежащий измерению; и, вследствие эффекта Фарадея в оптическом волокне, плоскость поляризации линейно поляризованного луча света в оптическом волокне поворачивается сгенерированным магнитным полем пропорционально току. При этом, угол поворота плоскости поляризации является пропорциональным величине тока, подлежащего измерению. Следовательно, величина тока может быть получена путем измерения угла поворота.
На Фиг. 15 изображена принципиальная схема, на которой проиллюстрирован датчик тока, раскрытый в патентной литературе 1, в качестве примера датчика тока, в котором используют эффект Фарадея в оптическом волокне. Датчик 100 тока сконфигурирован так, что включает в себя оптический циркулятор 101, двулучепреломляющий элемент 102, фарадеевский вращатель 103 и оптическое волокно 104 для датчика. Оптическое волокно 104 расположено вдоль внешней окружности проводника 105, через который течет ток, подлежащий измерению. На одном конце оптического волокна 104 установлен фарадеевский вращатель 103, а на другом его конце установлено зеркало 106. Кроме того, двулучепреломляющий элемент 102 и оптический циркулятор 101 соединены друг с другом оптическим волокном. Оптический циркулятор 101 подключен в таком направлении, что световой луч от источника 107 света проходит в направлении той стороны, где расположено оптическое волокно 104.
Световой луч, излученный из источника 107 света, падая через оптическое волокно 108 и оптический циркулятор 101 на двулучепреломляющий элемент 102, преобразуется двулучепреломляющим элементом 102 в линейно поляризованный луч света, падающий на фарадеевский вращатель 103. Фарадеевский вращатель 103 сконфигурирован так, что включает в себя магнит 109 и ферромагнитный гранат 110, который магнитно насыщен за счет магнита 109, и поворачивает плоскость поляризации светового луча, проходящего через ферромагнитный гранат 110, на 22,5 градуса. Линейно поляризованный луч света, проходящий через фарадеевский вращатель 103, падает на оптическое волокно 104, подвергаясь фарадеевскому вращению магнитным полем, сгенерированным током, подлежащим измерению, который течет через проводник 105, при этом, плоскость поляризации линейно поляризованного луча света поворачивается на угол поворота, пропорциональный интенсивности магнитного поля.
Далее, световой луч, распространяющийся через оптическое волокно 104, отражается зеркалом 106, и когда световой луч снова распространяется через оптическое волокно 104, то световой луч снова поворачивается магнитным полем вследствие эффекта Фарадея, снова падая на фарадеевский вращатель 103. Поскольку световой луч снова проходит через фарадеевский вращатель 103, то плоскость поляризации дополнительно поворачивается на 22,5 градуса, в результате чего фарадеевский вращатель 103 поворачивает плоскость поляризации на 45 градусов на пути туда и обратно. Световой луч, проходящий через фарадеевский вращатель 103, снова проходит через двулучепреломляющий элемент 102, разделяясь на два линейно поляризованных световых луча, направления поляризации которых являются перпендикулярными друг другу. Этот разделенный линейно поляризованный световой луч принимает фотоприемный элемент 112 через оптический циркулятор 101 и оптическое волокно 111, преобразовывая его в электрический сигнал S1. Кроме того, другой линейно поляризованный световой луч принимает фотоприемный элемент 114 через оптическое волокно 113, преобразовывая его в электрический сигнал S2.
Поскольку количество света, принятое фотоприемными элементами 112 и 114, изменяется в соответствии с фарадеевским углом поворота плоскости поляризации, наблюдающимся в линейно поляризованном световом луче, распространяющемся через оптическое волокно 104, то схема 115 обработки сигналов обрабатывает электрические сигналы S1 и S2 посредством учета этого изменения для получения фарадеевского угла поворота плоскости поляризации в оптическим волокне 104. Затем, исходя из полученного фарадеевского угла поворота плоскости поляризации, вычисляют ток, подлежащий измерению.
Кроме того, поскольку силовое оборудование передачи-преобразования энергии, такое как, например, описанный выше GIS сконфигурировано так, что имеет большую величину тока, то для регистрации тока большой величины посредством оптического волокна необходимо использовать кварцевое оптическое волокно, имеющее большую максимальную величину измеряемого тока.
Однако, в том случае, когда в качестве оптического волокна 104, выполняющего регистрацию тока используется кварцевое оптическое волокно, возникает линейное двулучепреломление из-за механического напряжения, создаваемого вследствие изгиба или вибрации, и, следовательно, распространяющийся линейно поляризованный световой луч преобразуется в световой луч, имеющий эллиптическую поляризацию, вследствие чего увеличивается погрешность измерений. Другими словами, если к датчику тока, такому как, например, датчик 100 тока, в котором используют эффект Фарадея в оптическом волокне, приложена внешняя вибрация, то существует проблема, состоящая в том, что результат измерения тока, подлежащего измерению, сильно изменяется вследствие фотоупругости оптического волокна.
Например, на Фиг. 16 проиллюстрирован пример, в котором результат измерения изменяется в соответствии с работой прерывателя в описанном выше GIS. В случае стационарного состояния, когда частота в энергосистеме равна 60 Гц, результатом измерения является форма сигнала, проиллюстрированная на Фиг. 16(a). Если же в стационарном состоянии приложена вибрация, то результат измерения сильно изменяется, что проиллюстрировано на Фиг. 16(b).
Следовательно, в качестве оптического волокна 104 используется оптическое волокно с низким двулучепреломлением, содержащее оксид свинца. Причина, по которой используется оптическое волокно, содержащее оксид свинца, состоит в том, что его коэффициент фотоупругости является намного меньшим, чем коэффициент фотоупругости кварцевого оптического волокна, и, следовательно, механическое напряжение вследствие изгиба или вибрации не настолько легко влияет на распространяющийся луч поляризованного света.
Однако, поскольку постоянная Верде, указывающая способность фарадеевского вращения плоскости поляризации в оптическом волокне, содержащем оксид свинца, является, приблизительно, в пять раз большей, чем постоянная Верде для кварцевого оптического волокна, то для него максимальный регистрируемый ток является меньшим, чем максимальный регистрируемый ток для кварцевого оптического волокна, поэтому оптическое волокно, содержащее оксид свинца, имеет недостаток при измерении тока большой величины.
Следовательно, в качестве средства для решения описанных выше проблем, возникающих в оптическом волокне, рассмотрен способ замены зеркала 106 фарадеевским зеркалом, имеющим фарадеевский вращатель, и оптического соединения фарадеевского зеркала с другим концом оптического волокна 104. Например, в патентной литературе 2 раскрыт пример фарадеевского зеркала, имеющего фарадеевский вращатель.
На Фиг. 18 проиллюстрирована конфигурация фарадеевского зеркала 123, раскрытого в патентной литературе 2. Фарадеевское зеркало 123 сконфигурировано путем вставки оптического волокна 126, оптического волокна 127, и терминала, объединяющего последовательность сходящихся лучей, который имеет сферическую часть 128 на дистальном конце, вставленную в центральное отверстие держателя 124 оптического волокна через муфту 125, обеспечивая возможность сферической части 128 выступать наружу, располагающего фарадеевский 45 градусный вращатель 129 и зеркало 130 так, что обращены друг к другу, и герметично закрытого крышкой 132, которая ограждает снаружи магнит 131, служащий для намагничивания фарадеевского вращателя 129. Если направление, в котором распространяется световой луч от оптического волокна 127 к зеркалу 130, задано как прямое направление, и направление, в котором распространяется световой луч от зеркала 130 к оптическому волокну 127, задано как обратное направление. В прямом направлении плоскость поляризации светового луча, который распространяется через оптическое волокно 127 и излучается из сферической части 128, поворачивается на 45 градусов фарадеевским вращателем 129 и отражается зеркалом 130. Кроме того, в обратном направлении световой луч снова проходит через фарадеевский вращатель 129, в результате чего происходит дополнительный поворот плоскости поляризации на 45 градусов. Следовательно, световой луч возвращается в оптическое волокно 127 в состоянии, в котором плоскость поляризации в обратном направлении повернута на 90 градусов относительно плоскости поляризации светового луча, излученного из оптического волокна 127 и из сферической части 128 в прямом направлении.
Несмотря на то, что вибрационная характеристика датчика тока, включающего в себя фарадеевское зеркало 123, улучшается по сравнению с вибрационной характеристикой датчика тока, включающего в себя зеркало 106, эта вибрационная характеристика, однако, является недостаточной для очень точного измерения, а его температурная характеристика ухудшается. Причина состоит в следующем. Фарадеевский вращатель 129 имеет температурную характеристику и спектральную характеристику; существует ограничение по точности обработки толщины для определения фарадеевского угла поворота плоскости поляризации, равного 45 градусам; и при определенной температуре и длине волны во время измерения, когда световой луч проходит через фарадеевский вращатель туда и обратно, фарадеевский угол поворота его плоскости поляризации имеет сдвиг относительно 90 градусов, вследствие чего двулучепреломление оптического волокна не может быть полностью скомпенсировано. Кроме того, также ухудшаются спектральная и температурная характеристики точности измерения для датчика тока. На Фиг. 19 проиллюстрирована температурная зависимость измеренной величины тока, подлежащего измерению, на выходе датчика тока, соединенного с фарадеевским зеркалом 123, как характеристика "относительная погрешность - температура". На Фиг. 19 можно заметить следующее: несмотря на то, что при температуре, приблизительно, 35°C относительная погрешность является минимальной, при уменьшении или увеличении температуры относительно 35°C, величина изменения относительной погрешности увеличивается нелинейно, в результате чего измеренная датчиком тока величина тока, подлежащего измерению, изменяется вследствие температурной характеристики фарадеевского вращателя 129.
Следовательно, в качестве средства решения описанных выше проблем, возникающих в оптическом волокне 104, рассмотрен способ не использования фарадеевского вращателя, а оптического соединения зеркала, поворачивающего плоскость поляризации, имеющего четвертьволновую (λ/4) пластину на другом конце оптического волокна 104 вместо зеркала 106. В патентной литературе 3 раскрыт пример зеркала, поворачивающего плоскость поляризации, которое имеет четвертьволновую (λ/4) пластину.
На Фиг. 17 проиллюстрирована конфигурация зеркала, поворачивающего плоскость поляризации, которое раскрыто в патентной литературе 3. В зеркале 116, поворачивающем плоскость поляризации, если световой луч излучается с торцевой поверхности 117a оптического волокна 117, на которую падает/из которой излучается свет, и падает на первый двулучепреломляющий элемент 118, то световой луч разделяется на два линейно поляризованных световых луча из обыкновенного луча и необыкновенного луча, направления поляризации которых являются перпендикулярными друг другу. Затем эти два линейно поляризованных световых луча падают на второй двулучепреломляющий элемент 119. Поскольку направления кристаллографических осей оптических плоскостей первого двулучепреломляющего элемента 118 и второго двулучепреломляющего элемента 119 заданы так, что отличаются друг от друга на 90 градусов, то световой луч, проходящий через первый двулучепреломляющий элемент 118 как обыкновенный луч, становится необыкновенным лучом во втором двулучепреломляющем элементе 119 и сдвигается в направлении оси X, показанной на Фиг. 17. Следовательно, в том случае, когда два линейно поляризованных световых луча проходят через первый двулучепреломляющий элемент 118 и второй двулучепреломляющий элемент 119, два линейно поляризованных световых луча обязательно проходят по оптическим путям обоих лучей: обыкновенного луча и необыкновенного луча, и если первый двулучепреломляющий элемент 118 и второй двулучепреломляющий элемент 119 имеют одинаковое направление кристаллографической оси и одинаковую толщину, то упомянутые оптические длины пути будут одинаковыми. Поскольку две поляризованные составляющие обыкновенного луча и необыкновенного луча сдвигаются на одинаковое расстояние двумя двулучепреломляющими элементами 118 и 119, то разность оптической длины пути между этими двумя световыми лучами, созданными во время разделения в первом двулучепреломляющем элементе 118, устраняется до отражения этих световых лучей зеркалом 122.
Затем, два линейно поляризованных световых луча падают на четвертьволновую (λ/4) пластину 120, которая преобразует их в два луча света с круговой поляризацией, в которых направления вращения дистальных концов векторов напряженности электрического поля являются различными. Два луча света с круговой поляризацией, излученные из четвертьволновой (λ/4) пластины 120, сводят посредством линзы 121, и их отражение происходит в одной точке R на поверхности зеркала 122 с точечной симметрией; и оптические пути лучей света с круговой поляризацией меняются местами до и после отражения; и направления вращения лучей света с круговой поляризацией изменяются на обратные вследствие отражения.
Отраженные лучи света с круговой поляризацией снова проходят через четвертьволновую (λ/4) пластину 120, преобразовываясь в два линейно поляризованных световых луча, в которых направления колебаний векторов напряженности электрического поля отличаются друг от друга на 90 градусов. При этом, линейно поляризованные световые лучи в направлениях X и Y на оптическом пути (на пути в прямом направлении) до отражения становятся линейно поляризованными световыми лучами направлениях, соответственно, Y и X на оптическом пути (на пути в обратном направлении) после отражения. Два линейно поляризованных световых луча повторно проходят через второй двулучепреломляющий элемент 119 и первый двулучепреломляющий элемент 118 и заново объединяются в один световой луч. Световой луч, сформированный путем объединения, падает на оптическое волокно 117.
Поскольку два световых луча сдвигаются на одинаковое расстояние двумя двулучепреломляющими элементами 118 и 119 после отражения зеркалом 122 до падения на оптическое волокно 117, то разность оптической длины пути между двумя световыми лучами, которые отражаются зеркалом 122, устраняется до того, как заново объединенный световой луч падает на оптическое волокно 117.
Таким образом, что касается луча света с произвольной поляризацией, излученного из оптического волокна 104, то в соответствии с зеркалом 116, поворачивающим плоскость поляризации, его главная ось поляризации поворачивается на 90 градусов, и в том случае, когда существует эллиптически-поляризованная составляющая, эта составляющая изменяется, превращаясь в луч поляризованного света, имеющий противоположное направление вращения, то есть, в луч поляризованного света, находящийся в диаметрально противоположной точке на сфере Пуанкаре, то есть, в точке, прямо противоположной другой точке на окружности на сфере, который падает на оптическое волокно 104, в результате чего двулучепреломление, вызванное оптическим волокном 104, будет компенсироваться, и датчик 100 тока может давать устойчивые результаты измерений.
СПИСОК ЛИТЕРАТУРЫ
ПАТЕНТНАЯ ЛИТЕРАТУРА
Патентная литература 1: публикация заявки на патент Японии № JP 10-319051 A
Патентная литература 2: публикация заявки на патент Японии № JP 7-41507 Y (полезная модель)
Патентная литература 3: публикация заявки на патент Японии № JP 2008-65111 A
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ЗАДАЧА, РЕШАЕМАЯ В ИЗОБРЕТЕНИИ
Однако, в зеркале 116, поворачивающем плоскость поляризации, в котором не используют фарадеевский вращатель, существует проблема, состоящая в том, что во время юстировки для нахождения оптимального положения сопряжения при сборке трудно определить, при каких градусах имеет место положение наилучшего сопряжения, и какое положение является оптимальным положением сопряжения, и трудно произвести сборку. Предположительная причина этого следующая. Когда два луча света с круговой поляризацией отражаются в одной точке зеркалом 122, то направления вращения дистальных концов векторов напряженности электрического поля являются противоположными друг другу, вследствие чего, между лучами света с круговой поляризацией предположительно возникает интерференция.
Настоящее изобретение было создано с учетом вышеизложенной проблемы, и задачей настоящего изобретения является создание зеркала, компенсирующего двулучепреломление в оптическом волокне, которое способно обеспечивать возможность легкого выполнения сборки с юстировкой за счет устранения возникновения множества положений наилучшего сопряжения, способно улучшить виброустойчивость датчика тока за счет компенсации двулучепреломления, возникающего в оптическом волокне для датчика тока, и способно обеспечивать регистрацию тока большой величины посредством датчика тока, а также создание датчика тока, виброустойчивость которого улучшена за счет оптического присоединения к нему зеркала, компенсирующего двулучепреломление в оптическом волокне.
СРЕДСТВА РЕШЕНИЯ ЗАДАЧИ
Ниже описаны цели, достигаемые в настоящем изобретении. Согласно аспекту настоящего изобретения, предложено зеркало, компенсирующее двулучепреломление в оптическом волокне, которое содержит: оптическое волокно; двулучепреломляющий элемент; линзу; магнит; фарадеевский вращатель, к которому приложено магнитное поле от магнита для его магнитного насыщения, и который имеет фарадеевский угол поворота плоскости поляризации, равный 45 градусам; и зеркало,
причем, компоненты, которыми являются двулучепреломляющий элемент, фарадеевский вращатель и зеркало, расположены в следующем порядке от торцевой поверхности падения/излучения света в оптическом волокне: двулучепреломляющий элемент, фарадеевский вращатель и зеркало,
оптическое волокно является одномодовым,
световой луч, распространяющийся через оптическое волокно, разделяется двулучепреломляющим элементом на два перпендикулярно линейно поляризованных световых луча, представляющих собой обыкновенный луч и необыкновенный луч, которые сводятся линзой,
эти два линейно поляризованных световых луча проходят через фарадеевский вращатель, вследствие чего их плоскости поляризации поворачиваются на 45 градусов, и эти два линейно поляризованных световых луча отражаются в одной точке на поверхности зеркала с точечной симметрией,
два отраженных линейно поляризованных световых луча повторно проходят через фарадеевский вращатель, вследствие чего плоскости поляризации двух линейно поляризованных световых лучей дополнительно поворачиваются на 45 градусов,
при этом, два линейно поляризованных световых луча снова падают на двулучепреломляющий элемент, вследствие чего они заново объединяются в один световой луч, и
заново объединенный световой луч падает на оптическое волокно.
Кроме того, зеркало, компенсирующее двулучепреломление в оптическом волокне, согласно настоящему изобретению отличается тем, что величина сдвига необыкновенного луча в двулучепреломляющем элементе зеркала, компенсирующего двулучепреломление в оптическом волокне, является равной или большей, чем удвоенный диаметр поля моды оптического волокна.
Кроме того, согласно аспекту настоящего изобретения, предложено зеркало, компенсирующее двулучепреломление в оптическом волокне, которое содержит: оптическое волокно; первый двулучепреломляющий элемент; второй двулучепреломляющий элемент; линзу; магнит; фарадеевский вращатель, к которому приложено магнитное поле от магнита для его магнитного насыщения, и который имеет фарадеевский угол поворота плоскости поляризации, равный 45 градусам; и зеркало,
причем, компоненты, которыми являются первый двулучепреломляющий элемент, второй двулучепреломляющий элемент, фарадеевский вращатель и зеркало, расположены в следующем порядке от торцевой поверхности падения/излучения света в оптическом волокне: первый двулучепреломляющий элемент, второй двулучепреломляющий элемент, фарадеевский вращатель и зеркало,
оптическое волокно является одномодовым,
направление кристаллографической оси оптической плоскости второго двулучепреломляющего элемента задано таким, что отличается на 90 градусов от направления кристаллографической оси оптической плоскости первого двулучепреломляющего элемента,
световой луч, распространяющийся через оптическое волокно, разделяется первым двулучепреломляющим элементом на два перпендикулярно линейно поляризованных световых луча, представляющих собой обыкновенный луч и необыкновенный луч,
когда эти два линейно поляризованных световых луча, проходящие через первый двулучепреломляющий элемент, проходят через второй двулучепреломляющий элемент, то световой луч, проходящий через первый двулучепреломляющий элемент как обыкновенный луч, проходит как необыкновенный луч, а световой луч, проходящий через первый двулучепреломляющий элемент как необыкновенный луч, проходит как обыкновенный луч, и эти два линейно поляризованных световых луча сводятся линзой,
величина сдвига необыкновенного луча во время прохождения через первый двулучепреломляющий элемент и величина сдвига необыкновенного луча во время прохождения через второй двулучепреломляющий элемент заданы одинаковыми,
эти два линейно поляризованных световых луча проходят через фарадеевский вращатель, вследствие чего их плоскости поляризации поворачиваются на 45 градусов, и эти два линейно поляризованных световых луча отражаются в одной точке на поверхности зеркала с точечной симметрией,
два отраженных линейно поляризованных световых луча повторно проходят через фарадеевский вращатель, вследствие чего плоскости поляризации двух линейно поляризованных световых лучей дополнительно поворачиваются на 45 градусов,
когда два линейно поляризованных световых луча, проходящие через фарадеевский вращатель, проходят через второй двулучепреломляющий элемент, то сдвигается только один линейно поляризованный световой луч,
два линейно поляризованных световых луча снова падают на первый двулучепреломляющий элемент, и когда два линейно поляризованных световых луча, проходящие через второй двулучепреломляющий элемент, проходят через первый двулучепреломляющий элемент, то световой луч, проходящий через второй двулучепреломляющий элемент как обыкновенный луч, проходит как необыкновенный луч, а световой луч, проходящий через второй двулучепреломляющий элемент как необыкновенный луч, проходит как обыкновенный луч, вследствие чего сдвигается только один линейно поляризованный световой луч, и два линейно поляризованных световых луча заново объединяются в один световой луч, и
заново объединенный световой луч падает на оптическое волокно.
Кроме того, зеркало, компенсирующее двулучепреломление в оптическом волокне, согласно настоящему изобретению отличается тем, что сумма величины сдвига необыкновенного луча в первом двулучепреломляющем элементе зеркала, компенсирующего двулучепреломление в оптическом волокне, и величины сдвига необыкновенного луча в его втором двулучепреломляющем элементе является равной или большей, чем удвоенный диаметр поля моды оптического волокна.
Кроме того, зеркало, компенсирующее двулучепреломление в оптическом волокне, согласно настоящему изобретению отличается тем, что разность оптической длины пути между двумя линейно поляризованными световыми лучами, созданными путем разделения на обыкновенный луч и необыкновенный луч во время прохождения через второй двулучепреломляющий элемент зеркала, компенсирующего двулучепреломление в оптическом волокне, задана равной разности оптической длины пути между двумя линейно поляризованными световыми лучами, созданными путем разделения на обыкновенный луч и необыкновенный луч во время прохождения через первый двулучепреломляющий элемент.
Согласно настоящему изобретению, предложен датчик тока, в котором оптическое волокно зеркала, компенсирующего двулучепреломление в оптическом волокне, оптически соединено с оптическим волокном датчика тока, который установлен на проводнике, в котором течет ток, и который измеряет ток, текущий через проводник.
РЕЗУЛЬТАТ ИЗОБРЕТЕНИЯ
Согласно зеркалу, компенсирующему двулучепреломление в оптическом волокне, которое раскрыто в пункте 1 или 3 формулы настоящего изобретения, оптический путь сконфигурирован так, что световой луч, излученный от оптического волокна, разделяется на два линейно поляризованных световых луча, и эти два перпендикулярно линейно поляризованных световых луча отражаются с точечной симметрией. Другими словами, поскольку во время точечно-симметричного отражения зеркалом направления поляризации двух линейно поляризованных световых лучей являются перпендикулярными друг другу, то интерференция устраняется, вследствие чего может быть предотвращено возникновение множества положений наилучшего сопряжения. Следовательно, могут быть легко обнаружены оптимальные положения сопряжения, вследствие чего может быть легко выполнена процедура сборки с юстировкой.
Кроме того, в зеркале, компенсирующем двулучепреломление в оптическом волокне, которое раскрыто в пункте 1 формулы изобретения, когда два линейно поляризованных световых луча дважды проходят через двулучепреломляющий элемент на пути туда и обратно, обыкновенный луч и необыкновенный луч меняются местами из-за отражения зеркалом и поворота плоскости поляризации на 90 градусов фарадеевскми вращателем относительно луча света с произвольной поляризацией, излученного от оптического волокна, при этом, на оптическое волокно падает луч поляризованного света, находящийся в диаметрально противоположной точке на сфере Пуанкаре, то есть, в точке, прямо противоположной другой точке на окружности на сфере. Следовательно, двулучепреломление, вызванное оптическим волокном, может быть скомпенсировано.
Кроме того, в зеркале, компенсирующем двулучепреломление в оптическом волокне, которое раскрыто в пункте 3 формулы изобретения, два линейно поляризованных световых луча сдвигаются на одинаковое расстояние двумя двулучепреломляющими элементами. Следовательно, разность оптической длины пути между двумя линейно поляризованными световыми лучами, созданными во время разделения в первом двулучепреломляющем элементе, компенсируется вторым двулучепреломляющим элементом, в результате чего разность оптической длины пути устраняется перед падением двух линейно поляризованных световых лучей на линзу. Следовательно, предотвращается ухудшение эффективности сопряжения, вызванное сдвигом фокуса линзы. Кроме того, поскольку оптический путь сконфигурирован так, что после того, как разность оптической длины пути скомпенсирована, обыкновенный луч и необыкновенный луч меняются местами вследствие отражения зеркалом и поворота плоскости поляризации на 90 градусов фарадеевскми вращателем, относительно луча света с произвольной поляризацией, излученного из оптического волокна, на оптическое волокно падает луч поляризованного света, находящийся в диаметрально противоположной точке на сфере Пуанкаре. Следовательно, двулучепреломление, вызванное оптическим волокном, может быть скомпенсировано.
Кроме того, в зеркале, компенсирующем двулучепреломление в оптическом волокне, которое раскрыто в пункте 1 или 3 формулы изобретения, используется фарадеевский вращатель. Даже если фарадеевский вращатель имеет температурную характеристику и спектральную характеристику, перпендикулярность плоскостей поляризации двух линейно поляризованных световых лучей сохраняется, вследствие чего компенсируется двулучепреломление, вызванное оптическим волокном.
Кроме того, согласно зеркалу, компенсирующему двулучепреломление в оптическом волокне, раскрытому в пункте 2 или 4 формулы изобретения, в котором фарадеевское вращение плоскости поляризации происходит при прохождении через фарадеевский вращатель в прямом и обратном направлениях, несмотря на то, что сумма углов поворота плоскости поляризации двух линейно поляризованных световых лучей вследствие эффекта Фарадея имеет сдвиг относительно 90 градусов, так как фарадеевский вращатель имеет температурную характеристику и спектральную характеристику, может быть предотвращено падение на оптическое волокно линейно поляризованных световых лучей, разделенных двулучепреломляющим элементом, которые имеют составляющую, сдвинутую относительно 90 градусов.
Кроме того, согласно зеркалу, компенсирующему двулучепреломление в оптическом волокне, которое раскрыто в пункте 5 формулы изобретения, разность оптической длины пути между двумя линейно поляризованными световыми лучами, созданными во время разделения в первом двулучепреломляющем элементе, может быть более надежно скомпенсирована вторым двулучепреломляющим элементом.
Кроме того, согласно датчику тока, раскрытому в пункте 6 формулы изобретения, поскольку зеркало, компенсирующее двулучепреломление в оптическом волокне, по любому из пунктов 1-5 формулы изобретения является оптически соединенным с ним, то двулучепреломление оптического волокна будет скомпнесировано, вследствие чего будет уменьшено изменение результата измерения из-за вибрации, вызванное фотоупругостью оптического волокна для датчиков, и улучшена виброустойчивость.
Кроме того, поскольку оно имеет превосходную виброустойчивость, то в качестве оптического волокна для датчиков может использоваться кварцевое оптическое волокно, имеющее более высокое двулучепреломление, чем двулучепреломление оптического волокна, содержащего оксид свинца, поэтому возможно сформировать датчик тока, который может регистрировать ток большой величины.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг. 1 изображена схема, на которой проиллюстрирована конфигурация зеркала, компенсирующего двулучепреломление в оптическом волокне, согласно первому варианту осуществления настоящего изобретения.
На Фиг. 2 на виде в перспективе проиллюстрирована схема расположения двулучепреломляющего элемента, фарадеевского вращателя и магнита в зеркале, компенсирующем двулучепреломление в оптическом волокне по Фиг. 1.
На Фиг. 3 изображена схема, на которой проиллюстрировано состояние поляризации светового луча, проходящего через зеркало, компенсирующее двулучепреломление в оптическом волокне по Фиг. 1.
На Фиг. 4 изображена схема, на которой проиллюстрирована конфигурация зеркала, компенсирующего двулучепреломление в оптическом волокне, согласно второму варианту осуществления настоящего изобретения.
На Фиг. 5 на виде в перспективе проиллюстрирована схема расположения первого двулучепреломляющего элемента, второго двулучепреломляющего элемента, фарадеевского вращателя и магнита в зеркале, компенсирующем двулучепреломление в оптическом волокне по Фиг. 4.
На Фиг. 6 изображена схема, на которой проиллюстрировано состояние поляризации светового луча в зеркале, компенсирующем двулучепреломление в оптическом волокне по Фиг. 4 с того момента, когда световой луч излучается из оптического волокна, до того момента, когда световой луч отражается зеркалом.
На Фиг. 7 изображена схема, на которой проиллюстрировано состояние поляризации светового луча в зеркале, компенсирующем двулучепреломление в оптическом волокне по Фиг. 4 с того момента, когда световой луч отражается зеркалом, до того момента, когда световой луч падает на оптическое волокно.
На Фиг. 8 изображена схема, на которой проиллюстрирована конфигурация фарадеевских зеркал и зеркал согласно примерам с 1-го по 3-й.
На Фиг. 9 изображена схема, на которой проиллюстрирована конфигурация оптической системы согласно примеру 1.
На Фиг. 10 изображена схема, на которой проиллюстрирована конфигурация оптической системы согласно примеру 2.
На Фиг. 11 изображена диаграмма, на которой проиллюстрировано изменение формы колебательного сигнала измеренного тока с датчика тока, сконфигурированного с наличием зеркала 7, согласно примеру 3.
На Фиг. 12 изображена диаграмма, на которой проиллюстрировано изменение формы колебательного сигнала измеренного тока с датчика тока, сконфигурированного с наличием фарадеевского зеркала 11, согласно примеру 3.
На Фиг. 13 изображена схема, на которой проиллюстрировано изменение формы колебательного сигнала измеренного тока с датчика тока, сконфигурированного с наличием зеркала 1, компенсирующего двулучепреломление в оптическом волокне, согласно примеру 3.
На Фиг. 14 изображена диаграмма, на которой проиллюстрировано изменение формы колебательного сигнала измеренного тока с датчика тока, сконфигурированного с наличием зеркала 10, компенсирующего двулучепреломление в оптическом волокне, согласно примеру 3.
На Фиг. 15 изображена принципиальная схема, на которой проиллюстрирован пример датчика тока с использованием оптического волокна из известного уровня техники.
На Фиг. 16 изображена диаграмма, на которой проиллюстрирована форма колебательного сигнала в примере изменения результата измерения посредством датчика тока прерывателем в GIS.
На Фиг. 17 изображена принципиальная схема, на которой проиллюстрирован пример зеркала, поворачивающего плоскость поляризации, из известного уровня техники.
На Фиг. 18 на виде в поперечном разрезе проиллюстрирован пример фарадеевского зеркала известного уровня техники.
На Фиг. 19 изображен график, на котором проиллюстрирована характеристика "относительная погрешность - температура" в измеренном значении тока, подлежащего измерению, на выходе датчика тока, соединенного с фарадеевским зеркалом, проиллюстрированным на Фиг. 18.