Способ определения вязкости металлических материалов

Иллюстрации

Показать все

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов. Сущность: осуществляют испытания на ударный изгиб призматических образцов с надрезом с записью кривой разрушения в координатах нагрузка - смещение бойка путем идентификации на ней характерных точек. На полученной кривой разрушения выделяют линейный ниспадающий участок, идентифицируют на нем значения нагрузки FH, FК и смещения SH, SК, соответствующие началу и окончанию данной стадии разрушения, находят площадь под выделенным участком, а уровень вязкости KB определяют по формуле. Технический результат: возможность определения характеристик вязкости для аттестации недоломанных образцов. 2 ил.

Реферат

Изобретение относится к материаловедению, а именно к способам исследования образцов металлических материалов путем приложения к ним динамической (ударной) кратковременной нагрузки, и может быть использовано для определения вязкости металлических материалов.

При работе деталей машин и конструкций возможны динамические нагрузки, при которых многие, даже высокопластичные металлы проявляют склонность к хрупкому разрушению. Опасность разрушения усиливают надрезы - концентраторы напряжений. Для оценки склонности металла к хрупкому разрушению под влиянием этих факторов проводят динамические испытания на ударный изгиб на маятниковых копрах (ГОСТ 9454-78. Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах. М.: Изд-во стандартов, 19 с.).

При этом стандартный призматический образец с надрезом испытывают путем приложения к нему динамической нагрузки по схеме трехточечного изгиба, а по показаниям копра измеряют работу удара А, Дж, которая при делении на площадь образца в месте надреза дает значение ударной вязкости KCV, МДж/м2 (здесь для образца с V-образным типом надреза). Ударная вязкость из всех характеристик механических свойств наиболее чувствительна к снижению температуры, поэтому испытания на ударную вязкость при пониженных температурах используют для определения порога хладноломкости tXP - температуры или интервала температур, в котором происходит снижение ударной вязкости.

Общим требованием к испытаниям на ударную вязкость является осуществление перехода металла в хрупкое состояние при температурах, легко достижимых в лабораторных условиях (tисп=+100…-100°C). Однако в случае отсутствия явного вязкохрупкого перехода в этом диапазоне температур, например в случае высоковязких материалов, определить tXP затруднительно.

Высоковязкими материалами считаются те, которые разрушаются вязко и с высокой энергоемкостью в широком диапазоне отрицательных температур испытаний tисп≅-40…-100°C. Примером таких высоковязких материалов являются низкоуглеродистые стали типа 05Г2МФ, используемые для нефте- и газопроводов нового поколения. Главным требованием к металлу таких труб является то, что он должен работать в условиях, далеких от появления хрупкого механизма разрушения, и иметь уровень ударной вязкости KCV≥2,5 МДж/м2 при tисп=-40°C.

Результаты испытаний на ударный изгиб свидетельствуют об очень высоком уровне ударной вязкости таких сталей (KCV≥1,5 МДж/м2 при tисп=-80°C). На сериальных кривых KCV=f(tисп) не наблюдается явного вязкохрупкого перехода, полностью хрупкое разрушение наступает только при tисп<-100°C, а образцы полностью не разрушаются вплоть до tисп=-80°C. Кроме того, согласно приведенному выше стандарту, если в результате испытания образец не разрушился, то показатель качества материала (ударная вязкость) считается неустановленным. Таким образом, необходим другой подход для определения вязкости высоковязких материалов при испытаниях на ударный изгиб.

Известен способ определения вязкости разрушения материалов при статическом изгибе призматических образцов с острой трещиной с записью диаграмм разрушения (Пат. 2009463. Российская Федерация, МПК G01N 3/00. Способ определения вязкости разрушения материала / Водопьянов В.И., Белов А.А., Лобанов С.М. Волгоградский политехнический институт - №4935986/28, опубл. 15.03.94).

Особенностью данного способа является то, что в момент страгивания острой трещин, по диаграмме разрушения определяют коэффициент сопротивления смещению η, а величину смещения fA и соответствующее значение нагрузки FA принимают за параметры сопротивления исследуемого материала разрушению.

Однако усложнение эксперимента, связанное с необходимостью перестройки диаграммы разрушения в координаты «сопротивление смещению η - смещение f», обуславливает появление погрешности измерения, а следовательно, понижение точности определения измеряемых характеристик.

Наиболее близким по технической сущности к предлагаемому методу является способ определения вязкости металлических материалов при испытании на ударный изгиб образцов с V-образным надрезом с записью осциллограмм разрушения (ASTM E2298. Standard test method for instrumented impact testing of metallic materials, 2013. 9 p.).

Способ заключается в выполнении следующих операций:

- нанесение V-образного надреза на боковую поверхность призматического образца;

- ударный изгиб образца с надрезом (приложение динамической нагрузки) с одновременной записью кривой в координатах «нагрузка F - смещение S»;

- определение (выделение) на полученной кривой значений нагрузки, соответствующих определенным этапам разрушения;

- определение параметров вязкости (энергоемкости, напряжения, смещения, доли вязкой составляющей в изломе) на соответствующих стадиях разрушения по виду кривой разрушения.

Недостатком данного способа определения вязкости является то, что в случае высоковязких материалов недолом образцов приводит к недействительности результатов испытания, а на поверхности излома образцов невозможно выделить область «хрупкого квадрата», соответствующую хрупкому механизму разрушения.

Таким образом, существующие стандартные способы определения вязкости металлических материалов при испытаниях на ударный изгиб не могут быть использованы для аттестации высоковязких материалов.

Техническая задача, решаемая изобретением, заключается в определении вязкости металлических материалов при испытании на ударный изгиб образца с надрезом путем выделения на кривой разрушения ниспадающего линейного участка, на котором отсутствуют осцилляции нагрузки, и определения на этом участке характеристик вязкости для аттестации недоломанных образцов.

Поставленная задача решается способом, при котором после охлаждения образца с надрезом до температуры испытания и приложения к образцу ударной изгибающей нагрузки с одновременной записью нагрузки F и смещения S на полученной кривой разрушения выделяют ниспадающий линейный участок и определяют для него значения, соответствующие началу (FH, SH) и окончанию (FК, SК) данной стадии разрушения, а уровень вязкости KB определяют по формуле:

где WB - работа разрушения (площадь под кривой) на ниспадающем линейном участке кривой разрушения, определяемая по формуле:

где FH и FК - значения нагрузки, соответствующие началу и концу ниспадающего линейного участка кривой; SH и SК - соответствующие им значения смещения бойка.

Изобретение иллюстрируется следующими чертежами.

На фиг. 1 приведены сглаженные диаграммы разрушения высоковязкого материала - стали 05Г2СФ, в координатах нагрузка F - смещение S, графическое выделение на ней ниспадающего линейного участка и определение значений FH, FК, SH, SК.

Разрушение стандартных образцов Шарли размером 10×10×55 мм с V-образным надрезом проводилось на копре с падающим грузом INSTRON CEAST 9350 в диапазоне температур испытаний tисп=+20…-100°C с записью диаграмм разрушения. Частота съема измерений с датчиков по нагрузке и смещению составляла 0,001 мс на точку. Дальнейшая обработка кривой в координатах нагрузка F - смещение S заключалась в ее сглаживании путем инструментальной фильтрации массива измеренных данных с целью уменьшения влияния факторов, вносимых упругим взаимодействием системы «опоры-образец-молот».

На фиг. 2 представлены зависимости ударной вязкости KCV и параметра вязкости KB, определенного для выбранных высоковязких материалов по кривым разрушения при различных температурах испытаний для полностью разрушенных образцов. Прямая корреляция значений KCV и KB хорошо описывается линейной функцией с доверительной вероятностью R2=0,93.

Результаты испытаний не только высоковязких материалов (например, низко- и среднеуглеродистых сталей типа 05Г2СФ, 32Г2Р, 09Г2С), когда образец при испытании полностью не разрушался, но и менее вязких материалов, когда полное разрушение образца происходило, свидетельствуют о том, что на кривой разрушения всегда можно выделить ниспадающий линейный участок, затем по предлагаемому способу определить параметр KB и использовать его для аттестации вязкости любых металлических материалов при наличии возможности инструментальной записи кривой разрушения.

Способ определения вязкости металлических материалов при испытаниях на ударный изгиб призматических образцов с надрезом с записью кривой разрушения в координатах нагрузка - смещение бойка путем идентификации на ней характерных точек, отличающийся тем, что на полученной кривой разрушения выделяют линейный ниспадающий участок, идентифицируют на нем значения нагрузки FH, FК и смещения SH, SК, соответствующие началу и окончанию данной стадии разрушения, находят площадь под выделенным участком, а уровень вязкости KB определяют по формуле: