Электронные офтальмологические линзы с задним датчиком диаметра зрачка

Иллюстрации

Показать все

Изобретение относится к медицине. Офтальмологическая линза с электропитанием содержит контактную линзу, включающую оптическую зону и периферическую зону; и систему датчика диаметра зрачка, встроенную в контактную линзу для измерения диаметра зрачка. Система датчика диаметра зрачка содержит датчик с тонкой прозрачной полоской, установленной через оптическую зону таким образом, чтобы обеспечить распознавание полностью суженных и полностью расширенных зрачков, системный контроллер, функционально связанный с датчиком и сконфигурированный для определения диаметра зрачка и вывода сигнала управления, основанного на диаметре зрачка, источник электропитания и исполнительное средство, сконфигурированное для приема выходного сигнала управления и выполнения предварительно заданной функции. Применение данного изобретения обеспечивает повышение точности измерения диаметра зрачка. 7 з.п. ф-лы, 15 ил.

Реферат

Предпосылки создания изобретения

1. Область применения изобретения

Данное изобретение относится к электронной офтальмологической линзе или линзе с электропитанием с датчиком и соответствующими аппаратными средствами и программным обеспечением для определения и/или контроля диаметра зрачка и, в частности, к датчику и сопутствующему оборудованию и программному обеспечению для обнаружения изменений диаметра зрачка и изменения состояния электронной офтальмологической линзы.

2. Обсуждение смежной области

Поскольку электронные устройства продолжают уменьшаться в размерах, все более вероятным становится создание их, пригодных для ношения, или микроэлектронных устройств с возможностью встраивания для различных областей применения. Такие области применения могут включать в себя мониторинг биохимических процессов в организме, контроль приема доз лекарственных препаратов или лекарственных агентов за счет различных механизмов, включая автоматические, в ответ на измерения или в ответ на внешние сигналы управления и усиление обменных процессов в органах или тканях. Примеры таких устройств включают в себя инфузионные насосы для введения глюкозы, кардиостимуляторы, дефибрилляторы, вспомогательные желудочковые системы и нейростимуляторы. Новой особенно выгодной областью применения являются пригодные для ношения офтальмологические линзы и контактные линзы. Например, пригодные для ношения линзы могут включать в себя узел линз, имеющий фокус с возможностью электронного регулирования для увеличения или улучшения функции глаза. В другом примере, с фокусом с возможностью регулирования или без него, пригодная для ношения контактная линза может включать в себя электронные датчики для определения концентраций отдельных химических веществ в прекорнеальной (слезной) пленке. Использование встроенной электроники в узле линз представляет потенциальные возможности взаимодействия с электроникой, способа электропитания и/или возобновления подачи энергии к электронике, для взаимодействия электроники, внутренних и внешних датчиков и/или контроля, и для контроля электроники и общих функций линз.

Глаз человека обладает способностью различать миллионы цветов, легко приспосабливаться к изменению условий освещенности и передавать сигналы или информацию в мозг со скоростью, превышающей высокоскоростное подключение к Интернету. Линзы, такие как контактные линзы и интраокулярные линзы, в настоящее время используются для коррекции дефектов зрения, таких как миопия (близорукость), гиперметропия (дальнозоркость), астигматизм и пресбиопия. Тем не менее, правильно сконструированные линзы содержат дополнительные компоненты, которые могут использоваться как для усиления зрения, так и для коррекции дефектов зрения.

Контактные линзы могут быть использованы для коррекции близорукости, дальнозоркости, астигматизма, а также других визуальных дефектов зрения. Контактные линзы также могут быть использованы для улучшения естественного вида глаз владельца. Контактные линзы или «контакты» - это просто линзы, которые размещают на передней поверхности глаза. Контактные линзы относятся к медицинским устройствам и могут применяться для коррекции зрения и (или) по косметическим или иным терапевтическим причинам. Контактные линзы применяют в коммерческих масштабах для улучшения зрения с 1950-х гг.Первые образцы контактных линз изготавливали или вытачивали из твердых материалов. Такие линзы были относительно дорогими и хрупкими. Кроме того, такие первые контактные линзы изготавливали из материалов, которые не обеспечивали достаточной диффузии кислорода через контактную линзу в конъюнктиву и роговицу, что могло потенциально повлечь за собой ряд неблагоприятных клинических эффектов. Хотя такие контактные линзы используются и в настоящее время, они подходят не всем пациентам из-за низкого уровня первичного комфорта. Дальнейшие разработки в данной области привели к созданию мягких контактных линз на основе гидрогелей, которые сегодня чрезвычайно популярны и широко используются. В частности, силикон-гидрогелевые контактные линзы, доступные в настоящее время, сочетают преимущества силикона, отличающегося исключительно высокой кислородной проницаемостью, с признанным удобством при ношении и клиническими показателями гидрогелей. По существу, эти силикон-гидрогелевые контактные линзы имеют более высокую проницаемость для кислорода и, как правило, более комфортны в носке, чем ранние контактные линзы, сделанные из твердых материалов.

Стандартные контактные линзы являются полимерными структурами определенной формы для коррекции различных проблем со зрением, которые были кратко упомянуты выше. Для достижения повышенной функциональности в эти полимерные структуры встраиваются различные электросхемы и компоненты. Например, цепи управления, микропроцессоры, устройства связи, источники питания, датчики, исполнительные механизмы, светоизлучающие диоды, и миниатюрные антенны могут быть интегрированы в контактные линзы с помощью изготовленных на заказ оптикоэлектронных компонентов не только для коррекции зрения, но и для улучшения зрения, а также для обеспечения дополнительной функциональности, как объясняется здесь. Электронные контактные линзы и/или контактные линзы с электропитанием могут быть предназначены для обеспечения улучшения зрения с помощью уменьшающей и увеличивающей возможностей, или просто изменения преломляющих возможностей линзы. Электронные контактные линзы и/или контактные линзы с электропитанием могут быть сконфигурированы для усиления цвета и разрешения, для отображения текстурной информации, чтобы переводить речь в субтитры в реальном времени, чтобы принимать визуальные сигналы от навигационной системы, а также обеспечивать обработку изображений и доступ в Интернет. Линзы могут быть разработаны, чтобы позволить пользователю видеть в условиях низкой освещенности. Должным образом сконструированная электроника и/или расположение электроники на линзах может позволить проецирование изображения на сетчатку, например, без переменного фокуса оптической линзы, обеспечивает дисплеи новым изображением и даже обеспечивает предупреждение об опасности. С другой стороны, или в дополнение к любым из этих функций или схожим функциям, контактные линзы могут включать компоненты неинвазивного наблюдения за биомаркерами пользователя и его показателями здоровья. Например, встроенные в линзу датчики могут позволять пациенту с диабетом принимать таблетки в соответствии с уровнем сахара в крови за счет анализа компонентов слезной пленки без необходимости забора крови. Кроме того, соответствующим образом сконфигурированная линза может включать в себя датчики для контроля уровня холестерина, натрия и калия, а также других биологических маркеров. Это, в сочетании с беспроводным передатчиком данных, может позволить врачу, получить почти мгновенный доступ к биохимическому анализу крови пациента без необходимости для пациента, тратить время на поход в лабораторию и сдачу анализа крови. Кроме того, встроенные в линзы датчики могут быть использованы для обнаружения света, падающего на глаз, чтобы компенсировать условия освещения, или для использования при определении схем моргания.

Правильная комбинация устройств может обладать потенциально неограниченной функциональностью; тем не менее, существует ряд трудностей, связанных с включением дополнительных компонентов на участок полимера оптического качества. В целом, по многим причинам представляется затруднительным производство таких компонентов непосредственно с линзой, как и установка и соединение плоских устройств с неплоской поверхностью. Это также трудно изготовить в масштабе. Компоненты, которые должны помещаться на или в линзу, должны быть уменьшены в размере и встроены в 1,5 квадратных сантиметра прозрачного полимера, который защищает эти компоненты от жидкой среды глаза. Также затруднительно изготовление контактной линзы, которая была бы комфортна и безопасна для пользователя при ношении, с учетом дополнительной толщины, необходимой для размещения дополнительных компонентов.

Учитывая область применения и объем изобретения офтальмологического устройства, такого как контактная линза, и условия, в которых оно должно использоваться, для его технического осуществления необходимо преодолеть множество проблем, включая установку и соединение многих электронных компонентов на не плоской поверхности, большая часть которой состоит из оптического пластика. Таким образом, существует необходимость для создания электронных контактных линз с надежными механическими и электронными компонентами.

Поскольку эти линзы снабжаются электропитанием, энергия или, конкретнее, потребление электроэнергии, чтобы запустить электронику, вызывает озабоченность, учитывая технологии батареи в масштабе офтальмологической линзы. В дополнение к обычному потреблению тока, энергопотребляющие устройства или системы такого рода обычно требуют текущий запас в режиме ожидания, точный контроль напряжения и коммутационных возможностей для обеспечения работы над потенциально широким диапазоном рабочих параметров, а также всплеском потребления, например, свыше восемнадцати (18) часов от одного заряда, оставшегося после потенциального простоя в течение многих лет. Соответственно, существует потребность в системе, которая оптимизирована для недорогой, долгосрочной, надежной работы, безопасной и нужного размера, обеспечивая при этом необходимую мощность.

Кроме того, из-за сложности функции, связанной с питанием линзы и высоким уровнем взаимодействия между всеми элементами, составляющими электропитание линзы, есть необходимость координировать и контролировать всю работу электронной и оптической составляющих механической офтальмологической линзы. Соответственно, существует потребность в системе управления работой всех других компонентов, которая является безопасной, недорогой и надежной, имеет низкий уровень энергопотребления и является масштабируемой для включения в офтальмологические линзы.

Офтальмологические линзы с электропитанием или электронные офтальмологические линзы должны учитывать некоторые уникальные физиологические функции для индивидуального использования офтальмологических линз с электропитанием или электронных офтальмологических линз. Более конкретно, линзы с электропитанием должны учитывать моргание, в том числе количество морганий в данный период времени, продолжительность моргания, время между морганиями и любое количество возможных особенностей моргания, например, если человек дремлет. Распознавание моргания может быть также использовано для обеспечения определенных функций, например, моргание может быть использовано в качестве средства для управления одним или несколькими аспектами офтальмологической линзы с электропитанием. Кроме того, внешние факторы, такие как изменения в уровнях интенсивности освещения и количестве видимого света, которое блокирует человеческое веко, должны быть учтены при распознавании моргания. Например, если комната имеет уровень освещенности между пятьюдесятью четырьмя (54) и ста шестьюдесятью одним (161) лк, фотодатчик должен быть достаточно чувствительным, чтобы обнаружить изменения интенсивности света, которые происходят, когда человек моргает.

Датчики освещенности или фотодатчики используются во многих системах и оборудовании, например, в телевизорах для регулировки яркости в зависимости от комнатного света, фонарях, чтобы включить в сумерках, и на телефонах для регулировки яркости экрана. Тем не менее, в настоящее время использующиеся сенсорные системы недостаточно малы и/или имеют недостаточно низкое энергопотребление для включения в контактные линзы.

Важно также отметить, что различные типы детекторов моргания могут быть реализованы с компьютерными видеосистемами, управляющимися глазом (и), например, камерой преобразования в цифровую форму компьютера. Программное обеспечение, запускающееся на компьютере может распознавать зрительные образы, такие как открытые и закрытые глаза. Эти системы могут быть использованы в офтальмологических клинических условиях для диагностики и исследования. В отличие от описанных выше датчиков и систем, эти системы предназначены для использования с закрытым глазом, вместо того, чтобы посмотреть, чтобы отвести взгляд от глаза. Хотя эти системы являются недостаточно маленькими, чтобы быть включенными в контактные линзы, используемое программное обеспечение может быть похожим на программное обеспечение, которое работало бы в сочетании с контактными линзами с электропитанием. Любая система может включать в себя программную реализацию искусственных нейронных сетей, чтобы изучить ввод и настроить их вывод соответственно. С другой стороны, не биологически основанная программная реализация, включающая статистику, другие адаптивные алгоритмы, и/или обработки сигнала может быть использована для создания интеллектуальных систем.

Соответственно, существует потребность в средстве и методе обнаружения определенных физиологических функций, таких как моргание, и используя их для включения и/или управления электронными или механическими офтальмологическими линзами в зависимости от типа последовательности моргания определяемой с помощью датчика. Используемый датчик должен быть рассчитан и сконфигурирован для использования в контактных линзах.

С другой стороны, диаметр зрачка вместо или в дополнение к морганию может быть использован для контроля функциональности контактных линз при определенных условиях. Диаметр зрачка - это измеряемый параметр оболочки глаза, который может быть использован, чтобы управлять изменениями в офтальмологическом устройстве. Диаметр зрачка может быть измерен, например, камерой, смотрящей на глаз. Камера захватывает изображения глаза, определяет зрачок по изображению, примеру, или сравнивает опознание, и вычисляет диаметр зрачка. Диаметр зрачка, будь он расширен или сужен, коррелируется уровнем света, падающим на глаз, концентрирующимся вблизи, а не вдали, и некоторыми медицинскими условиями. Офтальмологические устройства могли бы изменять пропускание света или фокусировать расстояние, основываясь на диаметре зрачка, или вызвать другие события. С другой стороны, обнаруженные данные могут быть просто собраны и использованы для мониторинга заболевания.

Существующие методы и приборы для измерения диаметра зрачка не пригодны для использования в контактных линзах. Например, камеры и системы распознавания обычно находятся в клинических условиях или, скажем, на очковых линзах. Существующие системы не имеют ни малый размер, ни низкий ток, необходимый для интеграции в контактную линзу. Существующие системы также не предназначены для изменения состояния офтальмологического устройства в зависимости от изменений диаметра зрачка. Соответственно, существует потребность в средствах и методах определения диаметра зрачка и использования этой информации для управления электронными офтальмологическими линзами или офтальмологическими линзами с электропитанием.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Электронные офтальмологические линзы с задним датчиком расширения зрачка в соответствии с настоящим изобретением позволяют преодолеть ограничения, связанные с уровнем техники, как кратко описано выше.

В соответствии с одним аспектом настоящее изобретение направлено офтальмологическую линзу с электропитанием, содержащую: контактную линзу, включающую оптическую зону и периферическую зону; и систему датчика диаметра зрачка, встроенную в контактную линзу для измерения диаметра зрачка, система датчика диаметра зрачка содержит, по меньшей мере, один датчик, содержащий тонкую прозрачную полоску, установленную через оптическую зону таким образом, чтобы обеспечить распознавание полностью суженных и полностью расширенных зрачков, системный контроллер функционально связанный с, по меньшей мере, одним датчиком и сконфигурированный для определения диаметра зрачка и вывода сигнала управления, основанного на диаметре зрачка, источник электропитания, и, по меньшей мере, одно исполнительное средство, сконфигурированное для приема выходного сигнала управления и выполнения предварительно заданной функции.

При этом тонкая прозрачная полоска содержит группу фотодатчиков, установленных с обращением к радужной оболочке глаза.

Кроме того, группа фотодатчиков может содержать прозрачные фотодатчики или тонкие кремниевые фотодатчики.

При этом система датчика диаметра зрачка дополнительно содержит процессор обработки сигналов, сконфигурированный для приема сигналов от, по меньшей мере, одного датчика, для выполнения цифровой обработки сигнала и вывода одного или более сигналов на системный контроллер, а процессор обработки сигналов содержит ассоциативную память.

В офтальмологической линзе с электропитанием по меньшей мере, один датчик включает в себя датчик полного сопротивления или датчик нервно-мышечной деятельности.

Настоящее изобретение относится к контактным линзам с электропитанием, содержащим электронную систему, которая выполняет любое количество функций, в том числе приведение в движение переменного оптического фокуса, если она включена. Электронная система содержит одну или несколько батарей или других источников питания, схему регулятора мощности, один или несколько датчиков, схему генерации тактовых импульсов, алгоритмы и схему управления, схему запускающего устройства линз.

Управление офтальмологическими линзами с электропитанием может быть достигнуто путем внешнего ручного устройства, которое взаимодействует с линзами по беспроводной связи, такого как портативное дистанционное устройство. С другой стороны, управление офтальмологическими линзами с электропитанием может быть достигнуто путем обратной связи или управляющими сигналами непосредственно от владельца. Например, датчики, встроенные в линзы, могут уловить моргания и/или систему морганий. На основе системы или последовательности морганий, офтальмологические линзы с электропитанием могут изменять состояние, например, их преломляющую способность для того, чтобы сфокусироваться на близком или удаленном объекте. В другом альтернативном типовом варианте осуществления настоящего изобретения, контроль над офтальмологическими линзами с электропитанием может быть достигнут путем обратной связи или управляющего сигнала непосредственно от владельца; а именно, путем фиксирования изменений размера зрачков человека.

Датчик диаметра зрачка настоящего изобретения - небольшого соответствующего размера и с низким потреблением тока - должен быть интегрирован в контактные линзы. В одном варианте осуществления датчик изготовлен из силикона по технологии производства полупроводниковых приборов, истонченный до, примерно, ста (100) микрон или меньше, и нарезанный на кристаллы размером примерно 300×300 микрон или меньше. В альтернативном варианте осуществления настоящего изобретения, датчик изготовлен в виде тонкого, гибкого устройства, которое соответствует сферической форме контактных линз. В еще одном варианте осуществления настоящего изобретения, датчик изготовлен в виде группы меньших датчиков, установленных в различных местах контактных линз, чтобы подвергать дискретизации различные точки на радужной оболочке. Датчики могут распознать диаметр зрачка и его изменения путем фиксирования отражения света, сопротивления, электромагнитного поля, нейронной активности, мышечной активности и других параметров, известных в офтальмологической области.

Датчик диаметра зрачка рассчитан на потребление низкого тока, что позволяет эксплуатацию в контактных линзах от небольшого аккумулятора и/или устройства сбора энергии. В одном варианте осуществления настоящего изобретения датчик выполнен в виде несмещенного или с низким смещением фотодетектора обнаружения света, отраженного от радужной оболочки. Датчик в этом случае может быть дискретизирован с низким циклом и низкой частотой, так что общее потребление энергии сведено к минимуму. В другом варианте осуществления настоящего изобретения, датчик выполнен для выявления сопротивления по всей радужной оболочке или в различных точках на радужной оболочке. Опять же, датчик выполнен с помощью слаботочной техники, широко распространенной в области, например, высокое сопротивление и низкое напряжения. В еще одном варианте осуществления настоящего изобретения, датчик выполнен для измерения нервно-мышечной деятельности, например, путем измерения электромагнитных излучений от мышц, которые контролируют радужную оболочку диафрагмы.

Датчик диаметра зрачка предназначен для работы в системе, которая запускает электронные офтальмологические устройства, основанные на изменениях диаметра зрачка. В одном варианте осуществления настоящего изобретения, датчик дискретизирован с периодичностью, которая достаточно часта, чтобы удобно и удачно обнаружить желание изменить фокусное расстояние, но достаточно медленна, чтобы свести к минимуму потребление тока для работы от батарейки и/или устройства сбора энергии. Датчик включен в систему определения диаметра зрачка наряду с другими вводными, например, падением окружающего освещения на глаз. В этом случае, система может обнаружить изменения в диаметре зрачка при отсутствии снижения освещенности, ситуация связана с желанием сфокусировать вблизи.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Вышеизложенные и прочие характеристики и преимущества настоящего изобретения станут понятны после следующего более подробного описания предпочтительных вариантов осуществления настоящего изобретения, проиллюстрированных с помощью прилагаемых фигурах.

На фиг. 1 показана типовая контактная линза, включающая в себя систему распознавания моргания в соответствии с некоторыми вариантами осуществления настоящего изобретения.

Фиг. 2 иллюстрирует графическое представление света, падающего на поверхность глаза в зависимости от времени, иллюстрирующее возможные непроизвольные системы моргания, записанные при различных уровнях интенсивности света в зависимости от времени и использованного порогового уровня, основанного на какой-то точке между максимальным и минимальным уровнем интенсивности света в соответствии с настоящим изобретением.

На фиг. 3 показан пример диаграммы переходов состояния системы распознавания моргания в соответствии с настоящим изобретением.

Фиг. 4 представляет собой схематическое изображение путем фотодетектирования, используемого для обнаружения и получения схемы световых сигналов в соответствии с настоящим изобретением.

На фиг. 5 представлена блок-схема цифрового логического условия в соответствии с настоящим изобретением.

На фиг. 6 представлена блок-схема цифровой схемы обнаружения в соответствии с настоящим изобретением

На фиг. 7 показана типовая временная диаграмма в соответствии с настоящим изобретением.

Фиг. 8 представляет собой схематическое изображение цифрового контроллера системы в соответствии с настоящим изобретением.

На фиг. 9 показана типовая временная диаграмма для автоматической регулировки усиления в соответствии с настоящим изобретением.

Фиг. 10 представляет собой схематическое изображение световой блокировки и светопропускающих частей на типовом кристалле ИС в соответствии с настоящим изобретением.

Фиг. 11 представляет собой схематическое изображение типовой электронной вставки, включая детектор моргания, для механической контактной линзы в соответствии с настоящим изобретением.

Фиг. 12 представляет собой схематическое изображение офтальмологической линзы с электропитанием, имеющей первый типовой датчик диаметра зрачка, расположенный на глазе в соответствии с настоящим изобретением.

Фиг. 13 представляет собой схематическое изображение механической офтальмологической линзы, имеющей второй типовой датчик диаметра зрачка, расположенный на глазе в соответствии с настоящим изобретением.

Фиг. 14 представляет блок-схему электронной системы для определения и использования диаметра зрачка в соответствии с настоящим изобретением.

На фиг. 15 приведен график окружающего освещения и диаметра зрачка в зависимости от времени в соответствии с настоящим изобретением.

ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Стандартные контактные линзы являются полимерными структурами определенной формы для коррекции различных проблем со зрением, которые были кратко упомянуты выше. Для достижения расширенной функциональности, в эти полимерные структуры могут быть интегрированы различные схемы и компоненты. Например, цепи управления, микропроцессоры, устройства связи, источники питания, датчики, исполнительные механизмы, светоизлучающие диоды, и миниатюрные антенны могут быть интегрированы в контактные линзы с помощью изготовленных на заказ оптикоэлектронных компонентов не только для коррекции зрения, но и для улучшения зрения, а также для обеспечения дополнительной функциональности, как объясняется здесь. Электронные контактные линзы и/или контактные линзы с электропитанием могут быть разработаны, чтобы обеспечить улучшенное зрение с помощью уменьшительных и увеличительных возможностей, или просто изменения преломляющих возможностей линз. Электронные контактные линзы и/или контактные линзы с электропитанием могут быть предназначены для усиления цвета и разрешения, для отображения текстурной информации, чтобы переводить речь в субтитры в реальном времени, чтобы принимать визуальные сигналы от навигационной системы, а также обеспечивать обработку изображений и доступ в Интернет. Линзы могут быть разработаны, чтобы позволить пользователю видеть в условиях низкой освещенности. Правильно сконструированная электроника и/или расположение электроники на линзе может позволить проецировать изображение на сетчатку, например, без оптических линз с переменным фокусом, что позволяет отображать новое изображение или даже выдавать предупреждающие сообщения. С другой стороны, или в дополнение к любым из этих функций или схожим функциям, контактные линзы могут включать компоненты неинвазивного наблюдения за биомаркерами пользователя и его показателями здоровья. Например, встроенные в линзу датчики могут позволять пациенту с диабетом принимать таблетки в соответствии с уровнем сахара в крови за счет анализа компонентов слезной пленки без необходимости забора крови. Кроме того, соответствующим образом сконфигурированная линза может включать в себя датчики для контроля уровня холестерина, натрия и калия, а также других биологических маркеров. Они соединены с беспроводным блоком передачи данных, что может позволить врачу иметь почти мгновенный доступ к результатам биохимического анализа крови пациента без траты времени пациента на посещение лаборатории и проведение забора крови. Кроме того, встроенные в линзы датчики могут быть использованы для обнаружения света, падающего на глаз, чтобы компенсировать условия освещения, или для использования при определении схем моргания.

Контактные линзы с электропитанием или электронные контактные линзы настоящего изобретения содержат элементы, которые необходимы для коррекции и/или усиления зрения пациентов с одним или более описанным выше дефектом зрения, или другим дефектом, и выполнения полезных офтальмологических функций. Кроме того, электронные контактные линзы могут быть использованы просто для улучшения нормального зрения или предоставления широкого спектра функциональных возможностей, как описано выше. Электронная контактная линза может содержать оптическую линзу с переменным фокусом, которая помещается в переднее оптическое устройство, встроенное в контактную линзу, или электроника встраивается напрямую без линзы для придания любой пригодной функциональности. Электронная линза настоящего изобретения может быть встроена во множество выше описанных контактных линз. Кроме того, интраокулярная линза может также содержать различные компоненты и функции, описанные здесь. Однако для простоты объяснения описание будет большей частью посвящено одноразовым электронным контактным линзам для коррекции дефектов зрения, которые предназначены для однодневного повседневного ношения.

Настоящее изобретение может быть использовано в офтальмологической линзе с электропитанием или контактной линзе с электропитанием, содержащей электронную систему, которая приводит в действие переменный фокус оптического или любого другого устройства или устройств, сконфигурированных для осуществления любого количества многочисленных функций, которые могут быть выполнены. Электронная система содержит одну или несколько батарей или других источников питания, схему регулятора мощности, один или несколько датчиков, схему генерации тактовых импульсов, алгоритмы и схему управления, схему запускающего устройства линз. Комплектация этих компонентов может изменяться в зависимости от необходимой или желательной функциональности линзы.

Управление электронными офтальмологическими линзами или офтальмологическими линзами с электропитанием может быть достигнуто путем ручного внешнего устройства, которое взаимодействует с линзой, такого как портативное ручное устройство. Например, брелок обеспечивает беспроводную связь с линзой с электропитанием, основанную на ручном вводе от пользователя. С другой стороны, управление офтальмологическими линзами с электропитанием может быть достигнуто путем обратной связи или управляющими сигналами непосредственно от владельца. Например, датчики, встроенные в линзы, могут уловить моргания и/или систему морганий. На основе системы или последовательности морганий, офтальмологические линзы с электропитанием могут изменять состояние, например, их преломляющую способность для того, чтобы сфокусироваться на близком или удаленном объекте.

С другой стороны, определение моргания в офтальмологической линзе с электропитанием или электронной офтальмологической линзе может быть использовано для других различных применений, где есть взаимодействие между пользователем и электронной контактной линзой, такое как активация другого электронного устройства, или отправка команды другому электронному устройству. Например, определение моргания в офтальмологической линзе может быть использовано в сочетании с камерой на компьютере, где камера отслеживает, путь перемещения глаз (а) по экрану компьютера, и когда пользователь выполняет фиксируемое последовательное моргание, это вызывает указатель мыши для выполнения команды, такой как двойной щелчок на элементе, выделение элемента, или выбор элемента меню.

Алгоритм определения моргания является компонентом системного контроллера, который определяет характеристики морганий, например, открыто или закрыто веко, продолжительность моргания, продолжительность между морганиями, и количество морганий в данный период времени. Алгоритм в соответствии с настоящим изобретением полагается на дискретизацию света, падающего на глаз при определенной частоте дискретизации. Предварительно определенные схемы морганий хранятся и сравнены с недавней историей дискретизаций падающего света. Когда схемы совпадают, алгоритм определения моргания может вызвать активность в системе управления, например, для активации управления линзы для изменения преломляющей силы линзы.

Моргание - это быстрое закрытие и открытие век и жизненно важная функция глаза. Моргание защищает глаз от посторонних предметов, например, человек моргает, когда неожиданно появляются объекты в непосредственной близости от глаз. Моргание обеспечивает смазку на передней поверхности глаза, распространяя слезы. Моргание также служит для удаления загрязнений и/или раздражающих веществ из глаза. Как правило, моргание происходит автоматически, но внешние раздражители могут способствовать морганию, как и в случае с раздражающими веществами. Тем не менее, моргание также может быть целенаправленным, например, люди, которые не в состоянии общаться устно или с помощью жестов могут моргнуть один раз "да" и два раза на "нет". Алгоритм определения моргания и система настоящего изобретения используют схемы морганий, которые не могут быть спутаны с нормальным ответным морганием. Другими словами, если моргание должно быть использовано в качестве средства управления действием, то определенная схема, выбранная для данного действия, не может произойти случайно; в противном случае могут произойти непреднамеренные действия. Скорость моргания может зависеть от ряда факторов, включая усталость, травму глаза, лекарства и болезни, схемам морганий с целью контроля желательно учитывать эти и любые другие переменные, которые влияют на моргание. Средняя продолжительность непроизвольного моргания находится в диапазоне от ста (100) до четырехсот (400) миллисекунд. В среднем взрослые мужчины и женщины моргают в диапазоне от десяти (10) непроизвольных морганий в минуту, а среднее время между непроизвольными морганиями примерно от 0,3 до семидесяти (70) секунд.

Типовой вариант осуществления настоящего изобретения определения моргания можно резюмировать в следующих шагах.

1. Распознать преднамеренную "последовательность моргания", которую пользователь будет выполнять для положительного определения моргания.

2. Дискретизация входящего уровня освещенности, в диапазоне соответствующем определению последовательности моргания и отклонению непроизвольных морганий.

3. Сравнить историю дискретизации уровней освещенности с ожидаемой "последовательностью моргания", как это определено в шаблонных значениях моргания.

4. При необходимости выполняют "маску" последовательности моргания, чтобы указать части шаблона игнорируемые при сравнении, например, ближние переходы. Это может позволить пользователю отклониться от желаемой "последовательности моргания", типа плюс или минус одно (1) окно об ошибке, в котором может произойти приведение в действие, контроль и изменение фокуса одной или нескольких линз. Кроме того, это может позволить изменения во времени последовательности моргания пользователя.

Типовая последовательность моргания может быть определена следующим образом:

1. моргание (закрыто) на 0,5 с

2. открыто на 0,5 с

3. моргание (закрыто) на 0,5 с

На сто (100) мс частоты дискретизации, двадцать (20) мс дискретизации шаблона моргания задается

шаблон_моргания=[1,1,1, 0,0,0,0,0, 1,1,1,1,1, 0,0,0,0,0, 1,1].

Маска моргания определяется по маскировке дискретизаций сразу после перехода (0, чтобы маскировать или игнорировать дискретизации), и дается

маска_моргания=[1,1,1, 0,1,1,1,1, 0,1,1,1,1, 0,1,1,1,1,0,1].

При необходимости более широкая область перехода может быть замаскирована, чтобы обеспечить большую неточность хронирования, и дана

маска_моргания=[1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0,0,1].

Могут быть реализованы альтернативные схемы, например, одно длинное моргание, в данном случае 1,5 с моргание с 24 - шаблоном дискретизации, дан

шаблон_моргания=[1,1,1,1,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,1,1,1,1,1].

Важно отметить, что приведенный выше пример предназначается для иллюстрации и не представляет определенного набора данных.

Определение может быть реализовано логическим сравнением истории дискретизаций по шаблону и маске. Логическая операция - исключающее ИЛИ (XOR), шаблон и дискретизацию истории последовательности, на побитовой основе, а затем убедиться, что вся немаскированная история битов соответствует шаблону. Например, как показано в дискретизации маски моргания выше, в каждом месте последовательности маски моргания, где значение логическая 1, моргание должно соответствовать шаблону маски моргания в этом месте последовательности. Тем не менее, в каждом месте последовательности маски моргания, где значение логический 0, не обязательно, что моргание совпадает с шаблоном маски моргания в этом месте последовательности. Напри