Кабель электропитания, включающий полипропилен
Иллюстрации
Показать всеИзобретение относится к кабелю электропитания. Описан кабель электропитания с высоким напряжением (HV) или кабель электропитания со сверхвысоким напряжением. Кабель включает проводник, окруженный по меньшей мере одним слоем, включающим полипропилен. Полипропилен включает наноразмерные фрагменты катализатора, источником происхождения которых является твердая каталитическая система. Наноразмерные фрагменты катализатора имеют средний размер частиц d50 менее 1 µм, измеренный счетчиком Коултера LS200 при комнатной температуре с n-гептаном в качестве среды. Также описан способ получения кабеля. Технический результат - получение кабеля, включающего полипропилен, обладающего низкой электропроводностью. 2 н. и 10 з.п. ф-лы, 1 ил., 3 табл., 6 пр.
Реферат
Настоящее изобретение относится к новому кабелю для электропитания, в частности к новому кабелю электропитания постоянного тока высокого напряжения, содержащему полипропилен, включающий равномерно распределенные наноразмерные фрагменты катализатора.
Полиолефины широко используются в случаях с особыми требованиями, когда полимеры должны отвечать высоким механическим и/или электрическим параметрам. Например, в кабелях электропитания, в частности в кабелях со средним напряжением (MV) и по существу с высоким напряжением (HV) и со сверхвысоким напряжением (EHV), очень важное значение имеют электрические свойства композиции полимеров. Дополнительно, электрические свойства могут отличаться для различных кабелей в зависимости от их применения, как в случае с кабелями для переменного тока (АС), так и кабелями постоянного тока (DC).
Типичный кабель электропитания содержит проводник, окруженный по меньшей мере одним слоем. Как правило, кабели получают экструдированием слоев на проводник.
Кабель электропитания определяют, как кабель, передающий энергию при любом напряжении. Напряжение, подаваемое на кабель, может быть переменным (АС), постоянным (DC) или переходным (импульсным). Дополнительно, кабели электропитания, как правило, маркируют в соответствии с уровнем их рабочего напряжения, например, кабель электропитания низкого напряжения (LV), среднего напряжения (MV), высокого напряжения (HV) или сверхвысокого напряжения (EHV), эти термины хорошо известны. EHV кабель электропитания работает при напряжении даже выше, как правило, используемого в HV кабеле электропитания. LV кабель электропитания и в некоторых вариантах воплощения настоящего изобретения кабели среднего напряжения (MV), как правило, включают проводник, покрытый изоляционным слоем. Как правило, MV и HV кабели электропитания включают проводник, окруженный в указанном порядке по меньшей мере внутренним полупроводящим слоем, изоляционным слоем и внешним полу проводящим слоем.
Следовательно, объект настоящего изобретения обеспечивает слой кабеля электропитания, в частности кабеля электропитания постоянного тока высокого напряжения (HVDC), который включает полимерный материал с низкой проводимостью.
Находка настоящего изобретения состоит в использовании полипропилена в слое кабеля электропитания, где полипропилен содержит равномерно распределенные наноразмерные остатки катализатора.
Следовательно, в первом аспекте (1-ый вариант воплощения настоящего изобретения) настоящее изобретение относится к кабелю электропитания, в частности к кабелю электропитания высокого напряжения, более предпочтительно к кабелю электропитания постоянного тока высокого напряжения или кабелю электропитания постоянного тока сверх высокого напряжения, включающему проводник, окруженный по меньшей мере одним слоем (L), включающим полипропилен (РР), где полипропилен (РР) включает наноразмерные фрагменты катализатора (F), источником происхождения которых является твердая каталитическая система (SCS).
«Наноразмерные» Фрагменты катализатора (F) предпочтительно имеют средний диаметр частиц d50 менее 1 µм.
Указанные фрагменты катализатора (F), происходящие из твердой каталитической системы, предпочтительно имеют одно или более из следующих свойств, в любом порядке:
(a) имеют объем пор, измеренный согласно ASTM 4641 менее чем 1,40 мл/г, и/или
(b) имеют площадь поверхности, измеренную согласно ASTM D 3663 менее чем 30 м2/г,
и/или
(c) имеют средний размер частиц d50 в пределах от 1 до 200 µм, предпочтительно в пределах от 10 до 150 µм.
Более предпочтительно полипропилен (РР) включает фрагменты катализатора (F) со средним размером частиц твердого вещества d50 менее 1 µм, источником происхождения которых является каталитическая система (SCS), где каталитическая система (SCS) имеет (b) площадь поверхности, измеренную согласно ASTM D 3663 менее чем 30 м2/г, более предпочтительно имеет все указанные выше свойства (а)-(с).
Еще более предпочтительно твердая каталитическая система (SCS) представляет иную, чем каталитическая система, в которой каталитически активные компоненты нанесены на твердую внешнюю, необязательно пористую подложку (то есть, каталитическую систему, нанесенную на внешнюю поверхность подложки) или осажденную в однофазной жидкой системе, то есть, не в диспергированной жидкой системе из маточной жидкости (то есть, осажденной каталитической системы). Нанесенная на твердую внешнюю подложку система означает, что материал в форме частиц внешней подложки получен отдельно перед получением твердой каталитической системы (SCS). Конечную, нанесенную на подложку каталитическую систему затем получают добавлением каталитически активных компонентов для предварительного получения твердого материал подложки в форме частиц, который необязательно может быть пористым, для нанесения каталитически активных компонентов на необязательно пористые частицы внешней подложки. Такой материал внешней подложки может представлять, например, кремний, алюминий, полимер или материал на основе Mg, такой как MgCl2, твердую подложку на основе частиц. В свою очередь, осажденная каталитическая система, как правило, является пористой и может быть не гомогенной по размеру частиц и морфологии (форма и/или структура поверхности). Как правило, осаждение происходит за счет химической реакции между реактивными компонентами, растворенными в маточной жидкости.
Предпочтительно, чтобы твердая каталитическая система (SCS) была получена (произведена)
(a) обеспечением раствора (S), содержащего металлорганическое соединение переходного металла одной из групп 3-10 периодической таблицы (IUРАС) (ИЮПАК),
(b) образованием эмульсионной системы жидкость/жидкость (Е), содержащей указанный раствор (S) в форме капель, диспергированных в непрерывной фазе эмульсионной системы (Е),
(c) отверждением указанной диспергированной фазы (капли) с получением твердой каталитической системы (SCS).
Твердая каталитическая система (SCS) необязательно имеет включения (IС), которые не являются каталитически активными. Включения (IС) представляют пустоты, диспергированные в каталитической системе (SCS) в процессе получения каталитической системы (SCS). Таким образом, пустоты образуют отдельную диспергированную фазу каталитической системы (SCS). Указанные пустоты выбирают из полых пустот или пустот, включающих или состоящих из каталитически не активного жидкого или твердого материала, предпочтительно состоящих из каталитически не активного твердого материала. Наиболее предпочтительными необязательными включениями (IС) являются пустоты, которые включают, предпочтительно состоят из каталитически не активного твердого материала. Когда включения (IС) каталитической системы (SCS) включают, предпочтительно состоят из каталитически не активного твердого материала, то количество такого каталитически не активного твердого материала предпочтительно составляет 30 масс. % или менее, более предпочтительно 20 масс. % или менее, еще более предпочтительно не более чем 10 масс. % от твердой каталитической системы (SCS). Указанные необязательные включения могут быть желательными и предпочтительными в зависимости от конечного применения кабеля. В вариантах воплощения настоящего изобретения, предпочтительно в применениях для кабеля постоянного тока (DC), распределение таких включений (IС), предпочтительно включений (IС) сформированных пустотами из каталитически не активного твердого материала в полипропилене (РР)вносит свой вклад в электрические свойства полипропилена (РР), в таком случае каталитическая система (SCS) предпочтительно содержит указанные включения (IС). Необязательные включения (IС) и электрические свойства буду дополнительно описаны ниже.
В другом аспекте настоящее изобретение (2-ой вариант воплощения) независимо относится к кабелю электропитания, в частности к кабелю электропитания высокого напряжения, более предпочтительно к кабелю электропитания высокого напряжения постоянного тока, или к кабелю электропитания сверх высокого напряжения постоянного тока, включающему проводник, окруженный по меньшей мере одним слоем (L), включающим полипропилен (РР), где полипропилен (РР) получен в присутствии твердой каталитической системы (SCS), указанная твердая каталитическая система (SCS) имеет одно или более из следующих свойств в любом порядке:
(a) имеет объем пор, измеренный согласно ASTM 4641, менее чем 1,40 мл/г,
и/или
(b) имеет площадь поверхности, измеренную согласно ASTM D 3663, менее чем 30 м2/г,
и/или
(c) имеет средний размер частиц d50 в пределах от 1 до 200 µм, предпочтительно в пределах от 10 до 150 µм.
Благодаря специфической твердой каталитической системе (SCS), использованной во втором аспекте настоящего изобретения, полипропилен (РР) предпочтительно включает наноразмерные фрагменты катализатора (F), которые происходят из указанной твердой каталитической системы (SCS).
«Наноразмерные» фрагменты катализатора (F) предпочтительно имеют средний диаметр частиц d50 менее 1 µм.
Более предпочтительно полипропилен (РР) включает фрагменты катализатора (F) со средним размером частиц твердого вещества d50 менее 1 µм, источником происхождения которых является каталитическая система (SCS), где каталитическая система (SCS) имеет (b) площадь поверхности, измеренную согласно ASTM D 3663, менее чем 30 м2/г, более предпочтительно имеет все указанные выше свойства (а)-(с).
Еще более предпочтительно твердая каталитическая система (SCS) представляет иную, чем каталитическая система, где каталитически активные компоненты нанесены на твердую внешнюю, необязательно пористую подложку (то есть, каталитическую систему, нанесенную на внешнюю поверхность подложки) или осажденную в однофазной жидкой системе, то есть, не в диспергированной жидкой системе из маточной жидкости (то есть, осажденной каталитической системы). Нанесенная на твердую внешнюю подложку каталитическая система и осажденная каталитическая система имеют тоже значение, что и указанное в первом аспекте настоящего изобретения.
Предпочтительно, чтобы твердая каталитическая система (SCS) была получена (произведена)
(a) обеспечением раствора (S), содержащего металлорганическое соединение переходного металла одной из групп 3-10 периодической таблицы (IUРАС) (ИЮПАК),
(b) образованием эмульсионной системы жидкость/жидкость (Е), содержащей указанный раствор (S) в форме капель, диспергированных в непрерывной фазе эмульсионной системы (Е),
(c) отверждением указанной диспергированной фазы (капли) с получением твердой каталитической системы (SCS).
Твердая каталитическая система (SCS) необязательно имеет включения (IС), которые не являются каталитически активными. Объем понятия включения (IС) и варианты их воплощения имеют тоже значение, что и указанное в первом аспекте настоящего изобретения.
В другом аспекте (3-ем варианте воплощения настоящего изобретения), который является по существу предпочтительным, настоящее изобретение независимо относится к кабелю электропитания, в частности к кабелю электропитания высокого напряжения, более предпочтительно к кабелю электропитания высокого напряжения постоянного тока или к кабелю электропитания сверх высокого напряжения постоянного тока, включающему проводник, окруженный по меньшей мере одним слоем (L), включающим полипропилен (РР), где полипропилен (РР) получен в присутствии твердой каталитической системы (SCS), указанная твердая каталитическая система (SCS) получена:
(a) обеспечением раствора (S), содержащего металлорганическое соединение переходного металла одной из групп 3-10 периодической таблицы (IUРАС) (ИЮПАК),
(b) образованием эмульсионной системы жидкость/жидкость (Е), содержащей указанный раствор (S) в форме капель, диспергированных в непрерывной фазе эмульсионной системы (Е),
(c) отверждением указанной диспергированной фазы (капли) с получением твердой каталитической системы (SCS).
Дополнительно или предпочтительно благодаря специфической твердой каталитической системе (SCS), использованной в третьем аспекте настоящего изобретения, полипропилен (РР) предпочтительно включает наноразмерные фрагменты катализатора (F), которые происходят из указанной твердой каталитической системы (SCS).
«Наноразмерные» фрагменты катализатора (F) предпочтительно имеют средний диаметр частиц d50 менее 1 µм.
Соответственно твердая каталитическая система (SCS) по третьему аспекту, полученная специфическим способом, предпочтительно имеет одно или более из следующих свойств, в любом порядке:
(a) имеет объем пор, измеренный согласно ASTM 4641, менее чем 1,40 мл/г,
и/или
(b) имеет площадь поверхности, измеренную согласно ASTM D 3663, менее чем 30 м2/г,
и/или
(c) имеет средний размер частиц d50 в пределах от 1 до 200 µм, предпочтительно в пределах от 10 до 150 µм.
Более предпочтительно полипропилен (РР) включает фрагменты катализатора (F) со средним размером твердых частиц d50 менее 1 µм, источником происхождения которых является твердая каталитическая система (SCS), где каталитическая система (SCS) имеет (b) площадь поверхности, измеренную согласно ASTM D 3663, менее чем 30 м2/г, более предпочтительно имеет все указанные выше свойства (а)-(с).
Еще более предпочтительно твердая каталитическая система (SCS) представляет иную, чем каталитическая система, где каталитически активные компоненты нанесены на твердую внешнюю, необязательно пористую подложки (то есть, каталитическую систему, нанесенную на внешнюю поверхность подложки) или осажденную в однофазной жидкой системе, то есть, не в диспергированной жидкой системе из маточной жидкости (то есть, осажденной каталитической системы). Нанесенная на твердую внешнюю подложку система и осажденная каталитическая система имеют тоже значение, что и указанное в первом аспекте настоящего изобретения.
Твердая каталитическая система (SCS) необязательно имеет включения (IС) которые, не являются каталитически активными. Объем понятия включения (IС) и варианты их воплощения имеют тоже значение, что и указанное в первом аспекте настоящего изобретения.
Неожиданно было обнаружено, что слой кабеля электропитания, содержащий полипропилен (РР), как указано выше в одной из трех независимых альтернатив настоящего изобретения, имеет улучшенные электрические свойства, выраженные, например, как пониженная электропроводность. Дополнительно, уменьшение размера частиц любых остатков катализатора, присутствующих в полипропилене, снизит вероятность феномена деградации электрических параметров, таких как инициация электрического и водного триинга, которые в комбинации или независимо могут привести к отказу системы изоляции системы электропитания.
Далее буду более детально описаны три варианта воплощения настоящего изобретения.
Полипропилен(РР)
Одним из важнейших аспектов настоящего изобретения является специфический выбранный полипропилен (РР) в слое (L). Соответственно, далее приведено более детальное описание полипропилена (РР).
Полипропилен (РР) по настоящему изобретению характеризуется присутствием уникальных остатков катализатора. Точнее, полипропилен (РР) характеризуется фрагментами катализатора (F), находящимися в наноразмерных пределах. Эти фрагменты (F) происходят из твердой каталитической системы (SCS), используемой для получения полипропилена (РР). Использованный способ получения полипропилена (РР), включающий специфическую твердую каталитическую систему (SCS), более детально приведен ниже. Следовательно, полипропилен (РР) по настоящему изобретению предпочтительно получен в присутствии твердой каталитической системы (SCS), где активные частицы катализатора указанной твердой каталитической системы (SCS) предпочтительно представляют катализатор Циглера-Натта или катализатор с единым центром полимеризации на металле, более предпочтительно катализатор с единым центром полимеризации на металле.
Как указано выше, используемый в описании настоящей патентной заявки термин «наноразмерный» означает, что фрагменты катализатора (F) имеют средний размер d50 менее 1 µм, более предпочтительно менее 800 µм, еще более предпочтительно от 20 до 600 µм, еще более предпочтительно от 30 до 500 µм, такое как от 30 до 300 µм.
Используемый в описании настоящей патентной заявки термин «равномерное распределение» (или аналогичные термины, такие как «равномерно распределенные») наноразмерных фрагментов катализаторов (F) в полипропилене (РР) указывает на то, что фрагменты (F) не локализованы в одной специфической области полипропилена (РР), а распределены по всему полипропилену (РР). Это выражение в частности указывает, что фрагменты (F), происходящие из твердой каталитической системы (SCS), которая разрушается на очень ранней стадии полимеризации полипропилена (РР) на очень мелкие наноразмерные частицы и, таким образом, равномерно распределяются в растущем полипропилене (РР). Такое равномерное распределение любого наноматериала невозможно достичь добавлением твердого материала отдельно в полимер.
Неожиданно было обнаружено, что полипропилен (РР), содержащий наноразмерные фрагменты катализатора (F), происходящие из твердой каталитической системы (SCS), обладает интересующими электрическими свойствами, то есть, низкой электропроводностью. Другими словами, наноразмерные фрагменты катализатора (F), описанные здесь, не ухудшают электрические свойства полипропилена (РР), и таким образом, количество фрагментов не является критическим. Напротив, считается, что наноразмерные фрагменты специфического катализатора (F) полезны для снижения электропроводности и также снижают возможность отказа системы электропитания по сравнению с остатками традиционного катализатора. В результате этого можно опустить дорогостоящую и трудоемкую стадию очистки полимера.
Таким образом, количество наноразмерных фрагментов катализатора (F), как правило, измеряемое содержанием золы, не является ограничивающим признаком полипропилена (РР) и может быть согласно настоящему изобретению на уровне, как в норме требуется для кабеля электропитания, или может быть выше, чем обычно принято. Следовательно, в одном варианте воплощения настоящего изобретения полипропилен (РР) может иметь содержание золы выше 30 частей на миллион, более предпочтительно в пределах от 30 до 500 частей на миллион, такое как в пределах от 50 до 300 частей на миллион, например, в пределах от 60 до 200 частей на миллион, как определено согласно «общему рассчитанному содержанию золы» («Ash calculated total»), как описано ниже в «А. Способах измерения».
В норме с таким высоким содержанием золы электрические свойства полипропилена не удовлетворительны, однако это не относится к полипропилену (РР) по настоящему изобретению. Не желая быть ограниченными какой-либо теорией, авторы настоящего изобретения считают, что хорошие электрические свойства, достигнутые у полипропилена (РР), содержащего даже более высокое количество наноразмерных фрагментов катализатора (F), то есть высокое содержание золы, может быть благодаря равномерному распределению наноразмерных фрагментов катализатора (F) в полипропилене (РР) и таким образом в слое (L), а также благодаря малому размеру наноразмерных фрагментов катализатора (F). Такое равномерное распределение наноразмерных частиц достигается за счет использования твердой каталитической системы (SCS), как более детально описано ниже.
Соответственно, понятно, что полипропилен (РР) и/или слой (L) характеризуется электропроводностью 50 fS/м или менее, более предпочтительно от <0,01 (более низкие показатели не определяются при использовании удельной электропроводности по постоянному току) до 40 fS/м, более предпочтительно от <0,01 до 30 fS/м, более предпочтительно от <0,01 до 20 fS/м, еще более предпочтительно от<0,01 до 10 fS/м, еще более предпочтительно от <0,01 до 8,00 fS/м, еще более предпочтительно от <0,01 до 6,00 fS/м, еще более предпочтительно от <0,01 до 5,00 fS/м, еще более предпочтительно от <0,01 до 4,00 fS/м, еще более предпочтительно от <0,01 до 3,5 fS/м, еще более предпочтительно от <0,01 до 3,0 fS/м, еще более предпочтительно от <0,01 до 2,5 fS/м, как измерено при использовании метода измерения удельной электропроводности по постоянному току, как описано в « Части примеров».
В другом варианте воплощения настоящего изобретения содержание золы может быть равным или менее 30 частей на миллион, более предпочтительно равным или менее 20 частей на миллион, еще более предпочтительно в пределах от 1 до равного или менее 30 частей на миллион, еще более предпочтительно в пределах от 1 до равного или менее 20 частей на миллион. Эти показатели в частности достигаются в случае очищенного, то есть промытого полипропилена (РР). Также в таком случае электропроводность полипропилена (РР) такая же, как указано выше. Таким образом, в противоположность настоящему уровню техники электропроводность не зависит от количества остатков катализатора, присутствующих в полипропилене (РР), и следовательно, в слое (L).
Полипропилен (РР) по настоящему изобретению может представлять гомополимер пропилена (Н-РР), рандом сополимер пропилена (R-PP) или гетерофазный сополимер пропилена (НЕСО). Более предпочтительно полипропилен может представлять рандом сополимер пропилена (R-PP) или гетерофазный сополимер пропилена (НЕСО).
В одном варианте воплощения настоящего изобретения гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) образует матрицу из гетерофазного сополимера пропилена (НЕСО). Соответственно, сначала описаны более детально гомополимер пропилена (Н-РР) и рандом сополимер пропилена (R-PP) и затем гетерофазный сополимер пропилена (НЕСО).
Используемый в описании настоящей патентной заявки термин гомополимер относится к полипропилену, по существу состоящему из пропиленовых единиц, то есть равному или более 99,5 масс. %, более предпочтительно равному или более 99,8 масс. % пропиленовых единиц. В предпочтительном варианте воплощения настоящего изобретения гомополимер пропилена состоит только из пропиленовых единиц.
В случае, когда полипропилен (РР) представляет рандом-сополимер пропилена (R-PP), он включает мономеры, сополимеризуемые с пропиленом, например, сомономеры, такие как этилен и/или С4-С12 альфа-олефины, в частности, этилен и/или С4-С10 альфа-олефины, например, 1-бутен и/или 1-гексен. Предпочтительно рандом-сополимер пропилена (R-PP) включает, по существу состоит из мономеров, сополимеризуемых с пропиленом,выбранных из группы, состоящей из этилена, 1-бутена и 1-гексена. А именно, рандом-сополимер пропилена (R-PP) включает помимо пропилена этиленовые единицы и/или 1-бутен. В предпочтительном варианте воплощения настоящего изобретения рандом-сополимер пропилена (R-PP) включает только этиленовые и пропиленовые единицы.
В другом предпочтительном варианте воплощения настоящего изобретения рандом сополимер пропилена (R-PP) включает единицы, получаемые только из 1-гексена и пропилена. В другом предпочтительном варианте воплощения настоящего изобретения рандом сополимер пропилена (R-PP) включает единицы, получаемые только из 1-бутена и пропилена. Содержание сомономера в рандом сополимере пропилена (R-PP) предпочтительно составляет в пределах от более чем 0,5 до 12,0 масс. %, еще более предпочтительно в пределах от более чем 0,5 до 10,0 масс. %, еще более предпочтительно в пределах от более чем 0,5 до 8,0 масс. %.
В одном варианте воплощения настоящего изобретения гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) получен при использовании катализатора с единым центром полимеризации на металле, как детально описано ниже. В таком случае гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) характеризуются достаточно высоким количеством ошибочных регио вставок пропилена в полимерной цепи. Соответственно, композиция гомополимера пропилена (Н-РР) или рандом сополимера пропилена (R-PP) характеризуется высоким количеством <2,1> эритро региодефектов, то есть более чем 0,1 мол.%, более предпочтительно равное или менее 0,4 мол.%, еще более предпочтительно более чем 0,4 мол.%, еще более предпочтительно более чем 0,6 мол.%, такое как в пределах от 0,7 до 0,9 мол.%, как определено при использовании 13С-ЯМР спектроскопии.
В случае, когда гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) получают при использовании катализатора Циглера-Натта, <2,1> эритро региодефекты равны или менее 0,1 мол.%, более предпочтительно не определяются.
Соответственно, полипропилен (РР) по настоящему изобретению может быть получен при использовании твердой каталитической системы (SCS), как более детально описано ниже, где активные частицы катализатора представляют катализатор Циглера-Натта или катализатор с единым центром полимеризации на металле. Как указано выше, в одном предпочтительном варианте воплощения настоящего изобретения указанная твердая каталитическая система (SCS) имеет включения (IС), которые не являются каталитически активными. Ссылка в этом отношение сделана на часть твердой каталитической системы (SCS).
В случае, когда полипропилен (РР) представляет гомополимер пропилена (Н-РР), содержание фракции, растворимой в холодном ксилоле (XCS), составляет в пределах от 0,1 до 4,5 масс. %, более предпочтительно в пределах от 0,1 до 4,0 масс. %, еще более предпочтительно от 0,2 до 4,0 масс. %.
Содержание фракции, растворимой в холодном ксилоле (XCS), в рандом сополимере пропилена (R-PP) может отличаться от содержания фракции, растворимой в холодном ксилоле (XCS), в гомополимере пропилена (Н-РР). Соответственно, понятно, что рандом сополимер пропилена (R-PP) имеет содержание фракции, растворимой в холодном ксилоле (XCS), вплоть до 20,0 масс. %, более предпочтительно вплоть до 15,0 масс. %, еще более предпочтительно в пределах от 0,5 до 10,0 масс. % от рандом сополимера пропилена (R-PP).
В одном предпочтительном варианте воплощения настоящего изобретения гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) имеет температуру плавления (Тm), определенную при использовании дифференциальной сканирующей калориметрии (DSC), по меньшей мере 120°С, более предпочтительно по меньшей мере 130°С, еще более предпочтительно в пределах от 120 до 168°С, такое как в пределах от 130 до 165°С.
Дополнительно, предпочтительно гомополимер пропилена (Н-РР) или рандом сополимер полимера (R-PP) имеет скорость течения расплава, заданную в определенных пределах. Соответственно, предпочтительно гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) имеет скорость течения расплава MFR2 (230°С), измеренную согласно ISO 1133, вплоть до 150 г/10 минут, более предпочтительно от 0,01 до 100 г/10 минут. Следовательно, предпочтительно гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP) имеет скорость течения расплава MFR2 (230°С) в пределах от 0,01 до 50 г/10 минут, более предпочтительно в пределах от 0,01 до 40,0 г/10 минут, еще более предпочтительно в пределах от 0,05 до 30,0 г/10 минут, еще более предпочтительно в пределах от 0,1 до 20,0 г/10 минут, еще более предпочтительно в пределах от 0,2 до 15,0 г/10 минут.
Полипропилен (РР) предпочтительно также может представлять гетерофазный сополимер пропилена (НЕСО). Гетерофазный сополимер пропилена (НЕСО) по настоящему изобретению включает полипропилен, в частности гомополимер пропилена (Н-РР) и/ил и рандом сополимер пропилена (R-PP) в качестве матрицы (М) и диспергированный в ней эластомерный сополимер пропилена (Е). Таким образом, матрица (М), то есть гомополимер пропилена (Н-РР) и/или рандом сополимер пропилена (R-PP), содержит (тонко) диспергированные включения, не являющиеся частью матрицы (М), и указанные включения содержат эластомерный сополимер пропилена (Е). Используемый в описании настоящей патентной заявки термин включения указывает на то, что матрица (М) и включения образуют различные фазы в гетерофазном сополимере пропилена (НЕСО), указанные включения, например, видны при использовании микроскопии высокого разрешения, такой как электронная микроскопия или сканирующая силовая микроскопия.
Предпочтительно гетерофазный сополимер пропилена (НЕСО) по настоящему изобретению включает в качестве полимерных компонентов только матрицу (М), то есть гомополимер пропилена (Н-РР) и/или рандом сополимер пропилена (R-PP), и эластомерный сополимер пропилена (Е). Другими словами, гетерофазный сополимер пропилена (НЕСО) может содержать дополнительные добавки, но не другой полимер в количестве, превышающем 2,0 масс. %, более предпочтительно превышает 1,0 масс. %, такое как превышающее 0,5 масс. % от всего общего гетерофазного сополимера пропилена (НЕСО). Один дополнительный полимер, который может присутствовать в таких низких количествах, представляет полиэтилен, который представляет побочный продукт реакции, возникший при получении гетерофазного сополимера пропилена (НЕСО). Соответственно, понятно, что гетерофазный сополимер пропилена по настоящему изобретению (НЕСО) содержит только матрицу (М), то есть гомополимер пропилена (Н-РР) и/или рандом сополимер пропилена (R-PP), эластомерный сополимер пропилена (Е) и необязательно полиэтилен в количествах, указанных выше в этом абзаце.
Соответственно, гетерофазный сополимер пропилена (НЕСО) включает помимо пропилена также сомономеры. Эти сомономеры происходят из эластомерного сополимера пропилена (Е) и необязательно из матрицы (М), представляющей рандом сополимер пропилена (R-PP). Соответственно, гетерофазный сополимер пропилена (НЕСО) включает помимо пропилена этилен и/или С4-С12 альфа-олефины, в частности, этилен и/или С4-С10 альфа-олефины, например, 1-бутен и/или 1-гексен. Предпочтительно гетерофазный сополимер пропилена (НЕСО)по настоящему изобретению включает, по существу состоит из мономеров, сополимеризуемых с пропиленом из группы, состоящей из этилена, 1-бутена и 1-гексена.
Еще более предпочтительно матрица (М) из гетерофазного сополимера пропилена (НЕСО) представляет или гомополимер пропилена или рандом сополимер пропилена. По существу предпочтительно матрица (М) представляет гомополимер пропилена (Н-РР) или рандом сополимер пропилена (R-PP), как указано выше.
Соответственно, в одном варианте воплощения настоящего изобретения эластомерный сополимер пропилена (Е) включает мономеры, сополимеризуемые с пропиленом, например, сомономеры, такие как этилен и/или С4-С12 альфа-олефины, предпочтительно этилен и/или С4-С10 альфа-олефины, например, 1-бутен и/или 1-гексен. Предпочтительно эластомерный сополимер пропилена включает, по существу состоит из мономеров, сополимеризуемых с пропиленом из группы, состоящей из этилена, 1-бутена и 1-гексена. Более предпочтительно эластомерный сополимер пропилена включает помимо пропилена единицы, получаемые из этилена и/или 1-бутена. В предпочтительном варианте воплощения настоящего изобретения эластомерный сополимер пропилена включает только единицы, получаемые из этилена и/или 1-бутена. Следовательно, в по существо предпочтительном варианте воплощения настоящего изобретения фаза эластомерного сополимера пропилена включает единицы, получаемые только из этилена и пропилена.
Дополнительно, понятно, что гетерофазный сополимер пропилена предпочтительно имеет общее содержание сомономера равное или менее 20,0 масс. %, такое как равное или менее 15,0 масс. %, более предпочтительно в пределах от 2,0 до 15,0 масс. %.
Содержание фракции, растворимой в холодном ксилоле (XCS), гетерофазного сополимера пропилена (НЕСО) предпочтительно составляет менее 50,0 масс. %, более предпочтительно в пределах от 15 до 50 масс. %, еще более предпочтительно в пределах от 20 до 40 масс. % от общего количества гетерофазного сополимера пропилена (НЕСО).
Гетерофазный сополимер пропилена (НЕСО) по существу определен матрицей (М) и эластомерным сополимером пропилена (ЕС), диспергированным в ней. В предпочтительных вариантах воплощения матрицы (М) ссылка сделана на полипропилен (РР), то есть на гомополимер пропилена (Н-РР) или на рандом сополимер пропилена (R-РР), как указано выше. Как указано, по существу предпочтительно матрица (М) представляет рандом сополимер пропилена (R-PP).
По существу предпочтительно полипропилен (РР) представляет рандом сополимер пропилена (R-PP) или гетерофазный сополимер пропилена (НЕСО), как указано в описании настоящего изобретения. Соответственно, в одном по существу предпочтительном варианте воплощения настоящего изобретения полипропилен (РР) представляет рандом сополимер пропилена (R-PP) или гетерофазный сополимер пропилена (НЕСО), как указано в настоящем изобретение, который был получен в присутствии твердой каталитической системы (SCS), где активные частицы катализатора указанной твердой каталитической системы (SCS) предпочтительно представляют катализатор Циглера-Натта или катализатор с единым центром полимеризации на металле, как более детально описано ниже, более предпочтительно активные частицы катализатора указанной твердой каталитической системы (SCS) представляют катализатор с единым центром полимеризации на металле, как более детально описано ниже. В одном конкретном предпочтительном аспекте настоящего изобретения полипропилен (РР) представляет гетерофазный сополимер пропилена (НЕСО), как указано выше, еще более предпочтительно указанный гетерофазный сополимер пропилена (НЕСО) был получен при использовании твердой каталитической системы (SCS), включающей частицы катализатора с единым центром полимеризации на металле. Используемая твердая каталитическая система (SCS) может необязательно содержать включения (IС), которые в этом случае предпочтительно образованы пустотами, включающими, предпочтительно состоящими из каталитически не активного твердого материала.
Дополнительные полимеры
Как указано выше, кабель электропитания может включать дополнительные полимеры.
Одним из дополнительных полимеров может быть полиэтилен, как более детально описано ниже.
В одном предпочтительном варианте воплощения настоящего изобретения полиэтилен представляет полиэтилен низкой плотности (LDPE). Полиэтилен низкой плотности (LDPE) может представлять гомополимер этилена низкой плотности (указанный здесь как гомополимер LDPE) или сополимер этилена низкой плотности с одним или более сомономером(ами) (указанный здесь, как сополимер LDPE). Используемый в описании настоящей патентной заявки термин «полиэтилен низкой плотности» LDPE представляет полиэтилен, полученный при использовании процесса под высоким давлением (HP). Как правило, полимеризацию этилена и необязательного дополнительного сомономера(ов) при использовании процесса под высоким давлением проводят в присутствии инициатора(ов). Используемый в описании настоящей патентной заявки термин LDPE полимер хорошо известен и используется в литературе. Хотя термин LDPE является аббревиатурой от полиэтилена низкой плотности, объем его понятия не ограничивается пределами плотности, но включает такой LDPE, как полиэтилены HP с низкой, средней и высокой плотностью. Используемый в описании настоящей патентной заявки термин LDPE описывает и различает толь ко природу полиэтилена HP с типичными признаками, такими как отличающаяся архитектура разветвления по сравнению с полиэтиленом, полученным в присутствии катализатора полимеризации олефинов. Один или более сомономер сополимера LDPE предпочтительно выбирают из полярного сомономера(ов), неполярного сомономера(ов) или из смеси полярного сомономера(ов) и неполярного сомономера(ов), как описано ниже. Дополнительно, указанный гомополимер LDPE или сополимер LDPE необязательно может представлять ненасыщенный.
Как известно термин «сомономер» относится к сополимеризуемым сомономерным единицам.
Предпочтительно сополимер LDPE включает от 0,001 до 50 масс. %, более предпочтительно от 0,05 до 40 масс. %, еще более предпочтительно менее чем 35 масс. %, еще более предпочтительно менее чем 30 масс. %, более предпочтительно менее чем 25 масс. % одного или более сомономера(ов).
Как правило, предпочтительно для применения в кабелях плотность LDPE составляет более чем 860 кг/м3. Предпочтительно плотность гомополимера или сополимера LDPE составляет более чем 960 кг/м3 и предпочтительно от 900 до 945 кг/м3. MFR2 (2,16 кг, 190°С) полимера LDPE предпочтительно составляет от 0,01 до 50 г/10 минут, предпочтительно от 0,05 до 30,0 г/10 минут, более предпочтительно от 0,1 до 20 г/10 минут и наиболее предпочтительно от 0,2 до 10 г/10 минут.