Катализаторы поглощения nox

Иллюстрации

Показать все

Изобретение относится к катализаторам поглощения NOx. Катализатор содержит 10-100% масс. по меньшей мере одного компонента связующего вещества/матрицы и 5-90% масс. цеолитного молекулярного сита, нецеолитного молекулярного сита или смеси любых двух или более из них. Катализатор содержит по меньшей мере один металл, включая (a) по меньшей мере один благородный металл; и (b) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл. (a) и (b) наносят в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы. Либо катализатор содержит 10-100% масс. по меньшей мере одного компонента связующего вещества/матрицы и 5-80% масс. необязательно стабилизированного оксида церия. Также содержит по меньшей мере один металл, включая (a) по меньшей мере один благородный металл; и (b) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл. Технический результат: уменьшение обратного давления в выхлопной системе, увеличение прочности, увеличение износостойкости и производительности катализатора. 6 н. и 14 з.п. ф-лы, 3 ил., 3 табл., 5 пр.

Реферат

Настоящее изобретение относится к катализаторам, содержащим экструдированную твердую массу, для использования при обработке оксидов азота, содержащихся в выбросах отработанных газов из двигателей внутреннего сгорания от стационарного источника и, в особенности, от мобильных применений, то есть моторизованных транспортных средств.

Патент США № 2002/0077247 описывает катализатор для хранения NOx в форме сотовой структуры, где сотовую структуру формируют по меньшей мере из одного сульфата щелочноземельного металла в качестве соединения-предшественника материала для хранения NOx. Катализатор, как правило, содержит переходной металл, предпочтительно металл из группы, состоящей из палладия, платины, родия, иридия и рутения, эти металлы могут вводиться посредством импрегнирования из золя или посредством погружения в раствор соли.

Society of Automotive Engineers (SAE) Technical Paper 2007-01-0658, озаглавленная "Fundamental Study and Possible Application of New Concept Honeycomb Substrata for Emission Control", описывает катализатор для окисления дизельного топлива (DOC), содержащий платиновый катализатор, диспергированный на каталитическом носителе, содержащем множество экструдированных сегментов из гамма-оксида алюминия, неорганические волокна и (не проименованный) связующий материал, адгезивно объединенные в полноразмерный блок. Платину наносят на каталитический носитель с помощью обычного способа импрегнирования при 1,0-2,7 г на литр. Статья говорит, что катализатор для хранения NOx (NSC) может быть изготовлен таким же путем, хотя конкретных примеров не приводится.

Европейский патент EP 1739066 описывает сотовую структуру, содержащую множество ячеек сот, имеющую множество сквозных отверстий; и герметизирующий слой, который соединяет ячейки сот друг с другом с помощью соответствующих закрытых наружных лицевых сторон ячеек сот, где сквозные отверстия в них не являются открытыми. Ячейка сот содержит по меньшей мере неорганические частицы, неорганические волокна и/или усы. Иллюстративные неорганические частицы представляют собой оксид алюминия, оксид титана, диоксид кремния и диоксид циркония; иллюстративные неорганические волокна представляют собой волокна диоксида кремния - оксида алюминия и иллюстративные неорганические связующие вещества представляют собой золь диоксида кремния, золь оксида алюминия, сепиолит и аттапульгит. Компонент катализатора может быть нанесен на сотовую структуру. Компонент катализатора может включать по меньшей мере один тип, выбранный из благородных металлов, включая платину, палладий и родий, щелочных металлов, таких как калий и натрий, щелочноземельных металлов, например, барий, и оксиды. Сотовую структуру можно использовать в качестве каталитического преобразователя, например тройного катализатора или катализатора для хранения NOx для преобразования отработанных газов транспортных средств.

WO 2009/093071 описывает монолитный носитель для фильтра с протеканием через стенки, имеющий пористость по меньшей мере 40%, сформированнный из селективного катализатора каталитического восстановления экструдированного типа.

Теперь авторы разработали семейство катализаторов, содержащих экструдированную твердую массу и по меньшей мере один металл, с конкретным применением в области последующей обработки отработанных газов для отработанных газов двигателей внутреннего сгорания. Такие отработанные газы могут происходить из выбросов стационарных источников, но они разработаны для использования, в частности для обработки мобильных источников выбросов, таких как легковые автомобили, грузовые автомобили и автобусы.

В соответствии с одним из аспектов, настоящее изобретение предусматривает катализатор поглощения NOx, содержащий экструдированную твердую массу, содержащую либо: (А) 10-95% масс. по меньшей мере одного компонента связующего матрицы и 5-90% масс. цеолитного молекулярного сита, нецеолитного молекулярного сита или смеси любых двух или более из них, этот катализатор содержит по меньшей мере один металл, включая (а) по меньшей мере один благородный металл; и (b) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл, где (а) и (b) наносят в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы, либо (В) 10-95% масс. по меньшей мере одного компонента матрицы и 5-80% масс. необязательно стабилизированного оксида церия, этот катализатор содержит по меньшей мере один металл, включая (а) по меньшей мере один благородный металл; и (b) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл, где:

(i) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл присутствует в экструдированной твердой массе;

(ii) большую часть по меньшей мере одного щелочного металла или по меньшей мере одного щелочноземельного металла распределяют на поверхности экструдированной твердой массы;

(iii) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл наносят в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы;

(iv) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл присутствует в экструдированной твердой массе, а также присутствует при более высокой концентрации на поверхности экструдированной твердой массы;

(v) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл присутствует в экструдированной твердой массе, а также, его наносят в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы или

(vi) по меньшей мере один щелочной металл или по меньшей мере один щелочноземельный металл присутствует в экструдированной твердой массе, присутствует в более высокой концентрации на поверхности экструдированной твердой массы, а также его наносят в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы.

Причина разделения настоящего изобретения на варианты осуществления (A) и (B) заключается в том, что цеолитные молекулярные сита и нецеолитные молекулярные сита, как правило, являются кислотными по природе (например, как определяется с помощью десорбции с программированием температуры). Однако способ поглощения оксидов азота из отработанных газов, как правило, включает окисление монооксида азота до диоксида азота, который является умеренно кислотным, и поглощение диоксида азота на основном соединении металла, таком как соединение церия, соединение щелочного металла или соединение щелочноземельного металла. Отсюда следует, что если цеолитное молекулярное сито или нецеолитное молекулярное сито является ассоциированным с основным соединением металла, емкость основного соединения металла для поглощения оксидов азота понижается.

Однако присутствие цеолитных молекулярных сит и/или нецеолитных молекулярных сит может быть преимущественным в том, что они могут ускорять так называемое преобразование углеводородов "при холодном запуске" посредством поглощения углеводородов холодного запуска при температуре ниже той, при которой компонент благородного металла катализирует окисление углеводородов до диоксида углерода и воды, и ускоряет десорбцию углеводородов, когда температура катализатора из благородного металла становится выше температуры "затухания" для окисления углеводородов. Известно, что определенные ассоциированные металлы могут вносить вклад в адсорбцию HC с преимуществами для настоящего изобретения. Предпочтительные металлы, ускоряющие адсорбцию, включают Pd и/или Cu, Ag, щелочноземельные металлы и щелочные металлы, например Cs. В последнем случае, однако, щелочной металл и щелочноземельный металл предназначен для ускорения адсорбции углеводородов, а не для поглощения NOx.

По этой причине в вариантах осуществления, где является желательным ускорение адсорбции углеводородов холодного запуска посредством включения цеолитных и/или нецеолитных молекулярных сит в экструдированную твердую массу и/или в один или несколько слоев покрытия, разрабатывают варианты осуществления (A) и (B), чтобы по существу предотвратить контакт соединения щелочного металла, соединения щелочноземельного металла или соединения церия, предназначенного для адсорбции NOx, с цеолитным и/или нецеолитным молекулярным ситом. По этой причине в варианте осуществления (A) соединение щелочного металла, соединение церия и/или соединение щелочноземельного металла присутствует в одном или нескольких слоях покрытия. Варианты осуществления (B) могут включать слой покрытия, содержащий цеолитное и/или нецеолитное молекулярное сито. Однако в этих вариантах осуществления цеолитное и/или нецеолитное молекулярное сито присутствует в специальном слое, отдельном от соединения щелочного металла, соединения церия и/или соединения щелочноземельного металла.

Одно из преимуществ настоящего изобретения заключается в том, что посредством удаления каталитических компонентов, которые часто используют в каталитических покрытиях, количество слоев покрытия может быть уменьшено, например, с двух слоев до одного слоя или один слой может быть удален полностью и каталитический металл может быть нанесен на поверхность экструдированной твердой массы сам по себе. Это имеет преимущество уменьшения обратного давления в выхлопной системе, повышая эффективность двигателя.

Кроме того, посредством получения возможности использования катализаторов без покрытия экструдированную твердую массу можно изготавливать при более высокой плотности ячеек, увеличивая ее прочность и уменьшая толщину стенок ячеек, что может улучшить характеристики затухания катализатора и увеличить активность сквозного массопереноса.

Также можно увеличить объем активных компонентов в экструдированной твердой массе по отношению к покрытию на инертном монолитном носителе. Это увеличение плотности катализатора имеет преимущества для долговременной износостойкости и производительности катализатора, что является важным для бортовой диагностики.

"Бортовая диагностика" (OBD) в контексте моторизованного транспортного средства представляет собой общий термин для описания самостоятельной диагностики и говорит о возможности систем транспортного средства, снабженного сетью сенсоров, соединенных с соответствующей электронной управляющей системой. Ранние примеры систем OBD могут просто высвечивать индикатор неправильного функционирования, если детектируются проблемы, но они не дают информации о природе проблемы. Более новые системы OBD используют стандартизированный порт цифрового соединения и способны давать информацию о стандартизованных кодах диагностических проблем и осуществлять выбор данных в реальном времени, что делает возможным быструю идентификацию и разрешение проблемы в системах транспортного средства.

Современные требования к OBD требуют, чтобы водитель обязательно информировался в случае неправильного функционирования или ухудшения работы выхлопной системы, которые могли бы вызвать превышение установленных пороговых значений выбросов. Так, например, пределы OBD для Евро 4: 98/69/EC для легковых автомобилей с дизельными двигателями (транспортные средства категория M согласно 70/156/EEC) представляют собой: монооксид углерода (CO) - 3,2 г/км; углеводороды (HC) - 0,4 г/км; оксиды азота (NOx) - 1,2 г/км; и материал в виде частиц (PM) 0,18 г/км. Для легковых транспортных средств с бензиновыми (газолиновыми) двигателями, пределы Евро 4 представляют собой: CO - 3,2 г/км; HC - 0,4 г/км; NOx - 0,6 г/км; и PM - без ограничений.

Будущие законодательные ограничения выбросов транспортных средств, в особенности в США и Европе, требуют более высокой чувствительности при осуществлении диагностики с тем, чтобы непрерывно отслеживать способность катализатора доочистки в выхлопной системе удовлетворять законодательным ограничениям выбросов. Например, современные примерные пределы OBD для Евро 5: 715/2007/EC для легковых автомобилей с компрессионным зажиганием (дизельных) представляют собой: CO - 1,9 г/км; углеводороды, отличные от метана (NMHC) - 0,25 г/км; NOx - 0,54 г/км; PM - 0,05 г/км; и для легковых транспортных средств с системой электрозажигания (на бензине): CO - 1,9 г/км; NMHC - 0,25 г/км; NOx - 0,54 г/км; и PM - без ограничений.

В США считается, что законодательные ограничения OBD II (Title 13, California Code Regulations, Section 1968.2. Malfunction and Diagnostic System Requirements for 2004 and Subsequent Model-Year Passenger Cars, Light-Duty Trucks and Medium-Duty Vehicle and Engines) для мониторинга катализатора для бензиновых двигателей/двигателей с системой электрозажигания требуют сигнала неправильного функционирования, когда средний результат исследования в соответствии Federal Test Procedure (FTP) для эффективности преобразования NMHC, подвергающего мониторингу части системы катализаторов, падает ниже 50%.

Экструдированные твердые массы в соответствии с настоящим изобретением, как правило, содержат унитарную структуру в форме сот, имеющую каналы с одинаковой формой и параллельные, простирающиеся от ее первого края до второго края. Как правило, каналы являются открытыми как на первом, так и на втором краю - это так называемая "проточная" конфигурация. Стенки каналов, определяющие каналы, являются пористыми. Как правило, некоторая внешняя "кожа" окружает множество каналов экструдированной твердой массы. Экструдированную твердую массу можно сформировать с любым желаемым поперечным сечением, таким как круговое, квадратное или овальное. Индивидуальные каналы во множестве каналов могут быть квадратными, треугольными, шестиугольными, круговыми и тому подобное. Каналы на первом, переднем крае можно блокировать, например, с помощью соответствующего керамического цемента, а каналы, не блокированные на первом, переднем крае, можно также блокировать на втором заднем крае, с образованием так называемого фильтра с протеканием через стенки. Как правило, расположение блокированных каналов на первом переднем крае напоминает шахматную доску со сходным расположением блокированных и открытых каналов на задних краях каналов.

Ясно, что сотовая структура, описанная в Европейском патенте EP 1739066, имеет Thermal Shock Parameter (TSP) (параметр теплового удара), слишком низкий для использования в одинарном унитарном экструдате, поскольку сотовая структура содержит набор индивидуальных ячеек сот, цементированных вместе. Это расположение, также наблюдаемое в коммерчески доступных сотовых структурах на основе карбида кремния, сконструировано для предотвращения катастрофического отказа носителя катализатора, среди прочего, из-за теплового удара из-за относительно высокого коэффициента теплового расширения (CTE) экструдированного материала. Однако изготовление сотовой структуры из индивидуальных ячеек сот является сложным, трудоемким, требующим много времени и дорогостоящим и увеличивает количество возможных режимов физических отказов, например, на цементных связях по сравнению с экструзией монолита. Более подробные пояснения относительно TSP и CTE можно найти в "Catalytic Air Pollution Control - Commercial Technology", Second Edition, R.M. Heck et al, John Wiley & Sons, Inc., New York, 2002 Chapters 7 (по отношению к проточным монолитам) и 9 (по отношению к фильтрам с протеканием через стенки).

Соответственно, теперь авторы предпочитают, чтобы экструдированная твердая масса катализатора в соответствии с настоящим изобретением имела аксиальный Thermal Shock Parameter (TSP) (параметр теплового удара) и радиальный TSP, достаточные для предотвращения появления радиальных трещин и кольцевых трещин в экструдированной твердой массе, когда ее используют для обработки отработанных газов из стационарных или мобильных источников выбросов. Таким образом, экструдированная твердая масса может быть сформирована из одного унитарного экструдата. Для экструдированных твердых масс, имеющих особенно большое поперечное сечение, может быть по-прежнему необходимо экструдировать сегменты экструдированной твердой массы для цементирования вместе. Однако это связано со сложностями обработки экструдатов такого большого поперечного сечения или связано с ограничениями в размерах оборудования головки экструдера. Если брать индивидуально, однако, каждый сегмент катализатора в целом должен удовлетворять тому функциональному ограничению, что аксиальный TSP и радиальный TSP являются достаточными для предотвращения радиальных трещин и кольцевых трещин в индивидуальных сегментах экструдированной твердой массы, когда их используют для обработки отработанных газов из стационарного или мобильного источника выбросов. В одном из вариантов осуществления радиальный TSP >0,4 при 750°C, например, >0,5, >0,6, >0,7, >0,8 >0,9 или >1,0. При 800°C радиальный TSP желательно также >0,4 и при 1000°C, предпочтительно, >0,8.

CTE фильтра с протеканием через стенки предпочтительно составляет 20x10-7/°С, чтобы формировать их из цельного экструдата.

В одном из вариантов осуществления по меньшей мере один благородный металл в (A) или (B) наносят в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы, где все слои покрытия или каждый из них содержат один или несколько материалов из необязательно стабилизированного оксида алюминия, диоксида кремния, оксида титана, необязательно стабилизированного оксида церия, необязательно стабилизированного диоксида циркония, ванадия, оксида лантана, шпинели и смеси любых двух или более из них. В альтернативных вариантах осуществления варианта осуществления (B), (ii), (iv) и (vi) по меньшей мере один благородный металл, например Pt и/или Pd, импрегнируют на экструдированную твердую массу.

В конкретном варианте осуществления (A) или (B), содержащем два или более слоев покрытия, первый, нижний слой содержит смесь необязательно стабилизированного оксида церия и шпинели. Предпочтительно, первый, нижний слой содержит Pt и/или Pd. В предпочтительном варианте осуществления второй слой располагают поверх первого, нижнего слоя, этот второй слой содержит родий, нанесенный на один или несколько материалов из оксида алюминия и необязательно стабилизированного диоксида циркония. В другом варианте осуществления третий слой располагают поверх второго слоя, этот третий слой содержит цеолит или платину и/или палладий, нанесенный на объемный восстанавливаемый оксид, который по существу не содержит щелочных металлов и щелочноземельных металлов.

В альтернативном варианте осуществления (B), содержащем один или несколько слоев покрытия, платину и/или палладий распределяют на поверхности экструдированной твердой массы и первый, нижний слой содержит родий, нанесенный на один или несколько материалов из оксида алюминия и необязательно стабилизированного диоксида циркония. В конкретном варианте осуществления второй слой, лежащий поверх второго слоя, содержит цеолит, или платину, и/или палладий, нанесенный на объемный восстанавливаемый оксид, который по существу не содержит щелочных металлов и щелочноземельных металлов.

Варианты осуществления, включающие слой, содержащий платину или как платину, так и палладий, нанесенные на объемный восстанавливаемый оксид, который по существу не содержит щелочных металлов и щелочноземельных металлов, являются особенно пригодными для обработки монооксида углерода и несгоревших углеводородов, присутствующих в отработанных газах дизельных двигателей. Как правило, катализатор поглощения NOx явно определяет, что двигатель, вместе с которым используют катализатор поглощения NOx в сочетании, конфигурируется для работы при отношении сгорания воздух/топливо от обедненного до стехиометрического для поглощения оксидов азота и для периодической работы при отношении сгорания воздух/топливо от обогащенного до стехиометрического для десорбции поглощенного NOx и для восстановления NOx до N2. Совершенно неожиданно было обнаружено, что посредством приведения в контакт катализатора окисления, содержащего платину или как платину, так и палладий, и восстанавливаемого оксида, периодически и на короткий промежуток времени, с обогащенными отработанными газами, катализатор окисления может восстанавливать активность при окислении, теряемую, когда платина становится окисленной, при более высоких температурах. При окислении, компонент Pt является менее активным при окислении CO и HC. Присутствие щелочноземельного металла или щелочного металла в контакте с Pt отравляет активность Pt при окислении CO и HC.

Объемный восстанавливаемый оксид может быть выбран из группы, состоящей из оксидов, композитных оксидов и смешанных оксидов, содержащих один или несколько металлов, выбранных из группы, состоящей из марганца, железа, олова, меди, кобальта или церия и их необязательно стабилизированных гомологов, но, предпочтительно, он имеет церий в своей основе. Таким образом, например, по меньшей мере один восстанавливаемый оксид может включать MnO2, Mn2O3, Fe2O3, SnO2, CuO, CoO и CeO2.

Стабилизированный гомолог CeO2 может включать диоксид циркония, по меньшей мере один оксид редкоземельного металла, иного, чем церий, или как диоксид циркония, так и по меньшей мере один оксид редкоземельного металла, иного, чем церий.

В предпочтительных вариантах осуществления первый носитель на основе оксида металла состоит по существу из объема по меньшей мере одного восстанавливаемого оксида или его необязательно стабилизированных гомологов. Альтернативно по меньшей мере один восстанавливаемый оксид или его необязательно стабилизированный гомолог может быть нанесен на носитель из первого оксида металла вместе с платиной.

В вариантах осуществления по меньшей мере один компонент связующего вещества/матрицы может быть выбран из группы, состоящей из кордиерита, нитридов, карбидов, боридов, интерметаллических соединений, лития алюмосиликата, шпинели, необязательно легированного оксида алюминия, источника диоксида кремния, оксида титана, диоксида циркония, оксида титана - диоксида циркония, циркона и смеси любых двух или более из них.

Шпинели могут представлять собой MgAl2O4 или Mg может быть частично заменен металлом из группы, состоящей из Co, Zr, Zn или Mn. Исследование катализаторов, где экструдированная твердая масса содержит шпинель, продолжается, однако предварительные показания заключаются в том, что компоненты на основе MgAl2O4 могут обеспечить особенные выигрыши в активности для вариантов ловушек для NOx по настоящему изобретению (ловушки для NOx иногда также упоминаются как катализаторы для хранения/восстановления NOx (NSR), ловушки DeNOx (DNT), ловушки для обедненных NOx (LNT), катализаторы поглощения NOx (NAC), катализаторы для устранения NOx и катализаторы для хранения NOx (NSC)). В таком варианте осуществления ловушки для NOx содержание MgO в MgAl2O4 по отношению к Al2O3 может составлять от 0,8 до 2,5, при этом значения <1,0 являются предпочтительными.

Компонент оксида алюминия в связующем веществе/матрице предпочтительно представляет собой гамма оксид алюминия, но может представлять собой любую другую переходную форму оксида алюминия, то есть альфа оксид алюминия, бета оксид алюминия, хи оксид алюминия, эта оксид алюминия, ро оксид алюминия, каппа оксид алюминия, тэта оксид алюминия, дельта оксид алюминия, бета оксид алюминия - лантана и смеси любых двух или более из таких переходных форм оксида алюминия.

Является предпочтительным, чтобы оксид алюминия был легирован по меньшей мере одним элементом, иным, чем алюминий, для повышения термической стабильности оксида алюминия. Пригодные для использования легирующие добавки для оксида алюминия включают кремний, цирконий, барий, лантаноиды и смеси любых двух или более из них. Пригодные для использования лантанодиные легирующие добавки включают La, Ce, Nd, Pr, Gd и смеси любых двух или более из них.

Источники диоксида кремния могут включать диоксид кремния, золь диоксида кремния, кварц, коллоидный или аморфный диоксид кремния, силикат натрия, аморфный алюмосиликат, алкоксисилан, связующее вещество на основе силиконовой смолы, такой как метилфенилсиликоновая смола, глину, тальк или смесь любых двух или более из них.

В этом списке диоксид кремния может представлять собой SiO2 как таковой, полевой шпат, муллит, диоксид кремния - оксид алюминия, диоксид кремния - оксид магния, диоксид кремния - диоксид циркония, диоксид кремния - оксид тория, диоксид кремния - оксид бериллия, диоксид кремния - оксид титана, тройной диоксид кремния - оксид алюминия - диоксид циркония, тройной диоксид кремния - оксид алюминия - оксид магния, тройной диоксид кремния - оксид магния - диоксид циркония, тройной диоксид кремния - оксид алюминия - оксид тория и смеси любых двух или более из них. Альтернативно, диоксид кремния может быть получен от кальцинирования тетраметилортосиликата (TMOS), добавляемого в экструдируемую композицию.

Пригодные для использования глины включают фуллерову землю, сепиолит, гекторит, смектит, каолин и смеси любых двух или более из них, где каолин может быть выбран из суббентонита, аноксита, галлуазита, каолинита, диктита, накрита и смеси любых двух или более из них; смектит может быть выбран из группы, состоящей из монтмориллонита, нонтронита, вермикулита, сапонита и смеси любых двух или более из них и фуллерова земля может представлять собой монтмориллонит или палыгорскит (аттапульгит).

Неорганические волокна выбирают из группы, состоящей из углеродных волокон, стекловолокна, металлических волокон, волокон из бора, волокон из оксида алюминия, волокон из диоксида кремния, волокон из диоксида кремния - оксида алюминия, волокон из карбида кремния, волокон из титаната калия, волокон из бората алюминия и керамических волокон.

Молекулярные сита, пригодные для использования в настоящем изобретении, представляют собой молекулярные сита, способные адсорбировать несгоревшие углеводороды после холодного запуска автомобильного двигателя и десорбировать адсорбированные углеводороды при температуре, превышающей температуру окружающей среды, например, когда ассоциированный компонент тройного катализатора на основе благородного металла достигает желаемой температуры затухания для окисления, например, CO и HC или для восстановления NOx. Такие молекулярные сита, как правило, не являются молекулярными ситами, имеющими структуру раскрытия поры с кольцом из 8 атомов в качестве своей самой большой структуры раскрытия поры, иногда их называют молекулярными ситами с "малыми порами". Предпочтительные молекулярные сита представляют собой молекулярные сита со средними порами (структура раскрытия поры с кольцом максимум из 10 атомов), с большими порами (структура раскрытия поры с кольцом максимум из 12 атомов) или с мезопорами после обработки в печи (структура раскрытия поры с кольцом из >12 атомов).

Все цеолитные молекулярные сита или каждое из них или все нецеолитные молекулярные сита или каждое из них могут быть выбраны из типа сетчато-ячеистой структуры с кодом ABW, ACO, AEI, AEL, AEN, AET, AFG, AFI, AFN, AFO, AFR, AFS, AFT, AFX, AFY, AHT, ANA, APC, APD, AST, ASV, ATN, ATO, ATS, ATT, ATV, AWO, AWW, BCT, BEA, BEC, BIK, BOF, BOG, BPH, BRE, BSV, CAN, CAS, CDO, CFI, CGF, CGS, CHA, -CHI, -CLO, CON, CZP, DAC, DDR, DFO, DFT, DOH, DON, EAB, EDI, EMT, EON, EPI, ERI, ESV, ETR, EUO, EZT, FAR, FAU, FER, FRA, GIS, GIU, GME, GON, GOO, HEU, IFR, IHW, IMF, ISV, ITE, ITH, ITR, ITW, IWR, IWS, IWV, IWW, JBW, JRY, KFI, LAU, LEV, LIO, -LIT, LOS, LOV, LTA, LTF, LTL, LTN, MAR, MAZ, MEI, MEL, MEP, MER, MFI, MFS, MON, MOR, MOZ, MRE, MSE, MSO, MTF, MTN, MTT, MTW, MWW, NAB, NAT, NES, NON, NPO, NSI, OBW, OFF, OSI, OSO, OWE, -PAR, PAU, PHI, PON, RHO, -RON, RRO, RSN, RTE, RTH, RUT, RWR, RWY, SAO, SAS, SAT, SAV, SBE, SBN, SBS, SBT, SFE, SFF, SFG, SFH, SFN, SFO, SFS, SGT, SIV, SOD, SOF, SOS, SSF, SSY, STF, STI, STO, STT, STW, -SVR, SZR, TER, THO, TOL, TON, TSC, TUN, UEI, UFI, UOS, UOZ, USI, UTL, VET, VFI, VNI, VSV, WEI, -WEN, YUG, ZON, как определено Structure Commission of International Zeolite Association, и из смеси любых двух или более из них.

Предпочтительные цеолитные и нецеолитные молекулярные сита выбирают из группы, состоящей из BEA, FAU, FER, MFI, MFS, MOR, STI, SZR, и из смеси любых двух или более из них.

Особенно предпочтительные цеолитные или нецеолитные молекулярные сита выбирают из группы, состоящей из BEA, FER, MFI, STI, и из смеси любых двух или более из них.

Особенно предпочтительные цеолитные молекулярные сита представляют собой ZSM-5, бета цеолит, феррьерит и смеси любых двух или более из них.

Хотя в настоящем изобретении могут быть использованы природные цеолитные молекулярные сита, теперь авторы предпочитают синтетическое алюмосиликатное цеолитное молекулярное сито, имеющее отношение диоксида кремния к оксиду алюминия 10 или больше, например, от 15 до 150, от 20 до 60 или от 25 до 40, для улучшения термической стабильности.

В альтернативном варианте осуществления цеолитное молекулярное сито или нецеолитное молекулярное сито представляет собой изоморф, содержащий один или несколько металлов-заместителей в сетчато-ячеистой структуре. В этом варианте осуществления, все металлы-заместители в сетчато-ячеистой структуре или каждый из них могут быть выбраны из группы, состоящей из As, B, Be, Ce, Co, Cu, Fe, Ga, Ge, Li, Mg, Mn, Zn и Zr, при этом Ce, Cu и Fe являются предпочтительными. Опять же, предпочтительные изоморфные цеолитные или нецеолитные молекулярные сита могут быть выбраны из группы, состоящей из BEA, FER, MFI, STI и смесей любых двух или более из них, при этом BEA, содержащие Fe в своей сетчато-ячеистой структуре, являются особенно предпочтительными. Будет понятно, что в способе получения таких изоморфов, содержащих один или несколько металлов-заместителей в сетчато-ячеистой структуре, все металлы или каждый из них могут присутствовать в конечном продукте либо только в сетчато-ячеистой структуре, либо в сетчато-ячеистой структуре после ионного обмена.

Отношения диоксида кремния к оксиду алюминия в изоморфах, содержащих один или несколько металлов-заместителей в сетчато-ячеистой структуре, может быть >25, например, составлять от 30 до 100 или от 40 до 70. В противоположность этому, изоморф может иметь отношение диоксида кремния к металлу сетчато-ячеистой структуры >20, например от 30 до 200 или от 50 до 100.

В предпочтительном варианте осуществления нецеолитное молекулярное сито представляет собой алюмофосфат, включающий AlPO, AlPO, замещенные металлами (MeAlPO), алюмофосфаты кремния (SAPO) или алюмофосфаты кремния, замещенные металлом (MeAPSO). Предпочтительные нецеолитные молекулярные сита включают SAPO-18, SAPO-34, SAPO-44 и SAPO-47.

Отношение диоксида кремния к оксиду алюминия в алюмофосфатах, как правило, гораздо ниже, чем в алюмосиликатных цеолитах, имеющих такой же код типа сетчато-ячеистой структуры. Как правило, отношение диоксида кремния к оксиду алюминия для алюмофосфатов <1,0, но может быть <0,5 или даже <0,3.

Компонент оксид церия может быть необязательно стабилизирован с помощью по меньшей мере элемента, иного, чем церий, для увеличения термической стабильности оксида церия. Соответствующие стабилизаторы оксида церия включают цирконий, лантаноиды и смеси любых двух или более из них. Лантаноидные стабилизаторы включают La, Nd, Pr, Gd и смеси любых двух или более из них. Массовое отношение CeO2:ZrO2 может находиться, например, в пределах между 80:20 и 20:80. Коммерчески доступные материалы содержат 30% масс. CeO2, 63% ZrO2, 5% Nd2O3, 2% La2O3; и 40% CeO2, 50% ZrO2, 4% La2O3, 4% Nd2O3 и 2% Y2O3.

В широком смысле по меньшей мере один металл может присутствовать: (a) в экструдированной твердой массе, то есть по меньшей мере один металл присутствует в композиции экструдата; (b) присутствовать в более высокой концентрации на поверхности экструдированной твердой массы и/или (c) наноситься в виде одного или нескольких слоев покрытия на поверхности экструдированной твердой массы в варианте осуществления (A) и в варианте осуществления (B), согласно (iii), (v) и (vi), при этом он отличается по меньшей мере от одного металла, присутствующего в каждом из других положений (a), (b) и (c). Таким образом, по меньшей мере один металл может присутствовать в положении (a), (b), (c), (a) плюс (b), (a) плюс (c) или (a) плюс (b) плюс (c). Когда по меньшей мере один металл присутствует в (a) и (b), (a) и (c) или (a), (b) и (с), по меньшей мере один металл в каждом положении может быть одним и тем же или иным.

Когда по меньшей мере один металл присутствует в положении (a), то есть в экструдированной твердой массе, этот по меньшей мере один металл может быть ассоциирован с цеолитным молекулярным ситом, нецеолитным молекулярным ситом или со смесью любых двух или более из них. Пример "ассоциированного" включает полученный посредством ионного обмена с компонентом цеолитного молекулярного сита, с компонентом нецеолитного молекулярного сита или с одним или обоими из компонентов цеолитного молекулярного сита и компонентов нецеолитного молекулярного сита в смеси. Также можно иметь в смесях двух или более молекулярных сит по меньшей мере один металл, ассоциированный с одним молекулярным ситом, но не с другим. Например, первое молекулярное сито может подвергаться воздействию ионного обмена с медью, сушиться и кальцинироваться, а затем смешиваться с другим молекулярным ситом без ассоциированного дополнительного металла.

Альтернативно, одно из двух молекулярных сит в смеси может быть ассоциированным, например подвергаться воздействию ионного обмена, по меньшей мере с одним первым металлом, а затем в композицию экструдата может быть добавлен по меньшей мере один второй металл, то есть по меньшей мере один второй металл не является специфично ассоциированным со вторым молекулярным ситом.

По меньшей мере один металл, пригодный для ассоциирования с компонентом всех молекулярных сит или каждого из них, может быть выбран индивидуально из группы, состоящей из переходного металла, лантаноида или смеси любых двух или более из них. Пригодные для использования переходные металлы включают металлы Группы IB, металлы Группы IVB, металлы Группы VB, металлы Группы VIIB и металлы Группы VIIIB. Предпочтительно по меньшей мере один переходной металл выбирают из группы, состоящей из Fe, Cu, Ce, Hf, La, Mn, Pt, Au, Ag, In, Rh, V, Ir, Ru и Os и из смесей любых двух или более из них. Лантаноидный металл может представлять собой La, Pr, Ce и смеси или более из них.

Общее содержание металла по меньшей мере в одном металле, ассоциированном с компонентом всех молекулярных сит или каждого из них, составляет от 0,1 до 20% масс., например, от 1 до 9% масс.

По меньшей мере один металл, присутствующий: в экструдированной твердой массе, но не ассоциированный со всеми молекулярными ситами или каждым из них; по меньшей мере одного металла, в большей части находящегося на поверхности экструдированной твердой массы; в одном или нескольких слоях покрытия на поверхности экструдированной твердой массы или в более высокой концентрации на поверхности экструдированной твердой массы, может быть выбран из группы, состоящей из переходного металла, лантаноида или смеси любых двух или более из них.

Покрытия, пригодные для использования в качестве носителей каталитических металлов по настоящему изобретению, включают один или несколько материалов из оксида алюминия (Al2O3), в частности γ-оксида алюминия, диоксида кремния (SiO2), оксида титана (TiO2), оксида церия (CeO2), диоксида циркония (ZrO2), оксида ванадия (V2O5), оксида лантана (La2O3) и цеолитов. Оксид церия и оксид алюминия могут быть необязательно стабилизированы с использованием таких же стабилизаторов, как используют для экструдированной твердой массы. Пригодные для использования каталитические металлы включают один или несколько благородных металлов (Au, Ag и металлы платиновой группы, включая Pt, Pd и Rh). Для повышения активности экструдированного цеолита при адсорбции HC, который покрывают благородным металлом с помощью промывки, содержащей благородный металл, может быть преимущественным использование так называемых носителей с широкими порами, например оксида алюминия, в качестве носителя для нанесения благородного металла с помощью промывки, содержащей благородный металл (см., например, патент США № 6110862, то есть каталитический материал, содержащий компонент металла платиновой группы, диспергированный на фазе носителя из огнеупорного неорганического оксида, фаза носителя содержит первый материал носителя, имеющий некоторое распределение размеров пор, в котором примерно 98% объема пор в первом материале носителя относится к порам, которые имеют радиус в пределах примерно 30 до 240 Ǻ).

Технология распреде