Устройство и способ лучевой сканирующей визуализации
Иллюстрации
Показать всеИспользование: для лучевой сканирующей визуализации. Сущность изобретения заключается в том, что устройство для лучевой сканирующей визуализации содержит: множество генераторов излучения, распределенных равномерно по дуге окружности, причем упомянутое множество генераторов излучения испускает последовательно пучки излучения к объекту, подлежащему контролю, в течение одного периода сканирования, чтобы выполнить сканирование одного слоя; устройство детектирования излучения, предназначенное для сбора значений проекций пучков излучения, испускаемых упомянутым множеством генераторов излучения, при этом упомянутое устройство детектирования излучения содержит множество линейных решеток детекторов излучения, при этом каждая из упомянутого множества линейных решеток детекторов излучения состоит из множества блоков детектирования излучения, расположенных по прямой линии, причем упомянутое множество линейных решеток детекторов излучения соединяется впритык в одной и той же плоскости последовательно, за исключением того, что две из множества линейных решеток детекторов излучения на обоих концах множества не соединяются между собой, чтобы сформировать полузамкнутый каркас. Технический результат: обеспечение возможности получения значений полных проекций пучков без поворота устройства. 3 н. и 20 з.п. ф-лы, 7 ил.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет по китайской патентной заявке №201210059992.6, «APPARATUS AND METHOD FOR RAY SCANNING IMAGING», поданной 9 марта 2012 г., содержание которой в полном объеме включено в настоящую заявку путем отсылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к области лучевой визуализации и, в частности, к устройству и способу лучевой сканирующей визуализации.
УРОВЕНЬ ТЕХНИКИ
В настоящее время устройства для лучевой визуализации стали широко применять в общественных местах и важных учреждениях, например аэропортах, на вокзалах, таможнях, метрополитене, в морских портах и т.п., для проведения высокоэффективного и регулярного контроля безопасности имущества, например ручной клади или груза, так как все страны мира уделяют больше внимания контролю безопасности.
Устройство для лучевой визуализации обычно выполнено в соответствии с принципами ослабления излучения по экспоненциальному закону. То есть сканирование объекта, подлежащего контролю, выполняется пучками излучения, испускаемыми источником излучения. Пучки излучения проходят сквозь объект, подлежащий контролю, и принимаются устройством сбора излучения. На основании детектированных значений излучения, полученных устройством сбора излучения, формируются или реконструируются и отображаются трехмерные изображения.
На фиг. 1 приведена схема конструкции устройства для лучевой визуализации известного уровня техники.
Устройство для лучевой визуализации содержит гентри 13, источник 11 излучения, соединенный с гентри 13, детектирующее устройство 12, размещенное противоположно источнику 11 излучения на гентри 13, и устройство подачи 14 для подачи объекта, подлежащего контролю. Во время операции контроля гентри 13 приводит источник 11 излучения и детектирующее устройство 12 в поворотное движение, чтобы получать значения проекций лучей для разных лучей под разными углами и чтобы получать томографические изображения объекта, подлежащего контролю, посредством реконструкции.
Автор настоящего изобретения выполнил глубокое исследование по устройству для лучевой визуализации известного уровня техники и нашел, что устройство для лучевой визуализации известного уровня техники характеризуется невысокой эффективностью обнаружения, поскольку повороты источника 11 излучения и детектирующего устройства 12 производятся гентри 13 с ограниченной скоростью поворота. Соответственно, от устройства для лучевой визуализации известного уровня техники трудно добиться удовлетворения существующих требований, например требований к скорости досмотра 0,5 м/с имущества в гражданской авиации.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Для решения проблемы низкой эффективности обнаружения, существующей в устройстве для лучевой визуализации известного уровня техники, авторы настоящего изобретения предложили новое техническое решение.
Соответственно, целью настоящего изобретения является создание устройства для лучевой сканирующей визуализации, которое эффективно сокращает время контроля для объекта, подлежащего контролю.
Соответственно, другой целью настоящего изобретения является создание способа лучевой сканирующей визуализации, который получает и обрабатывает собранные значения излучения для получения изображения объекта, подлежащего контролю, посредством упомянутого устройства для лучевой сканирующей визуализации.
В соответствии с первым аспектом настоящего изобретения предлагается устройство для лучевой сканирующей визуализации. Устройство содержит множество генераторов излучения, распределенных равномерно по дуге окружности, и устройство детектирования излучения. Множество генераторов излучения испускает последовательно пучки излучения к объекту, подлежащему контролю, в течение одного периода сканирования, чтобы выполнить сканирование одного слоя. Устройство детектирования излучения предназначено для сбора значений проекций пучков излучения, испускаемых множеством генераторов излучения.
В предпочтительном варианте центральный угол дуги окружности, по которой расположено множество генераторов излучения, составляет, по меньшей мере, π+2γ, где 2γ является углом веерного пучка веерного пучка излучения, испускаемого генераторами излучения.
В предпочтительном варианте каждый из генераторов излучения содержит, по меньшей мере, один блок испускания излучения.
В качестве альтернативы, пучки излучения являются веерными пучками излучения или являются группами пучков излучения, состоящими из множества прямолинейных пучков излучения, параллельных между собой.
В качестве альтернативы, устройство детектирования излучения является изогнутой по окружности решеткой детекторов излучения, в которой множество блоков детектирования излучения распределено равномерно по дуге окружности.
В предпочтительном варианте устройство детектирования излучения содержит множество линейных решеток детекторов излучения. Каждая из множества линейных решеток детекторов излучения состоит из множества блоков детектирования излучения, расположенных по прямой линии. Множество линейных решеток детекторов излучения соединяется впритык в одной и той же плоскости последовательно, за исключением того, что две из множества линейных решеток детекторов излучения на обоих концах множества не соединяются между собой, чтобы сформировать полузамкнутый каркас.
В качестве альтернативы, число множества линейных решеток детекторов излучения может быть больше чем 3. В таком случае множество линейных решеток детекторов излучения расположено таким образом, что угол между двумя прилегающими линейными решетками детекторов излучения больше чем π/2, и множество линейных решеток детекторов излучения способно детектировать пучки излучения, испускаемые всеми упомянутыми генераторами излучения.
В предпочтительном варианте число множества линейных решеток детекторов излучения может быть равно 3. В таком случае три линейные решетки детекторов излучения расположены таким образом, что все линейные решетки детекторов излучения по обеим сторонам перпендикулярны средней линейной решетке детекторов излучения, и три линейные решетки детекторов излучения способны детектировать пучки излучения, испускаемые всеми упомянутыми генераторами излучения.
В предпочтительном варианте плоскость, в которой размещено множество линейных решеток детекторов излучения, и плоскость, в которой размещено множество генераторов излучения параллельно первой плоскости, перпендикулярны направлению перемещения объекта, подлежащего контролю.
В предпочтительном варианте данное устройство дополнительно содержит блок визуализации, который получает изображение объекта, подлежащего контролю, посредством обработки детектированных значений излучения, собранных устройством детектирования излучения.
Предпочтительно в одном варианте осуществления для устройства детектирования излучения, состоящего из множества линейных решеток детекторов излучения, блоки детектирования излучения, соответствующие, по меньшей мере, одному из генераторов излучения, не расположены по прямой линии, которая перпендикулярна центральной оси пучков излучения, испускаемых, по меньшей мере, одним из генераторов излучения. Для каждого из, по меньшей мере, одного из генераторов излучения блок визуализации группирует линейную решетку эквидистантных виртуальных детекторов, содержащую множество виртуальных блоков детектирования, расположенных по прямой линии и распределенных эквидистантно. Расстояния между всеми из, по меньшей мере, одного из генераторов излучения и соответствующими линейными решетками эквидистантных виртуальных детекторов равны между собой. Блок визуализации в соответствии с соединительными линиями между генератором излучения и блоками детектирования излучения может определить блоки детектирования излучения, соответствующие виртуальным блокам детектирования, и получает детектированные значения излучения виртуальных блоков детектирования на основе детектированных значений излучения блоков детектирования излучения. Значение эквидистантной проекции веерного пучка может быть составлено из детектированных значений излучения всех данных линейных решеток эквидистантных виртуальных детекторов.
В другом варианте осуществления для устройства детектирования излучения, состоящего из множества изогнутых по окружности решеток детекторов излучения, когда пучки излучения являются веерными пучками излучения, значения эквидистантных проекций веерных пучков состоят из детектированных значений излучения, полученных устройством детектирования излучения; когда пучки излучения являются группами пучков излучения, состоящими из множества прямолинейных пучков излучения, параллельных между собой, значения проекций параллельных пучков состоят из детектированных значений излучения, полученных устройством детектирования излучения.
В предпочтительном варианте блоки детектирования излучения могут быть двухслойными двухэнергетическими блоками детектирования. Блок визуализации может получать изображение объекта, подлежащего контролю, с использованием алгоритма фильтрованных обратных проекций посредством двухэнергетической реконструкции коэффициентов двухэнергетического разложения разных материалов основы, полученных двухэнергетическим разложением значений эквидистантных проекций веерных пучков или значений проекций параллельных пучков.
В предпочтительном варианте данное устройство может дополнительно содержать базу данных, предназначенную для хранения в ней атомных номеров и электронных плотностей подозрительных объектов. Блок визуализации может определять, является ли или нет объект, подлежащий контролю, подозрительным объектом, посредством сравнения распределений атомных номеров и электронной плотности объекта, подлежащего контролю, который получен при упомянутой двухэнергетической реконструкции, с упомянутыми параметрами подозрительных объектов в базе данных.
В соответствии с первым аспектом настоящего изобретения предлагается также другое устройство для лучевой сканирующей визуализации. Устройство содержит множество генераторов излучения, равномерно распределенных по дуге окружности, и устройство детектирования излучения. Множество генераторов излучения испускает пучки излучения одновременно к объекту, подлежащему контролю, в течение одного периода сканирования, чтобы выполнить сканирование одного слоя. Устройство детектирования излучения предназначено для сбора значений проекций пучков излучения, испускаемых множеством генераторов излучения.
В предпочтительном варианте центральный угол дуги окружности, по которой расположено множество генераторов излучения, составляет, по меньшей мере, π.
В предпочтительном варианте генераторы излучения могут содержать, каждый, множество блоков испускания излучения, и пучки излучения, испускаемые множеством блоков испускания излучения, являются прямолинейными пучками, параллельными между собой; и устройство детектирования излучения может содержать множество блоков детектирования излучения, и блоки детектирования излучения, соответствующие всем блокам испускания излучения, не перекрываются между собой.
В предпочтительном варианте множество блоков детектирования излучения может быть равномерно распределенным по дуге окружности таким образом, что блоки детектирования излучения и блоки испускания излучения расположены во взаимно однозначном соответствии. Значения проекций параллельных пучков могут состоять из детектированных значений излучения, полученных всеми блоками детектирования излучения.
В предпочтительном варианте плоскость, в которой размещено множество блоков детектирования излучения, и плоскость, в которой размещено множество генераторов излучения параллельно первой плоскости, перпендикулярны направлению перемещения объекта, подлежащего контролю.
В предпочтительном варианте данное устройство может дополнительно содержать блок визуализации, который получает изображение объекта, подлежащего контролю, посредством обработки детектированных значений излучения, собранных устройством детектирования излучения.
В предпочтительном варианте блоки детектирования излучения могут быть двухслойными двухэнергетическими блоками детектирования. Блок визуализации может получать изображение объекта, подлежащего контролю, с использованием алгоритма фильтрованных обратных проекций посредством двухэнергетической реконструкции коэффициентов двухэнергетического разложения разных материалов основы, полученных двухэнергетическим разложением значений проекций параллельных пучков.
В предпочтительном варианте данное устройство может дополнительно содержать базу данных, предназначенную для хранения в ней атомных номеров и электронных плотностей подозрительных объектов. Блок визуализации определяет, является ли или нет объект, подлежащий контролю, подозрительным объектом, посредством сравнения распределений атомных номеров и электронной плотности объекта, подлежащего контролю, который получен при двухэнергетической реконструкции, с упомянутыми параметрами подозрительных объектов в базе данных.
В соответствии со вторым аспектом настоящего изобретения предлагается способ лучевой сканирующей визуализации. Данный способ содержит следующие этапы: выполняют посредством любого из двух вышеприведенных устройств лучевое сканирование объекта, подлежащего контролю, чтобы получить детектированные значения излучения.
Когда принято первое устройство, для устройства детектирования излучения, состоящего из множества линейных решеток детекторов излучения, группируют линейную решетку эквидистантных виртуальных детекторов для каждого из, по меньшей мере, одного из генераторов излучения, которая соответствует блокам детектирования излучения, которые не расположены по прямой линии, перпендикулярной центральной оси пучков излучения, испускаемых, по меньшей мере, одним из генераторов излучения. Линейная решетка эквидистантных виртуальных детекторов может содержать множество виртуальных блоков детектирования, расположенных по прямой линии и распределенных эквидистантно. Расстояния между всеми из, по меньшей мере, одного из генераторов излучения и соответствующими линейными решетками эквидистантных виртуальных детекторов равны между собой. В соответствии с соединительными линиями между генераторами излучения и блоками детектирования излучения затем определяют блоки детектирования излучения, соответствующие виртуальным блокам детектирования соответственно, и получают детектированные значения излучения виртуальных блоков детектирования на основе детектированных значений излучения блоков детектирования излучения. Значение эквидистантной проекции веерного пучка состоит из детектированных значений излучения всех линейных решеток эквидистантных виртуальных детекторов.
Для устройства детектирования излучения, состоящего из множества блоков детектирования излучения, распределенных по дуге окружности, значения эквидистантных проекций веерных пучков или значения проекций параллельных пучков состоят из детектированных значений излучения, полученных устройством детектирования излучения.
Когда принято последнее устройство, для устройства детектирования излучения, состоящего из множества блоков детектирования излучения, распределенных по дуге окружности, значения проекций параллельных пучков состоят из детектированных значений излучения, полученных устройством детектирования излучения.
В предпочтительном варианте приведенный способ может содержать этапы: получения коэффициентов двухэнергетического разложения разных материалов основы посредством двухэнергетического разложения значений эквидистантных проекций веерных пучков или значений проекций параллельных пучков и получения изображения объекта, подлежащего контролю, с использованием алгоритма фильтрованных обратных проекций посредством двухэнергетической реконструкции коэффициентов двухэнергетического разложения разных материалов основы.
В предпочтительном варианте приведенный способ может дополнительно содержать этапы: получения распределений атомных номеров и электронной плотности объекта, подлежащего контролю; и сравнения распределений атомных номеров и электронной плотности объекта, подлежащего контролю, с упомянутыми параметрами подозрительных объектов, хранящимися в базе данных, чтобы определить, является ли или нет объект, подлежащий контролю, подозрительным объектом.
Устройство в соответствии с настоящим изобретением содержит множество генераторов излучения и согласующееся устройство детектирования излучения. Множество генераторов излучения может быть распределено равномерно по дуге окружности. Устройство детектирования излучения может быть либо в виде многосегментного полузамкнутого каркаса, состоящего из множества линейных решеток детекторов излучения, либо в виде овальных решеток детектирования излучения. При применении упомянутой конфигурации исключен поворотный механизм гентри традиционного устройства для лучевой сканирующей визуализации. В течение практической операции контроля множество генераторов излучения испускает пучки излучения последовательно к объекту, подлежащему контролю, и устройство детектирования излучения выполняет функцию сбора упомянутых детектированных значений излучения, чтобы выполнить сканирование одного слоя. В течение всей операции контроля полные детектированные значения излучения можно получить быстро без поворотов множества генераторов излучения и устройства детектирования излучения и поэтому время контроля эффективно сокращается.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Прилагаемые чертежи, которые составляют часть описания, поясняют варианты осуществления настоящего изобретения и вместе с остальной частью описания объясняют принципы настоящего изобретения.
Приведенные и/или другие аспекты и преимущества изобретения будут понятнее и легче воспринимаемыми из нижеследующего описания вариантов осуществления, рассматриваемого в связи с прилагаемыми чертежами, на которых:
фиг. 1 - схема конструкции устройства для лучевой сканирующей визуализации известного уровня техники;
фиг. 2 - схема конструкции варианта осуществления устройства для лучевой сканирующей визуализации в соответствии с настоящим изобретением;
фиг. 3 - схема, представляющая относительное пространственное расположение генераторов излучения и линейных решеток детекторов излучения в варианте осуществления устройства для лучевой сканирующей визуализации в соответствии с настоящим изобретением;
фиг. 4A и 4B - схемы, соответственно представляющие относительное пространственное расположение генераторов излучения, детекторов излучения и виртуальных детекторов излучения в разных областях;
фиг. 5 - схема конструкции другого варианта осуществления устройства для лучевой сканирующей визуализации в соответствии с настоящим изобретением; и
фиг. 6 - блок-схема последовательности операций варианта осуществления способа обработки детектированных значений излучения в соответствии с настоящим изобретением.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Дальнейшее описание содержит подробные ссылки на примерные варианты осуществления настоящего изобретения, рассматриваемые в связи с прилагаемыми чертежами. Следует отметить, что объем настоящего изобретения ни в коем случае не ограничен компонентами, этапами и их относительным расположением, численными выражениями и значениями и т.п., приведенными в упомянутых вариантах осуществления, если не указано иначе.
При этом следует понимать, что упомянутые фигуры на прилагаемых чертежах могут быть вычерчены не в масштабе для более удобного описания настоящего изобретения.
Нижеприведенное описание представлено только для пояснения и не налагает никаких ограничений на области и способы применения настоящего изобретения.
Технологии, способы и устройства, известные специалистам в данной области техники, могут рассматриваться без углубления в детали, кроме некоторых подходящих ситуаций, которые полагаются составляющими частями настоящего описания.
В приведенных примерных вариантах осуществления, описанных и проиллюстрированных ниже, любые конкретные значения поясняются только в качестве репрезентативных, а не ограничивающих. Соответственно, в альтернативных примерах приведенных примерных вариантов осуществления могут быть приняты другие значения.
Следует отметить, что на всех приведенных фигурах могут применяться похожие числовые позиции и символы для обозначения похожих частей. Соответственно, после того как описание одной(ого) численной позиции/символа приведено для одной фигуры, никаких дополнительных пояснений для последующих фигур не требуется.
На фиг. 2 приведена схема конструкции варианта осуществления устройства для лучевой сканирующей визуализации в соответствии с настоящим изобретением.
Устройство для лучевой сканирующей визуализации может содержать устройство детектирования излучения и множество генераторов 21 излучения.
Когда объект, подлежащий контролю, вносится в область сканирования устройства, множество генераторов 21 излучения может последовательно испускать пучки излучения к объекту, подлежащему контролю, чтобы выполнить сканирование одного слоя объекта, подлежащего контролю.
После прохождения сквозь объект, подлежащий контролю, все пучки излучения собираются устройством детектирования излучения.
Устройство детектирования излучения может быть расположено в любой подходящей конфигурации, например либо в многосегментной полузамкнутой конфигурации, любой в изогнутой по окружности конфигурации. В данном варианте осуществления описание приведено с устройством детектирования излучения в многосегментной полузамкнутой конфигурации примыкания, состоящей, например, из множества линейных решеток детекторов излучения.
Множество генераторов 21 излучения может быть распределено по специальному контуру с таким расчетом, чтобы объект, подлежащий контролю, проходил через пространство, сформированное специальным контуром. Например, множество генераторов 21 излучения может быть по прямоугольному каркасу, многоугольному каркасу или любому другому геометрическому каркасу, так что объект, подлежащий контролю, проходит через внутреннее пространство, сформированное каркасом. В данном варианте осуществления множество генераторов 21 излучения равномерно распределено по дуге окружности. Центральный угол дуги окружности составляет, по меньшей мере, π+2γ, где 2γ означает угол веерного пучка излучения.
В данном варианте осуществления множество линейных решеток детекторов излучения может примыкать в виде сегментов. В частности, линейная решетка 22 детекторов излучения, линейная решетка 23 детекторов излучения и линейная решетка 24 детекторов излучения соединяются впритык в одной плоскости последовательно за исключением того, что линейная решетка 22 детекторов излучения и линейная решетка 24 детекторов излучения не примыкают одна к другой, чтобы сформировать полузамкнутый каркас в форме перевернутой дверной коробки. Каждая из упомянутых линейных решеток детекторов излучения может содержать множество блоков детектирования излучения, расположенных по прямой линии.
Устройство 25 подачи можно использовать для переноса объекта, подлежащего контролю, через зону сканирования. В течение одного периода сканирования множество генераторов 21 излучения последовательно испускают пучки излучения к объекту, подлежащему контролю, чтобы выполнить сканирование одного слоя. После прохождения сквозь объект, подлежащий контролю, упомянутые пучки излучения собираются упомянутыми линейными решетками детекторов излучения. Посредством обработки упомянутых собранных значений излучения можно получить реконструированное изображение объекта, подлежащего контролю.
Плоскость, в которой размещено множество линейных решеток детекторов излучения, и плоскость, в которой размещено множество генераторов 21 излучения, должны быть двумя разными плоскостями.
В предпочтительном варианте две плоскости могут быть параллельны между собой и обе плоскости перпендикулярны направлению перемещения объекта, подлежащего контролю. Таким образом можно исключить перекрестные помехи и зону экранирования излучения между упомянутыми блоками детектирования.
Ниже поясняются условия полноты данных, необходимой для точной реконструкции при использовании веерных пучков излучения. Упомянутые условия полноты данных содержат, во-первых, условие полноты угла, то есть угол излучения для объекта, подлежащего контролю, равен, по меньшей мере, π+2γ, где 2γ является полным углом веерного пучка веерного пучка излучения, испускаемого генераторами излучения; и, во-вторых, условие для обеспечения того, чтобы значения излучения, собранные детекторами излучения, не отсекались под всеми углами сканирования, т.е. условие для обеспечения того, чтобы все пучки излучения, испускаемые упомянутыми генераторами, можно было эффективно детектировать упомянутыми детекторами излучения под всеми упомянутыми углами сканирования.
В данном варианте осуществления пучок излучения, испускаемый каждым из генераторов 21 излучения, может быть веерным пучком с углом 2γ веерного пучка. Разумеется, пучок излучения может иметь другую форму вместо веерной формы. Например, в соответствии с практической потребностью каждый генератор 21 излучения снабжен, по меньшей мере, одним отверстием для испускания излучения, испускающим, каждое, прямолинейный пучок излучения. Таким образом, упомянутые отверстия для испускания излучения каждого генератора 21 излучения могут испускать группу параллельных пучков излучения.
В качестве генератора 21 излучения можно применить рентгеновский генератор или генераторы излучения других типов. В предпочтительном варианте в данном варианте осуществления в качестве источника генерации излучения можно применить рентгеновский генератор на основе углеродных трубок. В сравнении с традиционными рентгеновскими установками рентгеновский генератор на основе углеродных трубок обладает такими преимуществами, как генерация излучения в отсутствие повышенных температур, быстрое включение и выключение и меньший объем. Скорость лучевой визуализации эффективно повышается, когда рентгеновским генератором на основе углеродных трубок осуществляется облучение объекта, подлежащего контролю, под несколькими углами. Более подробные сведения о рентгеновском генераторе на основе углеродных трубок приведены в следующем документе: G.Z. Yue, Q. Qiu, B. Gao, et al., Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode, Appl. Phys. Lett. 81, 355(2002); doi: 10.1063/1.1492305, подробное описание в настоящем документе не приводится.
Центральный угол дуги окружности, на которой расположено множество генераторов 21 излучения, равен π+2γ в данном варианте осуществления. То есть генераторы 21 излучения выполняют сканирование объекта, подлежащего контролю, в пределах углового диапазона π+2γ. Другими словами, конфигурация данных генераторов 21 излучения в соответствии с настоящим изобретением удовлетворяет требованию условия полноты угла из приведенных условий полноты данных.
Что касается второго требования к упомянутым условиям полноты данных, множество генераторов 21 излучения расположено в кольцевой полузамкнутой конфигурации и линейная решетка 22 детекторов излучения, линейная решетка 23 детекторов излучения и линейная решетка 24 детекторов излучения формируют такую каркасную полузамкнутую конфигурацию, что все пучки излучения, генерируемые каждым из генераторов излучения, можно эффективно детектировать упомянутыми линейными решетками детекторов излучения. Таким образом, данная конфигурация выполняет второе требование из упомянутых условий полноты данных.
В качестве блока детектирования излучения можно применить двухслойный двухэнергетический блок детектирования. Разумеется, в качестве блока детектирования излучения можно применить блоки детектирования любых типов, например моноэнергетический блок детектирования, мультиэнергетический блок детектирования или действительно двухэнергетический блок детектирования.
Принятый двухслойный двухэнергетический блок детектирования содержит два слоя кристаллов и фильтр между двумя слоями кристаллов. Фильтр может быть медным фильтром. Первый слой кристаллов служит для получения значений низкоэнергетического излучения, а второй слой кристаллов служит для получения трансформированных значений высокоэнергетического излучения. Двухслойный двухэнергетический блок детектирования данного типа обеспечивает такие преимущества, как высокое качество, сниженная стоимость и удобство широкого применения.
Следует отметить, что число линейных решеток детекторов излучения не ограничено тремя, как показано на фиг. 2. Например, можно применить, по меньшей мере, четыре линейных решетки детекторов излучения для сбора значений излучения. В таком случае угол между каждыми двумя прилегающими линейными решетками детекторов излучения должен быть больше чем π/2.
Число, углы и длины линейных решеток детекторов излучения можно также подбирать в соответствии с такими факторами, как объем, форма и т.п. объекта, подлежащего контролю, хотя применяемые линейные решетки детекторов излучения должны прежде всего выполнять условия полноты данных.
Благодаря принятию конфигурации многосегментного полузамкнутого каркаса множество линейных решеток детекторов излучения в соответствии с настоящим изобретением не только в полном объеме собирает значения проекций лучей, но также характеризуется повышенным отношением эффективности к стоимости в сравнении с обычной изогнутой по окружности решеткой детекторов. В частности, при условии содержания одинакового числа блоков детектирования множество линейных решеток детекторов излучения в соответствии с настоящим изобретением может формировать большее внутреннее пространство и допускать прохождение более объемного объекта, подлежащего контролю, и при условии одинакового размера внутренних пространств компоновка в соответствии с настоящим изобретением применяет меньше блоков детектирования и снижает затраты.
Кроме того, можно применить устройство детектирования излучения в других конфигурациях, отличающихся от многосегментной полузамкнутой конфигурации, показанной на фиг. 2. Например, можно применить изогнутую по окружности решетку детекторов излучения, в которой содержится множество блоков детектирования излучения, распределенных равномерно по дуге окружности.
Устройство для лучевой сканирующей визуализации может дополнительно содержать блок визуализации, который может получать томографическое изображение объекта, подлежащего контролю, посредством обработки детектированных значений излучения, собранных линейными решетками детекторов излучения.
Разумеется, детектированные значения излучения, собранные линейными решетками детекторов излучения, можно также передавать посредством системы передачи данных и обрабатывать численными методами в основном терминале управления и обработки данных.
Ниже, до подробного описания обработки данных, поясняются конструктивные требования способа реконструкции к блокам детектирования излучения при веерных пучках излучения.
Стандартный способ реконструкции с использованием взвешенных фильтрованных обратных проекций (FBP) для веерных пучков применим только к двум видам схем расположения блоков детектирования, одним из которых является равноугольная конфигурация, то есть, когда упомянутые несколько блоков детектирования расположены по дуге окружности и углы между пучками, соответствующими каждому из блоков детектирования, эквивалентны между собой, и другим является эквидистантная конфигурация, то есть упомянутые несколько блоков детектирования расположены по прямой линии и расстояния от одного блока детектирования до смежного с ним блока детектирования эквивалентны между собой, и центральная ось пучка излучения, испускаемого каждым генератором излучения, перпендикулярна прямой линии, вдоль которой расположены несколько блоков детектирования. В случае когда используют прямолинейную группу пучков излучения, можно применить способ, который аналогичен вышеупомянутому способу реконструкции и не рассматривается в настоящем документе.
В данном варианте осуществления схема расположения блоков детектирования, соответствующих некоторым из упомянутых генераторов излучения, не удовлетворяет требованию эквидистантной конфигурации для вышеупомянутого способа реконструкции вследствие выбора кольцевой конфигурации упомянутых генераторов излучения и многосегментной полузамкнутой конфигурации упомянутых линейных решеток детекторов излучения. В частности, упомянутые блоки детектирования излучения, соответствующие некоторым из упомянутых генераторов излучения, не расположены по прямой линии, которая перпендикулярна центральной оси пучка излучения, испускаемого данными генераторами излучения. Ниже приведены пояснения и иллюстрации к данной схеме расположения со ссылками на фиг. 3 и фиг. 4.
На фиг. 3 приведена схема относительного пространственного расположения генераторов излучения и линейных решеток детекторов излучения в варианте осуществления.
Как показано на фиг. 3, все упомянутые блоки детектирования излучения, соответствующие генератору A излучения, расположены на линейной решетке 24 детекторов излучения, и прямая линия, на которой расположены упомянутые блоки детектирования излучения, перпендикулярна центральной оси пучка излучения, испускаемого генератором A излучения, и расстояния от одного блока детектирования до смежного с ним блока детектирования эквивалентны между собой. То есть относительно генератора A излучения упомянутые блоки детектирования излучения расположены в эквидистантной конфигурации, необходимой для стандартного способа реконструкции с использованием FBP (фильтрованных обратных проекций) для веерных пучков.
Аналогично, существуют некоторые блоки детектирования излучения, соответствующие генераторам В и C излучения соответственно. Тем не менее, все упомянутые блоки детектирования излучения, соответствующие остальным из упомянутых генераторов излучения, не расположены в эквидистантной конфигурации, необходимой для стандартного способа реконструкции с использованием FBP для веерных пучков.
Для дополнительного пояснения и иллюстрации данной конфигурации предусмотрено условие, что дуга окружности, по которой расположено множество генераторов излучения, разделена на пять областей, при этом пучки излучения, испускаемые упомянутыми генераторами излучения в первой области, собираются только линейной решеткой 24 детекторов излучения с правой стороны, пучки излучения, испускаемые упомянутыми генераторами излучения во второй области, собираются как линейной решеткой 24 детекторов излучения с правой стороны, так и линейной решеткой 23 детекторов излучения внизу, пучки излучения, испускаемые упомянутыми генераторами излучения в третьей области, собираются только линейной решеткой 23 детекторов излучения внизу, пучки излучения, испускаемые упомянутыми генераторами излучения в четвертой области, собираются как линейной решеткой 22 детекторов излучения с левой стороны, так и линейной решеткой 23 детекторов излучения внизу, и пучки излучения, испускаемые упомянутыми генераторами излучения в пятой области, собираются только линейной решеткой 22 детекторов излучения с левой стороны.
С использованием, для примера, генератора излучения в первой области и соответствующих ему детекторов излучения ниже поясняется ситуация, в которой с