Определение электрической емкости при электрохимическом анализе с улучшенным смещением времени выборки

Иллюстрации

Показать все

Группа изобретений относится к медицине и может быть использована для определения электрической емкости биосенсорной камеры. Для этого инициируют электрохимическую реакцию пробы после ее внесения в биосенсорную камеру, имеющей два электрода, расположенных в камере и соединенных с микроконтроллером. Прикладывают к камере осциллирующий сигнал предварительно заданной частоты. Устанавливают первый временной интервал выборки. Получают выборку выходного сигнала от камеры со вторым временным интервалом выборки, отличным от первого временного интервала выборки. Определяют фазовый угол между выходным сигналом и осциллирующим входным сигналом от камеры на основе выходного сигнала выборки. Рассчитывают электрическую емкость камеры по фазовому углу. Также предложена система для измерения аналита. Группа изобретений обеспечивает определение достаточности заполнения аналитом электрохимической биосенсорной испытательной камеры. 2 н. и 21 з.п. ф-лы, 24 ил., 2 табл.

Реферат

Приоритеты

Настоящая заявка испрашивает приоритет по §120 раздела 35 Свода законов США как частичное продолжение ранее поданной заявки № 13/034,281 от 24 февраля 2011 г. (досье патентного поверенного № DDI-5196) и международной заявки на патент PCT/GB2011/000267 от 25 февраля 2011 г. (досье патентного поверенного № P056478WO), обе из которых испрашивают приоритет предварительной заявки на патент США № 61/308167, поданной 25 февраля 2010 г. (досье патентного поверенного № DDI-5196), причем все эти заявки полностью включены в настоящий документ путем ссылки.

Предпосылки создания изобретения

Обнаружение аналитов в физиологических жидкостях, например, крови или продуктах крови, приобретают все большее значение в современном обществе. Анализы на обнаружение аналитов используются в самых разнообразных целях, в том числе при клинических лабораторных исследованиях, анализе физиологических жидкостей в домашних условиях и т.п., когда результаты такого исследования играют значимую роль в диагностике и лечении различных заболеваний. К примерам таких аналитов относятся глюкоза при лечении диабета, холестерин и т.п. В ответ на растущую значимость определения аналитов разработаны различные протоколы обнаружения аналитов, а также приборы для применения как в клинических, так и в домашних условиях.

Одним из типов способов, применяющихся для обнаружения аналитов, является электрохимический способ. Для анализа жидкостей такими способами пробу помещают в испытательную камеру для приема пробы в электрохимической камере, которая включает в себя два электрода, например, рабочий электрод и противоэлектрод. Раствор, содержащий аналит, оставляют для взаимодействия с окислительно-восстановительным реагентом для образования окисляемого (или восстанавливаемого) вещества в количестве, соответствующем концентрации аналита. Затем количество окисляемого (или восстанавливаемого) вещества определяют электрохимическим способом и соотносят с концентрацией аналита в исходной пробе.

Такие системы подвержены неэффективности и/или погрешностям разного рода. Например, на результаты анализа таким способом могут влиять колебания температуры. Это имеет особое значение, когда исследование проводится в неконтролируемых условиях, например, при применении в домашних условиях или в развивающихся странах. Причиной погрешности может также стать недостаточный объем пробы для точного результата. Причиной неточного результата может стать неполное смачивание тест-полосок, так как результат измерения тока пропорционален площади рабочего электрода, смоченной пробой. Таким образом, неполное смачивание тест-полосок может в некоторых условиях привести к занижению результата измерения концентрации глюкозы.

Для решения некоторых из перечисленных проблем разработчики биосенсоров перешли к использованию электрической емкости испытательной камеры для определения достаточности заполнения такой испытательной камеры. Примеры показаны и описаны в патентах США №№ 6856125; 6872298; 7195704 и 7199594, все из которых включены в настоящую заявку путем ссылки.

Краткое описание изобретения

Заявитель полагает, что, если не учитывать эффекты параллельного сопротивления полоски при проверке достаточности смачивания биосенсорных тест-полосок, результат измерения электрической емкости тест-полоски может оказаться завышенным, особенно при более низком параллельном сопротивлении. В приведенных примерах осуществления изобретения заявителя этот эффект учитывается, однако в то же время становится очевидной необходимость определения сопротивления биосенсорной электрохимической испытательной камеры.

В одном аспекте предлагается способ определения электрической емкости электрохимической биосенсорной испытательной камеры тест-полоски. Испытательная камера имеет по меньшей мере два электрода, расположенных в камере и соединенных с микроконтроллером. Способ может быть реализован путем следующих этапов, на которых: инициируют электрохимическую реакцию пробы после ее внесения в биосенсорную камеру; прикладывают к камере осциллирующий сигнал предварительно заданной частоты; устанавливают первый временной интервал выборки для измерения выходного сигнала на основании предварительно заданной скорости выборки на цикл выходного сигнала с предварительно заданной частотой; получают выборку выходного сигнала от камеры со вторым временным интервалом выборки, отличным от первого временного интервала выборки, так что амплитуда каждого выходного сигнала выборки измеряется по истечении каждого второго временного интервала выборки вместо первого временного интервала; определяют фазовый угол между выходным сигналом и осциллирующим входным сигналом от камеры на основе выходного сигнала выборки на этапе выборки; и рассчитывают электрическую емкость камеры по фазовому углу. В одном варианте данного аспекта второй временной интервал выборки основывается на предварительно заданном времени смещения относительно первого временного интервала выборки, или же первый временной интервал выборки содержит время между каждым пошаговым изменением амплитуды выходного сигнала; и такое время смещения содержит процент первого временного интервала выборки, причем такой процент представляет собой диапазон от приблизительно 5% до приблизительно 30% первого временного интервала выборки. В другом варианте данного аспекта этап установления может включать в себя: определение продолжительности одной волны сигнала при предварительно заданной частоте; разделение продолжительности на число измеряемых проб для каждой длины волны с целью получения продолжительности по времени; и установку первого временного интервала выборки, который по существу равен продолжительности по времени. В еще одном дополнительном варианте изобретения этап установления может включать в себя оценку выходного сигнала для определения продолжительности временного интервала между каждым пошаговым изменением выходного сигнала; и установку первого временного интервала выборки, который по существу равен продолжительности по времени. Также дополнительно отмечается, что в данном аспекте такое время смещения может включать в себя процент первого временного интервала выборки, причем такой процент может находиться в диапазоне от приблизительно 5% до приблизительно 30% первого временного интервала выборки. В еще одном варианте настоящего аспекта этап расчета может включать в себя расчет электрической емкости с компенсацией фазового угла для учета фазового сдвига в цепи, которая используется для выборки выходного сигнала. В частности, этап расчета может включать в себя расчет электрической емкости по уравнению вида:

,

где:

C≈ электрическая емкость;

i T ≈ общий ток;

Φ ≈ фазовый угол между общим током и током в резисторе;

≈ компенсация фазового угла;

f≈ частота; и

V≈ напряжение.

В другом варианте компенсация фазового угла может включать в себя любое значение от приблизительно 3 градусов до приблизительно 20 градусов. В более конкретном варианте компенсация фазового угла может включать в себя значение приблизительно 11 градусов. Отмечается, что в дополнительном варианте этап расчета может включать в себя этапы, на которых: получают выборку множества выходных значений тока от камеры за один частотный цикл; получают среднее значение выходных значений тока выборки; вычитают среднее значение из каждого значения тока выборки из множества выходных значений тока; и вычитают среднеквадратичное значение всех отрицательных значений из результата вычитания для получения общего выходного значения тока. В альтернативном варианте осуществления этап расчета может включать в себя определение по данным выборки по меньшей мере одной точки пересечения кривой тока от отрицательных до положительных значений; и интерполяцию данных в непосредственной близости от по меньшей мере одной точки пересечения кривой тока для определения первого угла, при котором ток меняет свое значение с положительного на отрицательное или с отрицательного на положительное. Также дополнительно отмечается, что интерполяция по меньшей мере одной точки пересечения кривой тока может включать в себя интерполяцию другой точки пересечения результатов выборки для определения другого угла, при котором ток меняет свое значение с положительного на отрицательное или с отрицательного на положительное; и вычитание из другого угла приблизительно 180 градусов для получения второго угла. Вычитание дополнительно может включать в себя расчет среднего значения из первого и второго углов. Процесс расчета может включать в себя определение разницы углов между осциллирующим входным током и выходным током в виде фазового угла.

В другом аспекте представлена система для измерения концентрации аналита, включающая в себя тест-полоску для определения аналита и измерительный прибор для определения концентрации аналита. Тест-полоска для определения аналита включает в себя подложку с нанесенным на нее реагентом и по меньшей мере два электрода, расположенных в непосредственной близости к реагенту в испытательной камере тест-полоски. Измерительный прибор для определения концентрации аналита включает в себя разъем порта для полоски для подключения двух электродов, источника питания и микроконтроллера, электрически соединенный с разъемом порта для полоски и источником питания. Микроконтроллер запрограммирован на выполнение следующих действий: инициации электрохимической реакции в биосенсорной камере; приложения к камере осциллирующего напряжения предварительно заданной частоты; установления первого временного интервала выборки для измерения выходного сигнала на основании предварительно заданной скорости выборки на цикл выходного сигнала с предварительно заданной частотой; получения выборки выходного сигнала от камеры со вторым временным интервалом выборки, отличным от первого временного интервала выборки, так что амплитуда каждого выходного сигнала выборки измеряется по истечении каждого второго временного интервала выборки вместо первого временного интервала; определение фазового угла между выходным значением тока и осциллирующим напряжением от камеры на основе выходного сигнала выборки; и расчет электрической емкости камеры на основании полученного значения фазового угла. В этой системе второй временной интервал выборки основан на предварительно заданном времени смещения относительно первого временного интервала выборки. Кроме того, первый временной интервал выборки может включать в себя время между каждым пошаговым изменением амплитуды выходного сигнала. В частности, время смещения может включать в себя процент от первого временного интервала выборки; и такой процент может находиться в диапазоне от приблизительно 5% до приблизительно 30% первого временного интервала выборки.

Эти и другие варианты осуществления, их отличительные особенности и преимущества станут очевидными для специалистов в данной области после изучения приведенного ниже более подробного описания различных примеров осуществления настоящего изобретения в сочетании с сопутствующими рисунками, которые кратко описаны в начале заявки.

Краткое описание чертежей

Сопутствующие фигуры, включенные в настоящую заявку и составляющие ее неотъемлемую часть, иллюстрируют считающиеся на сегодня предпочтительными варианты осуществления настоящего изобретения и, вместе с приведенным выше общим описанием и приводимым ниже подробным описанием, призваны разъяснить отличительные особенности раскрываемого изобретения (сходными номерами указаны сходные элементы).

На фиг. 1 показан пример системы для измерения аналита, включающей испытательный измерительный прибор и тест-полоску.

На фиг. 2 показан упрощенный схематический вид примера печатной платы измерительного прибора, представленного на фиг. 1.

На фиг. 3A показан вид в перспективе с пространственным разделением компонентов тест-полоски, представленной на фиг. 1.

На фиг. 3В показана схематическая электрическая модель испытательной камеры 61 и векторная диаграмма модели сопротивление-емкость.

На фиг. 4 показана упрощенная схема компонентов для определения электрической емкости смоченной тест-полоски.

На фиг. 5А показано приложение напряжения к тест-полоске с течением времени.

На фиг. 5В показана амплитуда отклика выходного значения тока тест-полоски во времени.

На фиг. 6А показана выборка выходного значения тока, отмеченного в области 602.

На фиг. 6В показано выходное значение переменного тока после удаления компонента постоянного тока из данных выборки, представленных на фиг. 6A.

На фиг. 6С и 6D показан фазовый угол между переменным напряжением, приложенным к тест-полоске, и выходным значением переменного тока тест-полоски.

На фиг. 6Е показана интерполяция данных выборки для определения точки пересечения, изображенной на фиг. 6D, для сравнения с точкой пересечения кривой прилагаемого тока, изображенной на фиг. 6С.

На фиг. 7А показано наложение электрической модели на контуры полоски, изображенной на фиг. 3А, с указанием различных источников сопротивления от соответствующих компонентов тест-полоски и электрической емкости испытательной камеры.

На фиг. 7В показано схематическое электрическое представление модели испытательной камеры 61 и сопротивления разъемов тест-полоски.

На фиг. 7С показана векторная диаграмма модели, приведенной на фиг. 7В.

На фиг. 7D показан пример усовершенствования для одного варианта осуществления по сравнению с более ранними прототипами.

На фиг. 8A показан пример контрольных выходных характеристик для сопротивления испытательной камеры и электрической емкости испытательной камеры в контрольной модели тест-полоски, приведенной на фиг. 7В.

На фиг. 8В показаны фактические выходные характеристики для сопротивления испытательной камеры и электрической емкости испытательной камеры для реальной тест-полоски.

На фиг. 9А показаны выходные характеристики осциллирующего сигнала при получении выборки системой, где показано, что генерация сигнала обеспечивается 64 различными выборками тока, придающими выходному сигналу кусочную или ступенчатую форму.

На фиг. 9В показано наложение фактического осциллирующего сигнала выборки 904 по сравнению с контрольным осциллирующим выходным сигналом 902, где сигнал выборки поступает от полоски с высоким сопротивлением полоски.

На фиг. 9С показано наложение фактического осциллирующего сигнала выборки 906 по сравнению с контрольным выходным сигналом 902, где сигнал выборки 906 поступает от полоски с более низким сопротивлением полоски по сравнению с сопротивлением полоски, приведенным на фиг. 9В.

На фиг. 9D и 9E показан подробный пример ошибки, возникшей из-за пошагового изменения кусочного или ступенчатого выходного сигнала 906 по сравнению с плавным выходным сигналом 902.

На фиг. 9F показан графический пример модификации первого временного интервала выборки за счет смещения времени, чтобы сформировать второй временной интервал выборки, который обеспечивает более точные измерения электрической емкости.

Варианты выполнения настоящего изобретения

Приведенное ниже подробное описание следует толковать с учетом рисунков, на которых одинаковые элементы на разных фигурах представлены под одинаковыми номерами. Приведенные фигуры, не обязательно выполненные в реальном масштабе, показывают выбранные варианты осуществления и не призваны ограничить объем настоящего изобретения. Подробное описание раскрывает принципы настоящего изобретения с помощью примеров, которые не ограничивают настоящее изобретение. Настоящее описание позволяет любому специалисту в данной области осуществлять и использовать настоящее изобретение, а также описывает несколько вариантов осуществления, видоизменений, модификаций, альтернатив и применений изобретения, включая способ осуществления изобретения, который считается наилучшим в настоящее время.

Для целей настоящего изобретения термин «приблизительно» применительно к любым числовым значениям или диапазонам указывает на приемлемый допуск на размер, который позволяет компоненту или совокупности компонентов выполнять функцию, предусмотренную для них в настоящем изобретении. Кроме этого, для целей настоящего документа термины «пациент», «оператор», «пользователь» и «субъект» относятся к любому человеку или животному и не предполагают ограничение области использования систем или способов только человеком, хотя применение предмета изобретения пациентом, который является человеком, представляет собой предпочтительный вариант осуществления изобретения.

Системы и способы, являющиеся предметом изобретения, подходят для определения самых разнообразных аналитов в самых разнообразных пробах, особенно для определения аналитов в цельной крови, плазме, сыворотке, интерстициальной жидкости или их производных. В одном примере осуществления система для определения глюкозы основана на использовании тонкослойной камеры с противоположными электродами и электрохимического обнаружения трехимпульсным методом; она обеспечивает быстрый анализ (например, приблизительно 5 секунд), требует малого объема пробы (например, приблизительно 0,4 мкл) и может обладать более высоким уровнем надежности и точности измерения глюкозы в крови. В реакционной камере содержащаяся в пробе глюкоза может окисляться до глюконолактона под действием глюкозодегидрогеназы, а для переноса электронов от фермента к рабочему электроду можно использовать электрохимически активный медиатор. С помощью стабилизатора напряжения к рабочему электроду и противоэлектроду может быть приложен трехимпульсный профиль напряжения, индуцирующий переходный токовый процесс, используемый для вычисления концентрации глюкозы. Кроме того, дополнительную информацию, полученную при измерении переходного токового процесса, можно использовать для различения матрикса пробы и введения поправки на обусловленную гематокритом вариабельность проб крови, колебание температуры, наличие электрохимически активных компонентов, а также выявления возможных системных погрешностей.

В принципе, описанные способы можно использовать с электрохимическими камерами любых типов с разнесенными в пространстве первым и вторым электродами и слоем реагента. Например, электрохимическая камера может иметь форму тест-полоски. В одном аспекте тест-полоска может включать в себя два противодействующих и разделенных тонким разделителем электрода, которые образуют испытательную камеру для приема пробы или зону, в которой размещен слой реагента. Специалисту в данной области будет понятно, что с описанными в настоящей заявке способами можно использовать другие типы тест-полосок, включая, например, тест-полоски с копланарными электродами.

На фиг. 1 показана система управления диабетом, включающая в себя блок управления данными по диабету 10 и биосенсор в форме тест-полоски для определения уровня глюкозы 80. Следует обратить внимание, что блок управления данными по диабету (DMU) может также называться блоком измерения и управления концентрацией аналита, глюкометром, измерительным прибором и устройством для измерения концентрации аналита. В одном варианте осуществления DMU может сочетаться с устройством введения инсулина, дополнительным устройством для анализа аналита и устройством для введения лекарственных средств. DMU может быть подключен к компьютеру 26 или серверу 70 кабелем или с использованием соответствующей технологии беспроводной связи, такой как, например, GSM, CDMA, BlueTooth, WiFi и т.п.

Возвращаясь к фиг. 1, глюкометр 10 может включать в себя корпус 11, кнопки интерфейса пользователя (16, 18 и 20), дисплей 14 и отверстие порта для полоски 22. Кнопки интерфейса пользователя (16, 18 и 20) могут быть выполнены с возможностью ввода данных, навигации по меню и выполнения команд. Кнопка интерфейса пользователя 18 может быть выполнена в виде двухполюсного переключателя. Данные могут включать в себя величины, представляющие концентрацию аналита и/или информацию, относящуюся к повседневному образу жизни пациента. Информация, относящаяся к повседневному образу жизни, может включать в себя данные о приеме пищи, приеме лекарств, проведении контрольных осмотров состояния здоровья, а также общем состоянии здоровья и уровне физической нагрузки пациента.

Электронные компоненты измерительного прибора 10 могут быть размещены на печатной плате 34, которая размещена в корпусе 11. На фиг. 2 показаны (в упрощенной схематической форме) электронные компоненты, расположенные на верхней поверхности печатной платы 34. Электронные компоненты на верхней поверхности могут включать в себя отверстие порта для полоски 308, микроконтроллер 38, энергонезависимую флеш-память 306, порт передачи данных 13, часы реального времени 42 и множество операционных усилителей (46-49). Электронные компоненты на нижней поверхности могут включать в себя множество аналоговых переключателей, драйвер фоновой подсветки и программируемое постоянное запоминающее устройство с возможностью удаления информации электрическим током (EEPROM, не показано). Микроконтроллер 38 может быть электрически соединен с отверстием порта для полоски 308, энергонезависимой флеш-памятью 306, портом передачи данных 13, часами реального времени 42, множеством операционных усилителей (46-49), множеством аналоговых переключателей, драйвером фоновой подсветки и EEPROM.

Возвращаясь к фиг. 2, множество операционных усилителей может включать в себя стадийные операционные усилители (46 и 47), трансимпедансный операционный усилитель 48 и операционный усилитель с каскадом смещения 49. Множество операционных усилителей может быть выполнено с возможностью обеспечения части функции стабилизатора напряжения и функции измерения тока. Функция стабилизатора напряжения может относиться к приложению испытательного напряжения между по меньшей мере двумя электродами тест-полоски. Функция измерения тока может относиться к измерению испытательного тока, вызванного приложением испытательного напряжения. Измерение тока может осуществляться с помощью преобразователя ток-напряжение. Микроконтроллер 38 может представлять собой микропроцессор для обработки смешанных сигналов (MSP), например, MSP 430 компании Texas Instrument. Микропроцессор MSP 430 может также быть выполнен с возможностью реализации части функции стабилизатора напряжения и функции измерения тока. Кроме того, MSP 430 также может включать в себя энергозависимое ЗУ и ПЗУ. В другом варианте осуществления многие электронные компоненты могут быть встроены в микроконтроллер в форме специализированной интегральной схемы (ASIC).

Разъем порта для полоски 308 может размещаться в непосредственной близости к отверстию порта для полоски 22 и быть выполнен с возможностью образования электрического соединения с тест-полоской. Дисплей 14 может представлять собой жидкокристаллический дисплей для отображения измеренного уровня глюкозы и для облегчения ввода информации, относящейся к образу жизни пациента. Дисплей 14 может необязательно включать в себя фоновую подсветку. Порт передачи данных 13 может принимать подходящий разъем, прикрепленный к соединительному кабелю, тем самым обеспечивая соединение глюкометра 10 с внешним устройством, таким как персональный компьютер. В качестве порта передачи данных 13 может использоваться любой порт, обеспечивающий передачу данных, такой как, например, последовательный порт, USB-порт или параллельный порт.

Часы реального времени 42 могут быть выполнены с возможностью отображения текущего времени для определенной географической зоны, где находится пользователь, а также времени измерения. Часы реального времени 42 могут включать в себя плату часов 45, кристалл 44 и суперконденсатор 43. DMU может быть выполнен с возможностью электрического соединения с источником питания, таким как, например, аккумуляторная батарея. Суперконденсатор 43 может быть выполнен с возможностью обеспечения подачи электропитания в течение длительного периода для снабжения питанием часов реального времени 42 в случае прекращения подачи электроэнергии. Таким образом, в случае разрядки или замены батареи пользователю не потребуется заново устанавливать правильное время на часах реального времени. Использование часов реального времени 42 с суперконденсатором 43 позволяет снизить риск неправильной установки пользователем времени на часах реального времени 42.

На фиг. 3A показан пример тест-полоски 80, включающей в себя удлиненный корпус, проходящий от дистального конца 80 к проксимальному концу 82 и имеющий боковые края. Как показано на этой фигуре, тест-полоска 80 также включает в себя первый электродный слой 66a, изолирующий слой 66b, второй электродный слой 64a, изолирующий слой 64b и разделитель 60, расположенный в промежутке между двумя электродными слоями 64a и 66a. Первый электродный слой 66a может включать в себя первый электрод 67a, первый соединительный проводник 76 и первую контактную площадку 47, при этом первый соединительный проводник 76 электрически соединяет первый электродный слой 66a с первой контактной площадкой 67, как показано на фиг. 3A и 4. Обратите внимание, что первый электрод 67a является частью первого электродного слоя 66a, расположенного непосредственно под слоем реагента 72. Подобным образом, второй электродный слой 64a может включать в себя второй электрод 67b, второй соединительный проводник 78 и вторую контактную площадку 78, при этом второй соединительный проводник 78 электрически соединяет второй электрод 67b со второй контактной площадкой 78, как показано на фиг. 3 и 4. Обратите внимание, что второй электрод включает в себя часть второго электродного слоя 64a, расположенного над слоем реагента 72.

Как показано на фиг. 3A, электрохимическая испытательная камера для приема пробы 61 образована первым электродом 67a, вторым электродом 67b и разделителем 60 у дистального конца 80 тест-полоски 80. Первый электрод 67a и второй электрод 67b могут образовывать нижнюю и верхнюю части электрохимической испытательной камеры для приема пробы 61 соответственно. Вырезанная область 68 разделителя 60 может образовывать боковые стенки электрохимической испытательной камеры для приема пробы 61. В одном аспекте электрохимическая испытательная камера для приема пробы 61 может включать в себя порты 70, служащие для поступления пробы и/или воздуха. Например, один из портов может быть предназначен для поступления пробы текучей среды, а второй - для выхода воздуха. В одном примере осуществления первый электронный слой 66а и второй электродный слой 64а могут быть изготовлены из палладия и золота, соответственно, путем напыления. Подходящие материалы для изготовления разделителя 60 включают в себя разнообразные изоляционные материалы, например, пластмассы (в частности, ПЭТФ, ПЭТГ, полиимид, поликарбонат, полистирол), оксид кремния, керамику, стекло, адгезивы и их комбинации. В одном варианте осуществления разделитель 60 может быть выполнен в форме двухстороннего адгезива, нанесенного на противолежащие стороны листа полиэфира, при этом адгезив может быть чувствительным к давлению или термоактивируемым.

Возвращаясь к фиг. 3A, площадь первого электрода и второго электрода может ограничиваться двумя боковыми краями и вырезанной областью 68. Обратите внимание, что площадь может быть определена после смачивания поверхности электродного слоя жидкой пробой. В одном варианте осуществления адгезивная часть разделителя 60 может смешиваться и/или частично растворять слой реагента, таким образом, адгезив образует связь с первым электродным слоем 66A. Такая адгезивная связь помогает образовать часть электродного слоя, которая может смачиваться жидкой пробой, а также служить медиатором электрохимического окисления или восстановления.

Либо первый электрод, либо второй электрод могут выполнять функцию рабочего электрода в зависимости от величины и/или полярности прилагаемого испытательного напряжения. Рабочий электрод может измерять предельный испытательный ток, пропорциональный концентрации восстановленного медиатора. Например, если соединением, обуславливающим предельный ток, является восстановленный медиатор (например, ферроцианид), который затем может окисляться у первого электрода до тех пор, пока испытательное напряжение значительно меньше окислительно-восстановительного потенциала медиатора относительно второго электрода. В такой ситуации первый электрод выполняет функцию рабочего электрода, а второй электрод - противоэлектрода/контрольного электрода. Обратите внимание, что специалист в данной области может называть противоэлектрод/контрольный электрод просто контрольным электродом или противоэлектродом. После истощения всех запасов восстановленного медиатора у поверхности рабочего электрода окисление ограничивается таким образом, что измеренный ток окисления пропорционален току восстановленного медиатора, диффундирующего из основного объема раствора к поверхности рабочего электрода. Термин «основной объем раствора» относится к части раствора, расположенной достаточно далеко от рабочего электрода, когда восстановленный медиатор не находится в пределах зоны истощения концентрации. Следует отметить, что, если для тест-полоски 80 не указано иное, все потенциалы испытательного измерительного прибора 10 далее указаны для второго электрода. Подобным образом, если испытательное напряжение значительно выше, чем окислительно-восстановительный потенциал медиатора, восстановленный медиатор может окисляться у второго электрода, давая предельный ток. В такой ситуации второй электрод выполняет функцию рабочего электрода, а первый электрод - функцию противоэлектрода/контрольного электрода. Подробные сведения о примере тест-полоски, способе ее использования и испытательном измерительном приборе можно найти в патентной заявке США № 20090301899, которая включена в настоящий документ путем ссылки, копия находится в приложении.

Как показано на фиг. 3A, тест-полоска 80 может включать в себя один или более рабочих электродов и противоэлектрод. Тест-полоска 80 может также включать в себя множество электрических контактных площадок, причем каждый электрод может быть электрически соединен с по меньшей мере одной электрической контактной площадкой. Разъем порта для полоски 308 может быть выполнен с возможностью электрического соединения с электрическими контактными площадками и формирования электрического соединения с электродами. Тест-полоска 80 может включать в себя слой реагента, нанесенный поверх по меньшей мере одного электрода. Слой реагента может включать в себя фермент и медиатор. Примеры подходящих ферментов для применения в слое реагента включают в себя глюкозооксидазу, глюкозодегидрогеназу (с пирролохинолинхиноновым кофактором PQQ) и глюкозодегидрогеназу (с флавинадениндинуклеотидным кофактором FAD). Пример медиатора, подходящего для применения в слое реагента, включает в себя феррицианид, который в данном случае представлен в окисленной форме. Слой реагента может быть выполнен с возможностью физической трансформации глюкозы в продукт ферментативной реакции и генерации в ходе последней восстановленного медиатора (например, ферроцианида) в количестве, пропорциональном концентрации глюкозы. Указанный рабочий электрод затем может использоваться для измерения концентрации восстановленного медиатора в форме электрического тока. В свою очередь глюкометр 10 может преобразовать величину тока в концентрацию глюкозы. Подробное описание предпочтительной тест-полоски приведено в патентах США №№ 6179979; 6193873; 6284125; 6413410; 6475372; 6716577; 6749887; 6863801; 6890421; 7045046; 7291256; 7498132, все из которых полностью включены в настоящий документ путем ссылки.

На фиг. 4 показаны в упрощенной схематической форме различные функциональные компоненты, использующиеся для измерения электрической емкости. В частности, компоненты включают в себя микроконтроллер 300. В предпочтительном варианте осуществления микроконтроллер 300 можно приобрести в компании Texas Instrument (модель MSP430 сверхнизкого потребления). Микроконтроллер (МК) 300 может быть изготовлен с ЦАП с потенциальным выходом и встроенным АЦ-преобразователем. МК 300 соответствующим образом соединен с ЖК-экраном 304 для отображения результатов анализа или другой связанной с ними информации. Память 306 электрически соединена с МК 300 для хранения результатов анализов, результатов измерения тока и другой необходимой информации или данных. Тест-полоска может быть соединена с измерительным прибором через разъем порта для полоски (РПП) 308. РПП 308 позволяет соединять тест-полоску с МК 300 через первую контактную площадку 47a, 47b и вторую контактную площадку 43. Вторую контактную площадку 43 можно использовать для установления электрической связи с испытательным измерительным прибором через U-образную прорезь 45, как показано на фиг. 4. РПП 308 может также иметь разъемы для электродов 308a и 308c. Первая контактная площадка 47 может включать в себя два штырька 47a и 47b. В одном примере осуществления разъемы первого электрода 308a и 308c по отдельности соединены со штырьками 47a и 47b соответственно. Разъем второго электрода 308b может соединяться со второй контактной площадкой 43. Испытательный измерительный прибор 10 может измерять сопротивление или целостность электроцепи между штырьками 47a и 47b, чтобы установить наличие электрической связи тест-полоски 80 с испытательным измерительным прибором 10.

Как показано на фиг. 4, РПП 308 соединен с переключателем 310. Переключатель 310 соединен с каскадом смещения 312. На каскад смещения 312 подается сигнал ЦАП 312a, привод тока 312b и сигнал переключателя 312c. МК 300 подает сигнал ЦАП 312a, который включает в себя аналоговое напряжение в диапазоне от 0 до Vref (например, приблизительно 2,048 В). Каскад смещения 312 может работать в двух режимах - с постоянным напряжением или постоянным током. Цепь привода тока 312b контролирует режим работы каскада смещения 312. Низкая установка цепи 312b превращает операционный усилитель в каскаде смещения 312 в усилитель повторителя напряжения. Выходной сигнал ЦАП 312a приводится в соответствие с полной шкалой Vref/2 +/- 400 мВ. Операционный усилитель в каскаде смещения подает данное напряжение непосредственно на МК 300 как цепь привода цепи 312d. Напряжение в цепи 312d создается в соответствии с виртуальной «землей» Vref/2. Таким образом, для создания подходящего смещения тока (например, приблизительно 20 мВ) необходимо напряжение на выходе ЦАП, равное приблизительно 1,044 В (через подходящий преобразователь). Для создания смещения приблизительно +300 мВ напряжение на выходе ЦАП по существу должно составлять приблизительно 1,324 В, а для смещения -300 мВ - приблизительно 0,724 В. Цепь каскада смещения 312 также генерирует синусоидальную волну 109 Гц, которая используется для проверки смачивания тест-полоски путем измерения электрической емкости.

С другой стороны, если сигнал привода тока 312a к каскаду смещения 312 поддерживать на высоком уровне, выходной сигнал ЦАП масштабируется в соответствии с полной шкалой от приблизительно 0 до приблизительно 60 мВ. Сигнал переключателя 312c может также активироваться, приводя к тому, что идущий через тест-полоску ток будет перенаправляться через резистор каскада смещения 312. Операционный усилитель в каскаде смещения 312 старается поддерживать падение напряжения на резисторе на том же уровне, что и ток ЦАП, создавая ток приблизительно 600 нА. Этот ток используется для обнаружения пробы и начала измерения.

Каскад смещения 312 также подключен к цепи трансимпедансного усилителя (цепи ТИУ) 314. Цепь ТИУ 314 преобразует ток, проходящий через электродный слой полоски 66a (например, палладиевый) к контактам электродного слоя 64a (например, золотого), в напряжение. Общее усиление контролируется резистором в цепи ТИУ 314. Так как полоска 80 имеет высокую емкостную