Слоистая конструкция с внутренними полостями для использования с фотоэлементами и способ ее изготовления

Иллюстрации

Показать все

Интегрированная слоистая конструкция для применения в гелиотехнике содержит первый несущий компонент, такой как деталь из пластика или стекла, предпочтительно содержащий оптически прозрачный материал, способный пропускать излучение, и второй несущий компонент, снабженный по меньшей мере одним паттерном поверхностного рельефа, который содержит множество элементов поверхностного рельефа, и выполненный с возможностью осуществления по меньшей мере одной заданной оптической функции в отношении падающего излучения. Также интегрированная слоистая конструкция содержит второй несущий компонент содержащий, по существу, оптически прозрачный материал, способный пропускать излучение. При этом первый и второй несущие компоненты соединены посредством ламинирования таким образом, что внутри образованной слоистой конструкции находится по меньшей мере один паттерн поверхностного рельефа, а между первым и вторым несущими компонентами сформированы связанные с указанным паттерном оптически функциональные полости. Причем указанная по меньшей мере одна оптическая функция выбрана из группы, включающей введение излучения, коллимирование излучения и направление излучения, а получение и конфигурирование указанной оптической функции осуществлено посредством размеров, материала, положения и/или согласованности внутренних элементов рельефа и содержания полостей. Изобретение обеспечивает возможность решить одну или несколько из проблем: снижение напряжений под действием различных внешних факторов, таких как загрязнение вследствие присутствия пыли, песка, воды, масел и грязи и т.д., исключить ударные воздействия, что обеспечивает повышение эффективности фотоэлементов. 4 н. и 21 з.п. ф-лы, 13 ил.

Реферат

Область техники

Изобретение относится к оптике, преимущественно (но не исключительно) к слоистым конструкциям с внутренними оптическими функциональными полостями и к их изготовлению применительно к гелиотехнике.

Уровень техники

Традиционно микроструктуры, такие как микропризмы или решетки различных устройств с использованием оптических компонентов, например осветительных приборов и электронной аппаратуры, формировались только на поверхностях оптически прозрачных подложек. Подобные структуры первоначально разрабатывались для того, чтобы (пере)направлять и/или вводить/выводить пучки излучения или иным определенным образом взаимодействовать с этими пучками. Однако формирование микроструктур на поверхности материала обычно приводило к ряду проблем и дефектов, возникающих, если не сразу, то по меньшей мере при длительном использовании.

Более конкретно, оптически значимые структуры поверхностного рельефа, такие как оптические соединительные элементы, очень часто подвергаются (в степени, зависящей от сценария их использования) напряжениям под действием различных внешних факторов, таких как загрязнение вследствие присутствия пыли, песка, воды, масел и грязи и т.д. Кроме того, поверхностные структуры обычно чувствительны к ударным воздействиям со стороны внешних объектов, которые могут разрушить, деформировать и повредить эти непрочные компоненты с размерами потенциально в диапазоне микрометров или нанометров. Даже давление, создаваемое при преднамеренном контакте с внешним компонентом, может повредить поверхностную структуру, сформированную на контактной поверхности, и ухудшить ее функционирование.

Чтобы проиллюстрировать некоторые из перечисленных трудностей, со ссылкой на фиг.1а будут рассмотрены, применительно к солнечным элементам, две исходные проблемы, которые могут возникнуть совместно в рамках одного сценария, связанного с распространением излучения и границами различных сред. В левой части фиг.1а показано, что при падении излучения 106, испускаемого источником излучения, таким как Солнце, на покровное стекло 102 солнечного элемента 104 под значительным углом падения, имеет место нежелательное частичное отражение 108 от поверхности покровного стекла 102 на границе раздела воздух-стекло. Далее, часть излучения, прошедшая в покровное стекло 102, испытывает частичное внутреннее отражение 110 от границы 103 раздела стекло-солнечный элемент. Если наружной средой является воздух, соответствующее показатели преломления для этой среды, материала (стекла) и верхней части элемента можно обозначить, как nair, n1 и n2. В результате этих отражений только ограниченное количество падающего излучения, преимущественно соответствующая лучам 112, падающим на покровное стекло 102, по существу, перпендикулярно, может пройти сквозь покровное стекло 102 и войти в солнечный элемент 104 без существенных потерь электромагнитной энергии вследствие отражения на границах раздела, находящихся на траектории лучей. Как следствие, диапазон углов падения, в пределах которых достигаются эффективный подвод излучения и, соответственно, высокая суммарная эффективность, является ограниченным.

Чтобы устранить трудности, связанные с указанными границами, и повысить эффективность подвода излучения, может быть рассмотрено решение, сущность которого иллюстрируется фиг.1b. Наружный слой 102, например покровное стекло, защищающее находящийся под ним солнечный элемент 104, т.е. первый компонент, принимающий падающее излучение, снабжен паттерном 114 поверхностного рельефа, сконфигурированным с возможностью принимать и перенаправлять излучение к солнечному элементу 104 в заданном угловом интервале. Паттерн может быть, например, сконструирован специально для переориентирования лучей 120 излучения ближе к нормали к поверхности солнечного элемента 104. Очевидно, однако, что конструкция легко загрязняется дополнительным материалом 118, таким как частицы пыли или капли воды, удерживающиеся в углублениях, образованных элементами поверхностного рельефа. Поэтому эффект, создаваемый паттерном 114, рано или поздно станет незначительным, т.к. по меньшей мере часть 116 падающего излучения будет отражаться загрязнением 118 и/или будет направляться к солнечному элементу 104 под случайными углами, что может привести к дополнительным нежелательным отражениям на границе 103 стекло-солнечный элемент, приводящим к снижению общей эффективности данной конструкции.

Применительно к солнечным элементам достигаемая общая эффективность известных решений может быть удивительно низкой, вероятно, составляя около 15% или даже ниже, в основном, из-за отражений и погрешностей при введении излучения, обусловленных загрязнением, отражений от поверхности, внутренних отражений, таких как отражения на границах раздела сред, например на границе между слоем оксида индия-олова и другими слоями, обычно используемыми в структурах солнечных элементов. Основная часть солнечного излучения, падающего на оптическую конструкцию, содержащую солнечный элемент, не используется, поскольку некоторые углы падения в принципе не учитываются при разработке оптики для этих элементов. Таким образом, в рассмотренном контексте можно считать, что только солнечное излучение, падающее на солнечный элемент вертикально, вносит вклад в эффективность этого элемента, который поэтому оказывается очень чувствительным к положению Солнца.

В связи с этим предлагалось даже использовать лазер, чтобы сгенерировать локальные изменения внутри материала несущего компонента, например в его показателе преломления, с целью смоделировать внутри него дифракционные решетки. На подложки наносились также специальные покрытия с заданным высоким или низким показателем преломления, чтобы управлять распространением излучения внутри них. Однако оказалось, что даже эти (как и другие известные) решения имеют слишком узкую область применения и недостаточно высокие показатели и являются сложными и дорогими для широкого использования в промышленном масштабе.

Раскрытие изобретения

В связи с этим ставится задача ослабить одну или более из описанных проблем, которые не удается преодолеть посредством известных устройств, и предложить реальные альтернативы для формирования различных, в частности оптических, функциональных конструкций, в том числе пригодных для применения в гелиотехнике.

Данная задача решена посредством различных вариантов слоистой конструкции (ламината) и способа ее (его) изготовления согласно изобретению. Далее в данном разделе формулируются базовые концепции изобретения, которые будут затем подробно описаны в разделе "Осуществление изобретения". Однако в данном разделе не ставится задача идентифицировать только важные, в частности только существенные, признаки изобретения, чтобы не внести каких-либо ограничений в его объем.

В одном своем аспекте изобретение охватывает интегрированную слоистую конструкцию для применения в гелиотехнике, содержащую:

- первый несущий компонент, такой как деталь из пластика или стекла, предпочтительно содержащий, по существу, оптически прозрачный материал, способный пропускать излучение, и

- второй несущий компонент, такой как деталь из пластика или стекла, снабженный по меньшей мере одним паттерном поверхностного рельефа, который содержит множество элементов поверхностного рельефа и выполнен с возможностью осуществления по меньшей мере одной заданной оптической функции в отношении падающего излучения, причем второй несущий компонент содержит, по существу, оптически прозрачный материал, способный пропускать излучение.

При этом первый и второй несущие компоненты соединены посредством ламинирования таким образом, что внутри образованной слоистой конструкции находится по меньшей мере один паттерн поверхностного рельефа, а между первым и вторым несущими компонентами сформированы связанные с указанным паттерном оптически функциональные полости.

Компоненты предпочтительно прочно соединены друг с другом посредством ламинирования, так что между ними не остается никаких нежелательных зазоров, в том числе воздушных, разумеется, за исключением предусмотренных, предпочтительно оптических, функциональных полостей, формируемых по меньшей мере одним внутренним паттерном поверхностного рельефа.

Следует также отметить, что когда паттерн или элемент поверхностного рельефа, выполненный на несущем компоненте, вводится в процессе ламинирования внутрь формируемой несущей конструкции, он не появляется на ее поверхности, т.е. не является паттерном или элементом поверхностного рельефа этой конструкции.

При этом в определенных оптических приложениях несущие паттерн ламинированные слои с одинаковым показателем преломления могут формировать единственный оптически функциональный компонент по отношению к падающему на него излучению.

В некоторых вариантах первый несущий компонент может быть снабжен по меньшей мере одним паттерном поверхностного рельефа, способным выполнять заданную оптическую функцию по отношению к падающему на него излучению и содержащим элементы поверхностного рельефа. Паттерн может находиться на стороне, обращенной ко второму несущему компоненту, так что после ламинирования он станет внутренним (встроенным) паттерном, или, например, на противоположной стороне. В последнем случае паттерн может остаться на поверхности конструкции или быть покрытым, например, еще одним компонентом и, следовательно, стать внутренним. Паттерны первого и второго несущих компонентов могут сформировать объединенный многослойный паттерн, обеспечивающий, например, выполнение по меньшей мере одной общей функции. Один (первый или второй) несущий компонент в общем случае может быть, по существу, планарным, хотя возможны и другие его формы.

В некоторых вариантах по меньшей мере один паттерн поверхностного рельефа второго и/или первого несущих компонентов, предпочтительно встроенный в слоистую конструкцию, может быть сконфигурирован с возможностью задавать в ней, возможно совместно с обращенной к нему, в зоне границы между компонентами частью первого и/или второго несущих компонентов, полости, предпочтительно оптически функциональные полости. По своим размерам внутренние замкнутые полости могут быть, например, микро- или нанополостями. Полости могут заключать в себе различные материалы, потенциально отличные от материалов первого и/или второго несущих компонентов. Так, полости могут заключать в себе или быть заполнены текучей средой, например воздухом, подходящей жидкостью и/или твердым веществом. Полость может также содержать гель или пасту. Паста может быть прозрачной или окрашенной. Могут выбираться вещества, способные обеспечить заданные оптические свойства, например, в отношении показателя преломления, который может отличаться от показателя преломления соответствующего несущего компонента или совпадать с ним. Полость может иметь форму точки, удлиненный или более сложный профиль.

В некоторых вариантах по меньшей мере одна, предпочтительно оптическая, функция используемого (встраиваемого) паттерна поверхностного рельефа, содержащего некоторое количество профилей поверхностного рельефа, может представлять собой функцию, выбранную из группы, состоящей из: функции направления излучения, функции захвата излучения, отражательной функции, функции пропускания, трансрефлективной функции, функции воздействия на излучение, функции введения излучения, функции выведения излучения, функции поляризации, функции дифрагирования, функции преломления, противоослепляющей функции, функции уменьшения прозрачности, функции просветления, функции коллимирования, функции предварительного коллимирования, функции линзы, функции уменьшения расходимости, функции увеличения расходимости, функции модифицирования длины волны, функции рассеяния, функции окрашивания, функции распределения сред и функции формирования диффузного излучения. При наличии встроенных паттернов и ассоциированных с ними полостей на границе между компонентами могут обеспечиваться одна или более функций. Если это желательно, указанные границы или их заданная часть могут быть сделаны оптически прозрачными, например, за счет правильно выбранных (одинаковых) показателей преломления.

Множество профилей (видов элементов) поверхностного рельефа в составе паттерна могут обеспечивать одинаковые функции. Альтернативно, различные виды элементов паттерна могут иметь различные функциональности. В одном варианте единственный вид элементов может обеспечить осуществление нескольких, по меньшей мере двух, функциональностей. Например, один и тот же паттерн или даже единственный профиль может быть сконфигурирован с возможностью обеспечивать введение излучения посредством пропускания и, в то же время, отражать излучение. Функциональность может, например, зависеть от свойств излучения, таких как угол падения и/или длина волны, и/или от стороны профиля, на которую падает излучение. Элемент поверхностного рельефа, внутренний или поверхностный, может быть сконфигурирован для осуществления заданного количества функций, например, за счет правильного выбора ассоциированного материала (задающего контур или служащего наполнителем), размеров, положения и/или согласованности с другими элементами.

В некоторых вариантах слоистая конструкция может содержать третий, а возможно, и другие несущие компоненты. На них могут иметься дополнительные паттерны поверхностного рельефа, которые могут быть встроены в слоистую конструкцию. Любой из первого, второго или возможных дополнительных компонентов может представлять собой ламинат или иной многослойный и/или составной компонент. Промежуточный (срединный) компонент может быть сделан толще, чем примыкающие к нему верхний и нижний компоненты, например в виде пленок, которые могут быть снабжены паттернами поверхностного рельефа, которые, например, должны быть сделаны внутренними. Промежуточный компонент также может быть снабжен паттерном поверхностного рельефа, который встраивается в слоистую конструкцию в процессе ее изготовления.

В некоторых вариантах интегрированная слоистая конструкция может содержать множество слоев паттернов (первоначально поверхностного) рельефа. Каждый компонент ламината, такой как пленка, фольга или лист, может содержать один или более паттернов поверхностного рельефа и соответственно образовывать один или более оптически функциональных слоев. Каждый слой может иметь определенную оптическую функциональность или несколько функциональностей. Многослойный паттерн может быть образован с помощью единственного несущего компонента, сформированного со слоем элементов поверхностного рельефа на каждой из двух своих сторон, и/или нескольких несущих компонентов, каждый из которых снабжен по меньшей мере одним слоем элементов поверхностного рельефа и которые используются совместно для получения многослойного паттерна. Слои многослойного паттерна могут осуществлять по меньшей мере одну общую функцию.

В некоторых вариантах первый и/или второй несущие компоненты являются, по существу, эластичными и гибкими. Степень эластичности и гибкости может изменяться от варианта к варианту. Например, без разрушения материала может быть достигнут заданный угол изгиба, например 180°, при заданном радиусе изгиба. При этом несущие компоненты могут быть одновременно упругими и гибкими. Слоистая конструкция тоже может быть упругой, а также гибкой.

Несущий компонент может быть тонким, например являться тонкой пленкой. Толщина несущего компонента также может варьировать в зависимости от варианта. Она может составлять, например, от нескольких нанометров до нескольких миллиметров. Это относится также к дополнительным несущим компонентам слоистой конструкции. Однако, можно использовать и компонент(ы) с существенно большей толщиной.

В некоторых вариантах первый и/или второй несущие компоненты содержат пластик (такой как полимер или эластомер), стекло и/или керамический материал. Дополнительно или альтернативно, можно применить и другой материал (другие материалы), в частности полупроводниковые материалы, например кремний, в частности в виде кремниевой пластины.

В некоторых вариантах подлежащий встраиванию паттерн поверхностного рельефа содержит профили поверхностного рельефа, соответствующие по меньшей мере одному типу из группы, состоящей из: решетки, канавки для решетки, бинарного профиля, наклонного профиля, квадратного или прямоугольного профиля, треугольного профиля, трапецеидального профиля, пикселя, пикселя решетки, выступа, углубления, полости и линзы.

В некоторых вариантах слоистая конструкция может содержать или формировать по меньшей мере часть пропускающего, отражающего или трансрефлективного компонента.

В некоторых вариантах слоистая конструкция снабжается функциональным поверхностным слоем, таким как покрытие, и/или слоем, содержащим элементы поверхностного рельефа. Эти элементы могут оставаться на поверхности слоистой конструкции. Их функции, или свойства могут включать, например, функцию просветления, гидрофобную функцию, гидрофильную функцию и/или функцию самоочищения.

В некоторых вариантах элемент поверхностного рельефа и/или соответствующий паттерн, подлежащий встраиванию в слоистую конструкцию или связанный с ней другим способом, имеют, по существу, субмикронные размеры по длине, глубине/высоте и/или ширине. Альтернативно, размеры элемента и/или паттерна могут составлять от нескольких микрометров или десятков микрометров, например от около 20 или 30 мкм, до размеров в миллиметровом диапазоне. Допустимы даже еще большие размеры.

В другом аспекте предлагается способ изготовления интегрированной конструкции для оптических применений в области гелиотехники, включающий:

- получение первого несущего компонента, такого как деталь из пластика или стекла, предпочтительно содержащего, по существу, оптически прозрачный материал, способный пропускать излучение,

- получение второго несущего компонента, снабженного по меньшей мере одним паттерном поверхностного рельефа, содержащим элементы поверхностного рельефа и обеспечивающим осуществление по меньшей мере одной заданной оптической функции в отношении падающего излучения, причем второй несущий компонент содержит, по существу, оптически прозрачный материал, способный пропускать излучение,

- соединение, посредством ламинирования, первого и второго несущих компонентов таким образом, что внутри сформированной слоистой конструкции находится по меньшей мере один паттерн поверхностного рельефа.

Введение (встраивание) внутрь конструкции по меньшей мере одного паттерна поверхностного рельефа может практически привести к образованию связанных с ним полостей, расположенных, по существу, на границе между первым и вторым несущими компонентами ламината. При этом часть краев полостей может быть образована обращенным к ним поверхностным слоем первого несущего компонента.

В некоторых вариантах способа применима рулонная технология. В частности, эта технология может быть использована в варианте рулонного тиснения или перенесения рельефа давлением для формирования паттерна поверхностного рельефа на несущем компоненте. Альтернативно или дополнительно, паттерн поверхностного рельефа может быть сформирован, например, с использованием по меньшей мере одной технологии, выбранной из группы, состоящей из: тиснения, перенесения рельефа давлением, микромашинной обработки, УФ тиснения, УФ перенесения рельефа давлением, литографии, микроформования и литья. При этом процесс ламинирования может использовать рулонную или планарную технологию.

В некоторых вариантах несущий компонент, например второй несущий компонент, снабжается по меньшей мере одним паттерном поверхностного рельефа. В этом случае сначала, используя подходящий метод, например гальванопластику, литье или формование, изготавливают премастер-деталь, например премастер-пластину, содержащую паттерн для премастеринга. Используя премастер-деталь, можно изготовить мастер-деталь, такую как мастер-пластина со слоем никеля, мастер-пластина из пластика, отлитая или сформованная мастер-пластина. В качестве опции, паттерн(ы) премастер-детали можно моделировать (модифицировать) с применением соответствующей технологии, например печатной. Для этой цели может быть использовано, например, покапельное заполнение посредством сопла для распыления пасты, так что заполненные печатной пастой части премастер-детали не появятся в целевом компоненте, т.е. в мастер-детали.

Как будет понятно специалисту, приведенные выше сведения о различных вариантах слоистой конструкции могут, с соответствующими изменениями, быть соотнесены с вариантами способа, и наоборот.

Полезность изобретения обусловлена различными факторами, зависящими от каждого конкретного варианта. Прежде всего, обеспечивается возможность встраивания в слоистую конструкцию (содержащую по меньшей мере два компонента, образующих по меньшей мере два соединенных друг с другом слоя) как простых, так и очень сложных высокоэффективных интегрированных нано- или микроструктур с различными функциональностями, таких как оптические структуры. Параметры применяемого метода ламинирования предпочтительно выбирают такими, что соединение является прочным и/или в нем, по существу, не остается никаких (непреднамеренных) зазоров между компонентами ламината. Далее, интегрированные компоненты, слои или покрытия могут находиться на любой стороне полученного ламината. В большинстве вариантов слоистая конструкция может изготовляться в промышленных масштабах посредством относительно простого и недорогого способа. При этом внутренние структуры ламината остаются защищенными от внешних нагрузок и загрязнения. Увеличивается срок жизни соответствующих продуктов, и многие из них практически не будут требовать ухода.

Кроме того, могут быть легко построены многоуровневые/многослойные конструкции со встроенными слоями. Для обеспечения внутреннего отражения излучения могут быть созданы внутренние структуры для удерживания света, использующие, например, определенные геометрии, показатели преломления и/или материалы. Могут быть реализованы также слои, обеспечивающие эффективные прием и коллимирование излучения применительно к широкому интервалу углов падения. В дополнение к контексту солнечной энергии, ламинат может применяться, например, в областях интегральной электроники, полупроводников, (био)медицинских систем, трибологических систем, окон (в частности для подсветки окон), освещения теплиц, рекламного дела, обеспечения безопасности, производства автомобилей и других транспортных средств, уличного освещения, осветительных систем и различных знаков или указателей, таких как дорожные знаки и ретрорефлекторы.

В контексте солнечной энергии и солнечных (фотовольтаических) элементов может быть обеспечено повышение эффективности в результате более эффективной передачи на солнечный элемент падающего (на поверхность конструкции) излучения, более эффективного удерживания излучения внутри конструкции, а также ослабление (если не полное устранение) проблем загрязнения. При этом повышение эффективности достигается при статичном солнечном элементе и не требует наличия средств для настройки его положения. Слоистая конструкция, прикрепляемая к солнечному элементу, может иметь также дополнительные функциональности и соответствующие слои, такие как самоочищающиеся наноструктуры, покрытия и т.д. Могут быть сформированы улучшенные функциональные поверхности. Становятся возможными как жесткие, так и гибкие конструкции солнечных элементов.

Выражение "некоторое количество" охватывает в контексте описания любое целое число, начиная с 1, например 1, 2 или 3.

Выражение " множество" охватывает в контексте описания любое целое число, начиная с 2, например 2, 3, или 4.

Выражение "содержать" не требует, но и не исключает наличия каких-либо других неназванных признаков.

Порядковые числительные "первый" и "второй" не задают какой-либо порядок, количество или важность; они используются скорее, чтобы отличить один компонент от другого.

Термин "излучение" относится к электромагнитному излучению, такому как видимое излучение (свет), но не ограничено только светом.

Термин "несущий компонент" в контексте описания может означать компонент ламината, содержащий заданный материал, такой как материал для переноса излучения, компонент, содержащий заданный функциональный компонент, например покрытие, или по меньшей мере часть конструкции, такую как паттерн поверхностного рельефа или связанная с ним полость, и/или компонент, который поддерживает, несет, защищает или по меньшей мере прикреплен в сформированном ламинате к другому или другим компонентам и, следовательно, образует его интегральную часть.

Различные варианты изобретения раскрыты в зависимых пунктах.

Краткое описание чертежей

Далее изобретение будет описано подробно, со ссылками на прилагаемые чертежи.

На фиг.1а иллюстрируются проблемы, ассоциированные с современными вариантами солнечных элементов.

На фиг.1b иллюстрируются проблемы, связанные со структурами поверхностного рельефа в типичных условиях их использования, например на открытом воздухе.

На фиг.2 представлен, в сечении, вариант слоистой конструкции согласно изобретению.

На фиг.3 представлен, в сечении, другой вариант слоистой конструкции согласно изобретению.

На фиг.4 представлен, в сечении, еще один вариант слоистой конструкции согласно изобретению.

На фиг.5 представлен, в сечении, следующий вариант слоистой конструкции согласно изобретению.

На фиг.6 представлен, в сечении, еще один вариант слоистой конструкции согласно изобретению.

На фиг.7 иллюстрируется, в сечении, слоистая конструкция для солнечного элемента в соответствии с вариантом изобретения.

На фиг.8 иллюстрируется, в сечении, слоистая конструкция для введения излучения в соответствии с вариантом изобретения.

На фиг.9а иллюстрируется, в сечении, конструкция для введения излучения, использующая предлагаемые принципы.

На фиг.9b иллюстрируются, в сечении, две другие конструкции для введения излучения, использующие предлагаемые принципы.

На фиг.10 иллюстрируется вариант изготовления слоистой конструкции согласно изобретению.

На фиг.11 приведена блок-схема, поясняющая вариант способа изготовления согласно изобретению.

На фиг.12 иллюстрируются различные аспекты потенциальных сценариев изготовления с применением рулонной технологии.

На фиг.13 иллюстрируются некоторые операции процесса изготовления, на основе которого разработан вариант сценария изготовления слоистой конструкции согласно изобретению.

Осуществление изобретения

Фиг.1а и 1b были рассмотрены выше в рамках анализа уровня техники.

Принципы изобретения могут быть реализованы в различных сценариях и контекстах, один из которых может соответствовать, например, использованию видимого, инфракрасного (ИК) и/или ультрафиолетового (УФ) излучения.

В некоторых вариантах изобретения слоистая конструкция может быть получена из объемных элементов, таких как пластины или толстые пленки, которые могут быть снабжены оптическими паттернами, придающими желательные оптические функции, например функции введения и/или выведения. Могут использоваться паттерны с мелкими элементами поверхностного рельефа, такими как решетки, в том числе бинарные, с углом блеска, наклонными и/или трапецеидальными штрихами. Могут использоваться дискретные паттерны, такие как пиксели решетки, небольшие углубления, или протяженные элементы, такие как удлиненные углубления или каналы, или другие двумерные или трехмерные профили. Чтобы усилить адгезию слоев, соединяемых ламинированием, и/или обеспечить требуемое распространение излучения и/или иные свойства, желательно сформировать в зонах сопряжения слоев по меньшей мере небольшие плоские участки, т.е. контактные поверхности.

Встроенный паттерн поверхностного рельефа может образовывать в зоне контактирующих участков группу замкнутых полостей (которые могут рассматриваться как входящие в его состав), например микрополости, заполненные воздухом или другой средой. Кроме того, могут быть сформированы и более крупные структуры, например преломляющие. Соответственно, полости предпочтительно являются оптически функциональными, т.е. имеют по меньшей мере одну заданную оптическую функцию. Таким образом, при разработке встраиваемого элемента/паттерна поверхностного рельефа следует продумать функциональность этого элемента/паттерна таким образом, чтобы учесть влияние (например, на создание оптических эффектов) окружающих слоистых материалов, профилей, форм и полостей, образованных на границах между компонентами.

В некоторых вариантах наружный (т.е. верхний или нижний) слоистый компонент в работающей конструкции может содержать, в качестве своей интегральной части, оптику для введения излучения (т.е. входную оптику), выходную оптику и/или поляризационные решетки, например в виде проволочной сетки, или другие решетки. При этом оптические элементы могут быть встроенными и/или находиться на поверхности.

В некоторых вариантах со слоистой конструкцией могут быть функционально и/или физически связаны источники излучения, например через соответствующую кромку, в частности, с применением подходящей ламинированной оптики и/или оптики, интегрированной в источник излучения, такой как коллимирующая и/или отражающая оптика. Еще одна возможность состоит в связи через нижнюю поверхность.

В некоторых вариантах многослойная, в частности двухслойная, оптическая структура может быть сформирована в ламинате, чтобы обеспечить введение излучения или для других целей. Слой или другой компонент ламината может быть сконфигурирован в расчете на определенный спектральный интервал или диапазон излучения. Другой слой может быть рассчитан на другие длины волн. Например, поверхностный слой или слой, близкий к поверхности, может быть рассчитан для ИК диапазона (для больших длин волн), а другой слой, находящийся в конструкции на большей глубине, - для видимого излучения (для более коротких длин волн) или наоборот. Толщины слоев могут выбираться в расчете на требуемый спектральный интервал. При правильном выборе толщин соответствующие слои могут быть сделаны практически невидимыми в требуемом интервале длин волн. Ламинат может содержать входную оптику, например соответствующие слои с паттернами поверхностного рельефа на его различных сторонах.

В некоторых вариантах слоистая конструкция может использоваться вне гелиотехники или в дополнение к ней, например в рекламе и в индикативных окнах, дисплеях, знаках или указателях. Оптически функциональный элемент, такой как пластина или пленка, который может иметь слоистую структуру, можно разместить, в качестве отдельного или интегрированного (например, посредством ламинирования) элемента, поверх нужной картинки или другого целевого элемента. Он может содержать паттерн поверхностного рельефа, предпочтительно находящийся ближе к картинке или другому целевому элементу, чем противоположная поверхность, чтобы улучшить контрастность изображения. Бинарная решетка или другие паттерны могут использоваться, например, в сочетании с рамочным элементом. Бинарная решетка может быть желательной для применений с большими углами поля зрения, а решетка с углом блеска - для более узких интервалов по углу поля зрения. Применимы также и гибридные решетки. Рассеивающая оптика также может применяться для того, чтобы избежать точек перегрева и для более равномерного освещения. Изобретение применимо также к разработкам в области пользовательского интерфейса и автомобильных номеров. Применительно к этим номерам или другим элементам с идентификационными или иными визуальными данными отображаемые цифры, буквы, другие знаки могут быть ламинированы для обеспечения контакта с передней пластиной, что позволит обеспечить подсветку фона цифр/букв, например, для повышения контрастности.

В различных вариантах изобретения один или более элементов слоистой конструкции могут быть, по существу, оптически прозрачными, просвечивающими или непрозрачными. Разумеется, требуемая степень прозрачности каждого элемента зависит от конкретного применения. Так, в некоторых вариантах заданная прозрачность для материала, рассматриваемого как, по существу, оптически прозрачный в определенном спектральном интервале (например в ИК, видимом или УФ диапазоне), в данном контексте может составлять от 80% до 95%.

На фиг.2 иллюстрируется сценарий, в котором может использоваться вариант изобретения. Интегральная слоистая конструкция 202 содержит два планарных несущих компонента 204 и 206, соединенных посредством ламинирования. При необходимости могут быть добавлены и другие компоненты. Штриховой линией изображена граница между двумя ламинированными компонентами: верхним компонентом 204 (названным так в соответствии с его положением на фиг.2, тогда как в процессе использования он, в зависимости от ориентации ламината, может, например, находиться как сверху, так и сбоку) и нижним компонентом 206 (названным так тоже в соответствии с фиг.2). Как уже упоминалось, граница между компонентами может быть сделана оптически прозрачной. Стрелками на фиг.2 показаны лучи.

Верхний компонент 204 был заранее снабжен паттерном поверхностного рельефа, содержащим находящееся на его нижней стороне некоторое количество выступающих элементов 208 поверхностного рельефа, между которыми находятся углубления 210. Верхний компонент 204 и нижний компонент 206 (который может рассматриваться как подложка для верхнего компонента 204 и частично для формируемых полостей, образуя по меньшей мере части их стенок на границе между компонентами 204, 206) соединены посредством ламинирования так, что выступы 208 паттерна поверхностного рельефа, имеющие, например, профиль усеченного конуса (которому в сечении, показанном на фиг.2, соответствует равнобедренный трапецоид), вступили, согласованным образом, в контакт с соответствующими участками поверхности нижнего компонента 206, имеющего в представленном примере, по существу, плоскую контактную поверхность. В результате углубления 210 образовали предпочтительно замкнутые полости, в которых может находиться материал, например захваченный ими (если соединение производилось не в вакууме). Соответственно, этот материал может иметь показатель преломления, отличный от окружающего материала. Если материалом компонента 204 является пластик, его показатель преломления будет выше, чем, например, у воздуха.

Что касается различий между материалами или их показателями преломления, то компоненты, например в форме слоев, имеющие близкие показатели преломления, могут рассматриваться как единый компонент для излучения, т.е граница между ними будет оптически прозрачной. Возможно и использование различных материалов, имеющих неодинаковые показатели преломления, чтобы осуществлять желательное управление излучением, например, с помощью полного внутреннего отражения.

Применяемые профили и/или показатели преломления nair, n1, n2 материалов, использованных в/на компонентах 204, 206, могут быть выбраны такими, чтобы получить желательный функциональный эффект в терминах распространения излучения. На фиг.2 можно видеть, как, посредством ламинированных слоев и паттерна поверхностного рельефа внутри них, различные лучи с различными углами падения могут быть сколлимированы, чтобы направить их, по существу, перпендикулярно нижней стороне ламината. Другими словами, можно рассматривать верхний компонент 204 как слой, осуществляющий захват излучения для подачи его в один или более нижележащих компонентов 206. В некоторых вариантах компонент 204 может быть тонким, по существу, в виде пленки, например, с толщиной несколько нанометров. В других вариантах его толщина может составлять несколько миллиметров или да