Устройство для создания сверхвысокого давления и температуры

Иллюстрации

Показать все

Изобретение относится к устройствам, используемым при работе с высоким давлением и температурой, и предназначено для получения сверхтвердых материалов, а также для высокотемпературной обработки природных кристаллов алмаза. Устройство состоит из соосно установленных матриц 1 и 1', на обращенных друг к другу торцевых поверхностях которых выполнены центральные углубления 7 и 7', ограничивающие эти углубления внутренние кольцевые выступы А и периферийные выступы В. Между матрицами 1 и 1' в устройстве помещен контейнер 3 с образцом и нагревателем 4. Контейнер 3 заключен в кольцо 5 из пластичного материала. Для повышения эффективности осуществления процессов сжатия и удержания вещества в центральном реакционном объеме устройства внутренние выступы А матриц 1 и 1' выполнены усеченными в горизонтальной плоскости, причем между шириной w усеченной поверхности выступа А и его высотой h1 относительно дна центрального углубления 7 и 7' в матрице выполняется соотношение: 0,7h1<w<0,9h1. Для повышения стойкости устройства и производительности при его эксплуатации периферийные выступы В матриц 1 и 1' выполнены с высотой h2 относительно дна центрального углубления 7 и 7' по сравнению с высотой внутренних выступов h1 с соблюдением соотношения h1<h2≤1,2h2, и между периферийными выступами В размещено упорное кольцо 6, которое ограничивает сближение матриц 1 и 1' на конечной стадии создания давления в центральном объеме устройства. 1 табл., 3 ил.

Реферат

Изобретение относится к устройствам, используемым при работе с высоким давлением, и предназначено, в частности, для получения искусственных сверхтвердых материалов, а также для преобразования дефектов в природных кристаллах алмаза.

Известен аппарат для создания высокого давления и температуры (F.P. Bundy, "High pressure high pressure apparatus", US Patent No. 2941243, Int. C1. B01J 3/06, June 21,1960), содержащий скрепленные по боковым поверхностям поддерживающими кольцами соосно установленные матрицы, на обращенных друг к другу торцевых поверхностях которых выполнены дугообразные в разрезе кольцевые выступы, ограничивающие центральные реакционные углубления. Устройство также содержит расположенный в углублениях и подвергаемый сжатию между матрицами твердотельный контейнер с образцом и нагревателем. В аппарате кольцевые выступы матриц выполняют роль затворов, препятствуя боковому экструдированию вещества из центрального реакционного объема камеры при уменьшении этого объема во время сближения матриц под действием гидравлического пресса. Однако, имея указанную форму, в процессе нагружения устройства выступы легко приходят через тонкий слой прослойки во взаимный контакт и тем самым ограничивают дальнейшее сжатие вещества, находящегося между матрицами в углублениях. Основными недостатками этого устройства являются малый полезный объем камеры и относительно невысокие рабочие давления, получаемые в реакционном объеме. Кольцевые выступы матриц, с одной стороны, способствуют сжатию вещества, находящегося в центральном объеме камеры, препятствуя его боковому экструдированию, а с другой стороны, ограничивают это сжатие, легко вступая во взаимный контакт.

Известно устройство для создания сверхвысокого давления и температуры, содержащее скрепленные по боковым поверхностям поддерживающими кольцами соосно установленные матрицы, на обращенных друг к другу поверхностях которых выполнены центральные углубления и усеченные кольцевые выступы, ограничивающие указанные углубления, контейнер с образцом и нагревателем, установленный между матрицами в центральных углублениях, и кольцо, охватывающее контейнер (Н.А. Николаев и М.Д. Шалимов, патент РФ №1332598, МПК B01J 3/00, 02.02.1993). Принцип работы устройства основан на сжатии и удержании твердотельной среды в центральном объеме камеры в процессе сближения матриц под действием одноосной нагрузки гидравлического пресса. Проблема эффективного удержания среды при ее сжатии между матрицами решается в устройстве путем установления связи между высотой кольцевых выступов относительно дна центральных углублений в матрицах h и шириной их усеченной поверхности w, определяемой соотношением: 0,5h<w<1,5h. В конструкции устройства кроме боковой поддержки матриц для повышения их прочностных характеристик используется принцип массивной поддержки воспринимающих нагрузку пресса поверхностей матриц на обращенных друг к другу торцах. Он заключается в ограничении площади нагружения рабочих торцов матриц, которая должна быть в несколько раз меньшей по сравнению с площадью их опорной поверхности. Принцип массивной поддержки впервые был применен Бриджменом в наковальнях с плоскими гранями, P.W. Bridgmam, Proc. Amer. Acad. Arts Sci., 81, 165 (1952). Он позволяет получать такие значения давления в прокладке между центральными участками наковален, которые значительно превышают значение предела текучести конструкционного материала наковален на простое сжатие. Недостатком известного устройства является невысокая производительность, обусловленная длительностью процесса разгрузки камеры при ее эксплуатации ввиду отсутствия конструкционных элементов, страхующих камеру от выбросов материала контейнера при ее быстрой разгрузке.

Известно также устройство для создания сверхвысокого давления и температуры (V.N. Bakul et al., US Patent No. 3695797, Int. C1. B30b 11/32, Oct. 3, 1972), выбранное в качестве ближайшего аналога, содержащее скрепленные по боковым поверхностям поддерживающими кольцами соосно установленные матрицы, на обращенных друг к другу торцевых поверхностях которых выполнены центральные углубления, кольцевые выступы, ограничивающие эти углубления и периферийные кольцевые выступы. Устройство также содержит контейнер с образцом и нагревателем, установленный между матрицами в центральных углублениях, и кольцо, охватывающее контейнер. Периферийные выступы в этом устройстве призваны ограничивать зону истечения материала контейнера из центрального объема камеры при его деформировании в процессе сближения матриц и формировать кольцевой слой материала прокладки с повышенным давлением вокруг ограничивающих углубления выступов, стабилизируя в определенной степени давление внутри камеры. Недостатками ближайшего аналога являются невысокая стойкость матриц и нестабильность генерируемого давления в нем. Внутренние выступы матриц, ограничивающие центральные углубления, выполнены в виде кольцевого гребня. На конечной стадии получения высокого давления в камере они приходят в контакт через очень тонкий слой материала прокладки, испытывают повышенные напряжения, которые могут приводить к их пластической деформации и уменьшению долговечности устройства.

Технической задачей, на которую направлено настоящее изобретение, является повышение производительности, надежности и стойкости устройства.

Указанная цель достигается тем, что в устройстве для создания сверхвысокого давления и температуры, содержащем скрепленные по боковым поверхностям поддерживающими кольцами соосно установленные идентичные матрицы, на обращенных друг к другу торцевых поверхностях которых выполнены центральные углубления, ограничивающие эти углубления внутренние кольцевые выступы и периферийные кольцевые выступы, установленный в центральных углублениях контейнер с образцом и нагревателем и кольцо, охватывающее контейнер, причем высота периферийных выступов, h2, по сравнению с высотой внутренних выступов, h1, выполнена с соблюдением соотношения h1<h2≤1,2h1, а между периферийными выступами матриц расположено упорное кольцо. Выполнение высоты периферийного выступа в указанном диапазоне, с одной стороны, обеспечивает увеличение массивной поддержки подвергаемых нагрузке центральных участков матриц, а с другой стороны, обеспечивает требуемый сжимающий ход матриц. В устройстве внутренние выступы матриц усечены плоскостью, перпендикулярной оси симметрии, для формирования между выступами на конечной стадии создания давления в камере более широкого и менее тонкого по сравнению с прототипом слоя материала контейнера, препятствующего за счет трения с усеченными поверхностями выступов и упрочнения под давлением самого материала контейнера его экструзии из центрального объема. Ширина w усеченной поверхности внутренних кольцевых выступов и высота h1 внутренних выступов относительно дна реакционного углубления в матрице связаны соотношением: 0,7h1<w<0,9h1.

Сущность изобретения поясняется чертежами, фиг. 1-3, и данными таблицы.

На фиг. 1 показан вид предлагаемого устройства в осевом разрезе. Причем на левой половине чертежа устройство изображено в исходном (до нагружения) положении, а на правой - в положении после сближения матриц. На чертеже обозначено: А - внутренний кольцевой выступ на торцевой поверхности матрицы, ограничивающий центральное углубление; В - периферийный кольцевой выступ; w - ширина усеченной поверхности выступа A; h1 и h2 - высоты выступов А и В относительно дна центрального углубления соответственно. Устройство содержит соосно установленные твердосплавные матрицы 1, 1′, скрепленные по боковым поверхностям стальными поддерживающими кольцами 2, 2′, контейнер 3, изготовленный из упрочняющегося под давлением литографского камня, с образцом и нагревателем 4, кольцами 5 и 6. Матрицы на торцевых обращенных друг к другу поверхностях выполнены с центральными углублениями 7, 7′, в которых установлен указанный контейнер с образцом и нагревателем, с кольцевыми выступами А, ограничивающими центральные углубления, и с периферийными кольцевыми выступами В. Кольцо 5, изготовленное из пластичного материала, например полиэтилена, охватывает контейнер 3 и предохраняет его от краевого скалывания. Упорное кольцо 6, изготовленное из электроизоляционного материала, например текстолита, расположено между периферийными выступами В. Выступы В по сравнению с выступами А выполнены по высоте с соблюдением соотношения h1<h2≤1,2h1, которое, с одной стороны, служит для ограничения сближения внутренних кольцевых выступов, предохранения их от взаимного контакта в случае разгерметизации камеры, а с другой - для увеличения массивной поддержки центральных, воспринимающих в работе основную нагрузку пресса, участков матриц на обращенных друг к другу их торцевых поверхностях. Для эффективного удержания среды в центральном объеме камеры за счет трения материала контейнера с поверхностью матриц ширину w усеченной поверхности выступов А наиболее оптимально выполнять с соблюдением соотношения: 0,7h1<w<0,9h1. При малой ширине w по сравнению с высотой h1 (w<0,7h1) материал контейнера легко экструдируется между выступами А из центрального объема камеры (сжимающий ход матриц при их сближении будет мал по сравнению с высотой h1), а при слишком большой ширине усеченной поверхности выступов А (w>0,9h1) в процессе упругопластической деформации контейнера значительная часть усилия пресса будет затрачиваться не на создание давления в центральном объеме, а на создание давления в прокладке между этими запирающими камеру выступами.

На фиг. 2 для пояснения сущности изобретения графически демонстрируется принцип массивной поддержки, переход от простого линейного сжатия цилиндрической заготовки к сжатию тела с увеличивающейся массивной поддержкой площадки нагружения шириной d. Приведенные варианты нагружения рассматриваются в задачах теории пластичности (например, М.В. Сторожев и Е.А. Попов, «Теория обработки металлов давлением», М., Машиностроение, 1977). Варианты нагружения, изображенные на фиг. 2а и фиг. 2б, относятся к операции осадки заготовки, а варианты фиг. 2в и фиг. 2г - к начальной и конечной стадиям операции прошивки заготовки. Инженерные методы определения среднего контактного давления, необходимого для начала пластического деформирования заготовки, сводятся к первоначальному рассмотрению плоской задачи (заготовка имеет неограниченную длину перпендикулярно плоскости чертежа), решение которой является приближением для осесимметричного случая. Для плоской задачи с помощью метода линий скольжения показано, что контактное давление р, необходимое для начала пластического деформирования в представленных на фиг. 2 вариантах, линейным образом зависит от угла поворота линий скольжения ω, отмеченного для каждого из вариантов, р=σs(1+ω), где σs - напряжение текучести материала заготовки при простом линейном сжатии (р=σs для варианта нагружения, изображенного на фиг. 2а). Конструкция матриц в устройстве по патенту РФ №1332598 обеспечивает нагружение их обращенных друг к другу поверхностей в близком соответствии с вариантом, изображенным на фиг. 2в, для которого ω=π/2 и р=σs(l+π/2)≈2,6σs. Максимальную массивную поддержку площадки нагружения дает вариант, изображенный на фиг. 2 г, для которого р≈σs(1+π)≈4σs. Выполнение периферийных выступов в матрицах с большей высотой по сравнению с внутренними выступами обеспечивает в предлагаемом изобретении увеличение массивной поддержки центральных нагружаемых участков матриц из-за увеличения угла поворота линий скольжения и, следовательно, повышение их стойкости в работе.

На фиг. 3 для дополнительного пояснения сущности изобретения представлены наковальня Бриджмена, фиг. 3а, матрица устройства по патенту РФ №1332598, фиг. 3б, и матрица предлагаемого изобретения, фиг. 3в, с одинаковым диаметром d центральных участков, воспринимающих при работе соответствующих устройств высокого давления основную нагрузку пресса. В матрице предлагаемого изобретения центральный участок расположен ниже ее кольцевой периферийной части, что приводит к увеличению массивной поддержки этого участка. А возможность применения такой конструкции матриц в предлагаемом изобретении связана с достаточно большой толщиной слоя материала контейнера между внутренними выступами, способного осуществить запирание центрального объема при выполнении указанных выступов усеченными в горизонтальной плоскости.

Устройство работает следующим образом.

При силовом воздействии пресса (на чертежах описания он не показан) происходит сближение матриц 1, 1′ и сжатие контейнера 3 с образцом и нагревателем 4.

При этом между углублениями 7, 7′ матриц формируется центральный реакционный объем камеры, в котором происходит повышение давления, а между выступами А матриц формируется кольцевой слой уплотнения, препятствующий истечению вещества из центрального объема при повышении в нем давления. Часть материала контейнера вытесняется в зазор между матрицами, ограниченный кольцевыми выступами А и В. Сближение матриц 1, 1′ происходит до упора периферийных выступов В через кольцо 6 друг в друга. При этом кольцо 6 под действием силового давления пресса фиксируется между указанными выступами. Внутренний диаметр кольца 6 выбирают так, чтобы оно дополнительно служило стопором вытесняемого из-под выступов А материала контейнера на конечной стадии создания давления в камере. Выбором толщины кольца 6 регулируют величину кольцевого зазора между выступами А, ограничивая получаемые давления в камере предельно допустимыми значениями.

После создания в устройстве требуемого давления производят нагрев образца до заданной температуры путем подачи электрического тока на нагреватель образца в реакционном объеме через матрицы от внешнего источника питания (на чертежах описания не показан). Затем после осуществления процесса синтеза или процесса термобарической обработки нагрев прекращают и производят разгрузку устройства.

Данное устройство проверено в лабораторных условиях. В таблице приведены конкретные примеры изобретения с его эксплуатационными характеристиками. Устройство обладает высокой производительностью, надежностью и долговечностью. Устройство позволило осуществить более 1500 рабочих циклов в режиме синтеза алмазных микропорошков с температурой процесса ~1400°C и более 900 рабочих циклов в режиме термобарической обработки природных кристаллов алмазов с температурой процесса ~2200°C.

Устройство для создания сверхвысокого давления и температуры, содержащее соосно установленные скрепленные по боковым поверхностям поддерживающими кольцами матрицы, выполненные на обращенных друг к другу торцевых поверхностях матриц центральные углубления, внутренние кольцевые выступы, ограничивающие эти углубления, периферийные кольцевые выступы, контейнер с образцом и нагревателем, установленный в центральных углублениях, и кольцо, охватывающее контейнер, отличающееся тем, что внутренние кольцевые выступы, ограничивающие центральные углубления, выполнены усеченными в горизонтальной плоскости с шириной w усеченной поверхности такой, что 0,7h1<w<0,9h1, где h1 - высота внутреннего выступа относительно дна центрального углубления в матрице устройства, а периферийные кольцевые выступы относительно того же дна выполнены с высотой h2, связанной с высотой h1 внутренних выступов следующим соотношением: h1<h2≤1,2h1.