Мобильное автономное устройство для обнаружения скрытых опасных веществ под водой
Иллюстрации
Показать всеИзобретение относится к области определения состава скрытых опасных веществ, в том числе находящихся под водой. Устройство для обнаружения скрытых опасных веществ под водой содержит досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, при этом устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, выполняющий функции герметичного контейнера для подводных работ, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора и пульт управления расположены снаружи торпедообразного блока, как правило, на самой ручке; на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором. Технический результат - повышение достоверности обнаружения опасных веществ (ОВ) и радиоактивных веществ (РВ). 2 ил.
Реферат
Изобретение относится к области определения состава скрытых опасных веществ (ОВ), в том числе радиоактивных веществ (РВ) с использованием радиационных методов на основе измерения интенсивности вторичной эмиссии гамма-квантов, возникающих под действием нейтронов, в частности, для неразрушающего дистанционного контроля объектов, находящихся под водой.
Известно устройство для обнаружения и идентификации скрытых опасных веществ (ОВ) - патент РФ №2503955, содержащее источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, включающую блок электроники сбора данных, пульт управления, блок программ приема и обработки данных, интерфейс пользователя и источники питания, устройство выполнено в виде двух переносных модулей - рабочего модуля и модуля управления, соединенных кабелями Ethernet-соединения и питания, имеющих длину, обеспечивающую безопасную работу оператора, при этом в досмотровом модуле размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, детектор γ-излучения и регистрирующая электроника; в модуле управления размещены пульт управления, блок программ приема и обработки данных, интерфейс пользователя и источник питания; при этом детектор γ-излучения размещен под углом близким к 45° относительно направления потока меченых монохроматических нейтронов, перпендикулярно передней плоскости модуля, и снабжен защитой от потока монохроматических нейтронов; в качестве детектора α-частиц используется многоэлементный кремниевый детектор, спектроскопический канал детектора γ-излучения снабжен системой термокоррекции, состоящей из термодатчика, закрепленного на кристалле детектора γ-излучения, в тепловом контакте с ним, амплитудно-цифрового преобразователя и одноплатного миникомпьютера, при этом термодатчик соединен линией связи и линией питания с амплитудно-цифровым преобразователем, который соединен системной шиной с одноплатным миникомпьютером, подключенным к системе питания устройства и к модулю управления; устройство содержит модуль намотки соединительных кабелей Ethernet и питания; рабочий модуль размещен в герметичном полимерном контейнере для подводных работ, выполненном с возможностью вакуумирования, снабженном соответствующими водонепроницаемыми разъемами для подвода кабелей Ethernet и питания, к стенке герметичного корпуса контейнера по направлению потока меченых монохроматических нейтронов крепится с помощью фланца водонепроницаемый патрубок, ось которого совпадает с направлением центрального пучка меченых монохроматических нейтронов; при этом патрубок выполнен в виде сильфона с возможностью продольных деформаций, а размер его поперечного сечения выбран исходя из условия пропускания всего потока меченых монохроматических нейтронов; контейнер для подводных работ снабжен опорами, а также системой его затопления.
Общими существенными признаками предлагаемого технического решения, совпадающими с существенными признаками прототипа являются следующие - устройство для обнаружения и идентификации скрытых опасных веществ, содержащее досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, включающую блок электроники сбора данных, пульт управления, блок программ приема и обработки данных, интерфейс пользователя и источники питания; в качестве детектора α-частиц используется многоэлементный кремниевый детектор, спектроскопический канал детектора γ-излучения снабжен системой термокоррекции, состоящей из термодатчика, закрепленного на кристалле детектора γ-излучения, в тепловом контакте с ним, амплитудно-цифрового преобразователя и одноплатного миникомпьютера, при этом термодатчик соединен линией связи и линией питания с амплитудно-цифровым преобразователем, который соединен системной шиной с одноплатным миникомпьютером, подключенным к системе питания устройства и к пульту управления; досмотровый модуль размещен в герметичном контейнере для подводных работ, выполненном с возможностью вакуумирования, снабженном соответствующими водонепроницаемыми разъемами для кабелей Ethernet и питания.
Известная конструкция-прототип является громоздкой и требует наличия механизма для ее подъема/погружения; позволяет обнаруживать ОВ и РВ только в стационарном состоянии, после фиксации устройства над объектом досмотра; процесс перемещения достаточно долгий, что требует существенных затрат времени на обследование скрытого объекта; не обеспечивает точность наведения пучка меченых нейтронов на определенную, требуемую область обследования скрытого объекта; устройство не позволяет обследовать объекты, находящиеся не на дне водоемов - на вертикальных и наклонных поверхностях объектов досмотра.
Предлагаемая конструкция устройства предназначена для решения следующих задач; создание мобильного, автономного и достаточно простого в эксплуатации устройства, не требующего как специальной техники для подъема его и погружения, так и большого количества обслуживающего персонала; существенное ускорение проведения работ по досмотру "подозрительных" объектов под водой с достаточно высокой достоверностью обнаружения ОВ и РВ, расположенных на поверхностях любой формы, в т.ч. на дне водоемов и днищах кораблей, на подводной части опор мостов и т.п.; упрощение процедуры наведение меченого пучка нейтронов на область объекта досмотра с сохранением требуемой точности данной процедуры.
Для решения данных задач устройство для обнаружения и идентификации под водой скрытых опасных веществ, содержащее досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, включающую блок электроники сбора данных, пульт управления, блок программ приема и обработки данных, интерфейс пользователя и источники питания; в качестве детектора α-частиц используется многоэлементный кремниевый детектор, спектроскопический канал детектора γ-излучения снабжен системой термокоррекции, состоящей из термодатчика, закрепленного на кристалле детектора γ-излучения, в тепловом контакте с ним, амплитудно-цифрового преобразователя и одноплатного миникомпьютера, при этом термодатчик соединен линией связи и линией питания с амплитудно-цифровым преобразователем, который соединен системной шиной с одноплатным миникомпьютером, подключенным к системе питания устройства и к пульту управления; досмотровый модуль размещен в герметичном контейнере для подводных работ, выполненном с возможностью вакуумирования, снабженном соответствующими водонепроницаемыми разъемами для кабелей Ethernet и питания, согласно изобретению выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, выполняющий функции герметичного контейнера для подводных работ, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника, включающая блок электроники сбора данных; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора и пульт управления расположены снаружи торпедообразного блока (как правило, на самой ручке); длина дугообразной ручки выбрана исходя из условия, что толщина слоя воды между телом оператора, держащегося за ручку, и задней частью торпедообразного блока была достаточной для обеспечения безопасных, в плане радиации (согласно нормам НРБ - 99), условий работы оператора (не меньше 400 мм); на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором; пульт управления выполнен в виде установленных на торпедообразном блоке снаружи (то же, как правило, на ручке) кнопок включения-выключения нейтронного генератора, начала-окончания измерения и включения-выключения питания.
Отличительными признаками предлагаемого технического решения от известного, принятого за прототип, являются следующие - устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника, включающая блок электроники сбора данных; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора и пульт управления расположены снаружи торпедообразного блока (как правило, на самой ручке); длина дугообразной ручки выбрана исходя из условия, что толщина слоя воды между телом оператора, держащегося за ручку, и задней частью торпедообразного блока была достаточной для обеспечения безопасных, в плане радиации, условий работы оператора; на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором; пульт управления выполнен в виде установленных на торпедообразном блоке снаружи кнопок включения-выключения нейтронного генератора, начала-окончания измерения и включения-выключения питания.
Благодаря наличию данных отличительных признаков в совокупности с известными из прототипа достигаются следующие технические результаты:
- устройство является мобильным, автономным и может быть погружено в воду, как с берега, так и с любого плавсредства;
- обеспечивается свободное ручное перемещение модуля в водной среде в любом направлении (корпус модуля водонепроницаем и изготовлен из пластика, либо из прочного легкого сплава, и имеет обтекаемую (торпедообразную) форму для уменьшения сопротивления водной среды при его перемещении);
- позволяет осуществлять надежную фиксацию устройства под водой вблизи объекта досмотра, расположенного на поверхности любой ориентации;
- обеспечивает высокую достоверность обнаружения скрытых опасных и радиоактивных веществ за счет увеличения статистики набора событий, зарегистрированных двумя гамма-детекторами;
- обеспечивает простое и точное наведение пучка меченых нейтронов на объект досмотра под водой;
- обеспечивает необходимую защиту гамма-детекторов от прямого попадания нейтронов испущенных портативным нейтронным генератором;
- обеспечивает необходимую радиационную защиту оператора при включенном источнике нейтронов (расстояние в воде между источником нейтронов и местом расположения оператора-аквалангиста должно быть не меньше 400 мм, что соответствует по условиям радиационной безопасности работе персонала, относящегося к группе Б);
- обеспечивает оперативный вывод информации о скрытом веществе объекта досмотра на монитор оператора, укрепленный на задней панели модуля перед глазами оператора (в случае обнаружения опасного вещества в объекте досмотра, на мониторе появляется красный квадрат, свидетельствующий о наличии взрывчатого, либо сильнодействующего отравляющего вещества);
- совмещает пульт управления модулем и интерфейс монитор оператора;
- обеспечивает обнаружение ОВ и РВ на объекты, находящиеся не на дне водоемов - на вертикальных и наклонных поверхностях, в т.ч. на дне водоемов и днищах кораблей, на подводной части опор мостов и т.п.;
- световая индикация (свидетельствующая о наличии, либо отсутствии нейтронного излучения, генерируемого нейтронным генератором), установленная на торпедообразном блоке снаружи, является необходимым требованием для обеспечения безопасных условий работы оператора-водолаза при досмотре "подозрительного" объекта под водой;
- расположение кнопок включения-выключения нейтронного генератора, начала-окончания измерения и включения-выключения питания создает удобство при достаточно частом повторении указанных процедур.
Предлагаемое техническое решение поясняется фиг. 1, 2.
На фиг. 1 изображено устройство с оператором.
На фиг. 2 изображены укрупнено поперечный и продольный горизонтальный разрезы устройства.
Изображенное на фиг. 1, 2 устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором и содержит снабженный дугообразной ручкой 2 торпедообразный блок 1, в котором размещены источник меченых монохроматических нейтронов - нейтронный генератор 3 с встроенным детектором α-частиц (на фиг. не изображен), расположенный таким образом, что ось центрального меченого пучка нейтронов 4 совпадает с продольной осью торпедообразного блока 1, блок управления 7 нейтронным генератором 3, front-end электроника альфа-детектора 15, источник питания 5 (рассчитанный на напряжение 24 В) регистрирующей электроники, гамма- и альфа-детекторов, блок регистрирующей электроники сбора данных 6, блок преобразования 16 с напряжения 24 В на напряжения питания нейтронного генератора, регистрирующей электроники, альфа- и гамма-детекторов; к торпедообразному блоку 1 в передней его части прикреплены два γ-детектора 8, расположенные симметрично относительно центральной оси меченого пучка нейтронов 4 и на расстоянии от корпуса 17 торпедообразного блока 1, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов 8 от прямого потока нейтронов, испущенных нейтронным генератором 3 в телесный угол 4π. Монитор интерфейса 9 оператора, световой индикатор 13 наличия нейтронного излучения, а также кнопки 10 - включения/выключения питания, 11 - начала/окончания измерений, включение/выключение - 12 нейтронного генератора 3 расположены снаружи торпедообразного блока 1 на дугообразной ручке 2 (могут быть расположены и на самом корпусе 17 или на консоли к нему, но на ручке 2 удобнее), длина которой выбрана исходя из условия, что толщина слоя воды между телом оператора, держащегося за ручку 2, и задней частью торпедообразного блока 1 была достаточной для обеспечения безопасных, в плане радиации, условий работы оператора.
Для большего удобства работы в части дистанцирования нейтронного генератора 3 от объекта для обеспечения неповреждения нейтронного генератора 3 в передней части корпуса 17 торпедообразного блока 3 может быть расположена или воздушная полость внутри самого блока 1, или снаружи закрепленная заполненная воздухом полость - рупор, в т.ч. гофрохобот, или просто какой-либо амортизатор 14, как на данных рисунках.
Вышеописанное устройство работает следующим образом:
Перед погружением устройства в воду необходимо произвести внешний его осмотр. Затем, с помощью кнопки 10 производится включение питания регистрирующей электроники 6 и гамма-детекторов 8 (при этом нейтронный генератор 3 находится в выключенном состоянии). Используя стандартные калибровочные источники гамма-излучения (Cs-137, Со-60) производится калибровка гамма-детекторов 8 путем измерения соответствующих гамма-спектров (измерение производится путем нажатия кнопки 11 начала/окончания измерения. После набора требуемой статистики производится выключение набора статистики с помощью кнопки 11. В случае совпадения значений параметров измеренных распределений гамма-квантов с ожидаемыми значениями, процедура калибровки считается завершенной и производится отключение питания кнопкой 10. После этого можно переходить к погружению созданного устройства в водоем. Водолаз-оператор погружается вместе с торпедообразным блоком 1 в водоем на требуемую глубину. Затем водолаз, взявшись за дугообразную ручку 2, приближается к "подозрительному" объекту досмотра и останавливается от него на расстоянии ~30 см. После этого водолаз измеряет радиационную обстановку в области расположения "подозрительного" объекта. Для этого оператор включает питание регистрирующей электроники и гамма-детекторов нажатием кнопки 10. Далее, спустя 10-15 секунд оператор включает набор статистики путем нажатия кнопки 11 "начало-окончание измерения". Набор требуемой статистики для корректного анализа экспериментальных данных осуществляется в течение 15-30 секунд в зависимости от активности РВ, находящегося в объекте досмотра. В случае наличия активности в объекте досмотра на уровне 3.5 мккюри на мониторе 9 оператора появляется индикация, свидетельствующая о превышении уровня радиации над допустимым. В случае отсутствия радиоактивности в объекте досмотра водолаз-оператор приближается к "подозрительному" объекту досмотра и производит прикосновение к нему передней части торпедообразного блока 1 посредством амортизатора 14. Затем через 10-15 секунд оператор 10 включает нейтронный генератор нажатием кнопки 12, при этом включается световой индикатор 13, что свидетельствует о наличии нейтронного излучения, Далее, спустя 15-20 секунд оператор включает набор статистики путем нажатия кнопки 11 "начало-окончание измерения". При этом сканирование объекта досмотра производится следующим образом: через 10-15 секунд оператор 10 включает нейтронный генератор нажатием кнопки 12, при этом включается световой индикатор 13, что свидетельствует о наличии нейтронного излучения, далее, спустя 15-20 секунд, оператор включает набор статистики путем нажатия кнопки 11 "начало-окончание измерения". Набор требуемой статистики для корректного анализа экспериментальных данных осуществляется в течение 3-10 минут, в зависимости от массы ОВ, находящегося в объекте досмотра. При этом сканирование объекта досмотра следующим образом:
a) если в результате работы программы по идентификации скрытого вещества получен ответ - в объекте досмотра ОП не обнаружено, то далее производится сканирование следующей рядом расположенной области объекта досмотра, и так такая процедура производится последовательно, пока весь объем объекта досмотра не будем просканирован;
b) если же при сканировании по сценарию а) хотя бы в одной области объекта досмотра будет получен ответ - ОВ обнаружено, то данная информация по линии связи сообщается в спецслужбы по обезвреживанию опасных объектов, положение опасного объекта фиксируется и водолаз-оператор дожидается прибытия спецслужб.
Устройство для обнаружения скрытых опасных веществ под водой, содержащее досмотровый модуль, в котором размещены источник меченых монохроматических нейтронов и сопутствующих им монохроматических α-частиц, детектор α-частиц, заключенные в вакуумную камеру, детектор γ-излучения и регистрирующую электронику, включающую блок электроники сбора данных, пульт управления, блок программ приема и обработки данных, интерфейс пользователя и источники питания; в качестве детектора α-частиц используется многоэлементный кремниевый детектор, спектроскопический канал детектора γ-излучения снабжен системой термокоррекции, состоящей из термодатчика, закрепленного на кристалле детектора γ-излучения, в тепловом контакте с ним, амплитудно-цифрового преобразователя и одноплатного мини-компьютера, при этом термодатчик соединен линией связи и линией питания с амплитудно-цифровым преобразователем, который соединен системной шиной с одноплатным мини-компьютером, подключенным к системе питания устройства и к модулю управления; досмотровый модуль размещен в герметичном контейнере для подводных работ, выполненном с возможностью вакуумирования, снабженном соответствующими водонепроницаемыми разъемами для кабелей Ethernet и питания, отличающееся тем, что устройство выполнено в виде автономного модуля с нулевой плавучестью, с возможностью его перемещения оператором; содержит снабженный дугообразной ручкой торпедообразный блок, в котором размещены источник меченых монохроматических нейтронов, расположенный таким образом, что ось центрального меченого пучка нейтронов совпадает с продольной осью торпедообразного блока, источник питания, регистрирующая электроника, включающая блок электроники сбора данных; к торпедообразному блоку в передней его части прикреплены два γ-детектора, расположенные симметрично относительно центральной оси меченого пучка нейтронов и на расстоянии от корпуса торпедообразного блока, достаточном для обеспечения защиты слоем воды сцинтилляционных кристаллов γ-детекторов от прямого потока нейтронов, испущенных нейтронным генератором в телесный угол 4π; монитор интерфейса оператора расположены снаружи торпедообразного блока; длина дугообразной ручки выбрана исходя из условия, что толщина слоя воды между телом оператора, держащегося за ручку, и задней частью торпедообразного блока была достаточной для обеспечения безопасных, в плане радиации, условий работы оператора; на торпедообразном блоке снаружи установлена световая индикация наличия-отсутствия нейтронного излучения, генерируемого нейтронным генератором; пульт управления выполнен в виде установленных на торпедообразном блоке снаружи кнопок включения-выключения нейтронного генератора, начала-окончания измерения и включения-выключения питания.