Реактор для карботермического получения диборида титана
Иллюстрации
Показать всеИзобретение может быть использовано в химической промышленности. Реактор для карботермического получения диборида титана (10) содержит нижнюю камеру (26), образованную сосудом и перфорированной сепараторной пластиной (12) и имеющую впуск инертного газа (16), причем нижняя камера (26) содержит нереакционноспособную среду, удерживаемую в ней, верхнюю камеру (28), образованную сосудом и перфорированной сепараторной пластиной (12). Верхняя камера (28) выполнена с возможностью помещения в нее смеси предшественников, при этом верхняя камера (28) имеет вентиляционное отверстие (18) для инертного газа, предназначенное для направления инертного газа из верхней камеры (28). Инертный газ проходит из нижней камеры (26) в верхнюю камеру (28) через перфорированную сепараторную пластину нагретый для реагирования смеси предшественников с образованием продукта диборида титана. Изобретение позволяет получить диборид титана с предписанным средним размером частиц для изготовления конструктивных элементов и электродов электролизеров. 7 з.п. ф-лы, 21 ил., 5 табл., 6 пр.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Данная заявка на изобретение испрашивает приоритет заявки на патент США №61/256520, озаглавленной ″Синтез порошков диборида титана″, поданной 30 октября 2009 года, которая включена по ссылке во всей своей полноте.
УРОВЕНЬ ТЕХНИКИ
[0002] При производстве алюминия и других металлов в качестве различных конструктивных элементов электролизеров используются материалы, которые выдерживают экстремальные условия (т.е. высокие температуры и/или агрессивные окружающие среды). Примером одного такого материала является диборид титана.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0003] Диборид титана (TiB2) обладает уникальными механическими, физическими и химическими свойствами, которые делают его желаемым материалом для различных применений, включая, например, конструктивные элементы электролизеров. Размер частиц диборида титана оказывает влияние на технологические параметры, включая: спекаемость и формуемость в продукты на основе TiB2, и, таким образом, размер частиц диборида титана оказывает влияние на эксплуатационные качества изделий из TiB2.
[0004] В широком смысле, настоящее изобретение направлено на синтез диборида титана с конкретным размером частиц (например, средним размером частиц). Автор настоящего изобретения обнаружил, что при регулировании одного или более технологических параметров также регулируется размер полученных в результате частиц продукта диборида титана. Таким образом, размером частиц продукта диборида титана можно управлять, варьируя количество серы в химической реакции диборида титана (например, в карботермической реакции); варьируя время выдержки смеси предшественников; варьируя температуру реакции и/или варьируя расход инертного газа через реактор. Один или более из данных факторов можно варьировать по отдельности или в сочетании для эффективного получения продукта диборида титана, имеющего предписанный средний размер частиц (или средний диаметр частиц в случае сферической/круглой частицы). Другие параметры, включая чистоту и/или площадь поверхности, также можно регулировать одним или более из этих параметров. Таким образом, диборид титана, изготовленный в соответствии с настоящим описанием, можно использовать в различных применениях, которые могут требовать различных средних размеров частиц и/или разной чистоты диборида титана. В некоторых вариантах реализации продукты диборида титана по настоящему изобретению могут использоваться в конструктивных элементах и/или электродах электролизеров, включая, например, катоды.
[0005] В одном аспекте настоящего описания предлагается способ. Данный способ включает следующие стадии: (а) выбор целевого среднего размера частиц для целевого продукта диборида титана; (b) выбор по меньшей мере одного технологического параметра из группы, состоящей из: количества серы, расхода инертного газа (например, среды реакции), времени выдержки и температуры реакции; (с) выбор условия технологического параметра, исходя из целевого среднего размера частиц; и (d) получение реального продукта диборида титана с реальным средним размером частиц, используя упомянутый по меньшей мере один технологический параметр, причем, благодаря упомянутому по меньшей мере одному технологическому параметру, реальный средний размер частиц соответствует целевому среднему размеру частиц.
[0006] В одном варианте реализации упомянутый по меньшей мере один технологический параметр представляет собой количество серы; и условие количества серы составляет не более примерно 1,0 мас.%. В данном варианте реализации реальный средний размер частиц диборида титана составляет не более примерно 7 микрон.
[0007] В одном варианте реализации упомянутый по меньшей мере один технологический параметр представляет собой температуру реакции; при этом, когда условие температуры реакции составляет в диапазоне от по меньшей мере примерно 1450°С до 1500°С, реальный средний размер частиц диборида титана составляет в диапазоне от примерно 4 микрон до примерно 7 микрон.
[0008] В одном варианте реализации упомянутый по меньшей мере один технологический параметр представляет собой время выдержки; при этом, когда условие времени выдержки составляет в диапазоне от примерно 0,5 часа до примерно 1 часа, реальный средний размер частиц диборида титана составляет в диапазоне от примерно 4,5 микрон до примерно 8 микрон.
[0009] В одном варианте реализации упомянутый по меньшей мере один технологический параметр включает расход инертного газа и количество серы. В данном варианте реализации, когда условие количества серы составляет не более примерно 1 мас.% и когда условие расхода инертного газа составляет в диапазоне по меньшей мере примерно 0,5 литра в минуту, реальный средний размер частиц диборида титана составляет не более примерно 6,5 микрон.
[0010] В другом аспекте настоящего изобретения предлагается способ. Данный способ включает: (а) выбор целевого среднего размера частиц для целевого продукта диборида титана; (b) выбор количества серы, исходя из целевого среднего размера частиц; и (с) получение реального продукта диборида титана с реальным средним размером частиц, причем, благодаря данному количеству серы, реальный средний размер частиц соответствует целевому среднему размеру частиц.
[0011] В одном варианте реализации, когда количество серы составляет не более примерно 1,0 мас.%, реальный средний размер частиц диборида титана составляет не более примерно 7 микрон.
[0012] В некоторых вариантах реализации способ включает выбор по меньшей мере одного технологического параметра. Например, технологический параметр может быть одним или более из следующих: расход инертного газа, время выдержки и температура реакции и другие. Например, когда выбран по меньшей мере один технологический параметр, условие технологического параметра основывается на одном или на обоих из следующих: (а) целевой средний размер частиц (например, заданный диапазон размеров частиц диборида титана); и/или количество серы (например, заданное количество серы, например, выбранное заранее).
[0013] В одном варианте реализации один или более из способов могут включать стадию деагломерации реального продукта диборида титана для удаления множества агломератов в продукте дибориде титана. Неограничивающий пример деагломерации включает помол. В некоторых вариантах реализации помол продукта диборида титана происходит в течение некоторого промежутка времени, основанного на количестве серы в смеси предшественников. В других вариантах реализации время помола может быть основано на том, выбраны ли другие технологические параметры (например, расход инертного газа, время выдержки и/или температура реакции).
[0014] В некоторых вариантах реализации способ включает приготовление агломерированной смеси (например, смеси предшественников), включающее: подмешивание в жидкость источника бора, источника углерода (например, углеродного компонента), источника титана и необязательных добавок с образованием суспензии; и сушку данной суспензии с получением агломерированной смеси. Например, сушка может включать распылительную сушку.
[0015] В еще одном аспекте настоящего изобретения предлагается способ. Данный способ включает следующие стадии: (а) выбор целевого среднего размера частиц для целевого продукта диборида титана; (b) выбор количества серы, исходя из целевого среднего размера частиц; и (с) получение реального продукта диборида титана с реальным средним размером частиц, причем, благодаря данному количеству серы, реальный средний размер частиц соответствует целевому среднему размеру частиц; при этом получение включает: реагирование в реакторе смеси предшественников, включающей: источник титана, источник бора, источник углерода и данное количество серы.
[0016] В некоторых вариантах реализации, после стадии получения, способ включает: переработку реального продукта диборида титана в одно из следующих: катод; конструкцию алюминиевого электролизера; и их комбинации.
[0017] В другом аспекте настоящего изобретения предлагается электрод (например, катод). Данный катод включает продукт из порошка диборида титана, причем продукт выполнен из диборида титана со средним размером частиц, не превышающим примерно 6 микрон. Например, продукт диборида титана может быть получен одним или более из раскрытых здесь способов. В некоторых вариантах реализации катод, сформированный из диборида титана, имеет свойства, включающие: электропроводность; твердость, прочность, модуль упругости, стойкость к механической эрозии; сопротивление истиранию, легкость в обработке (например, более низкую температуру и давление, обусловленные более низким размером частиц).
[0018] Используемый здесь термин «диборид титана» относится к соединению с химической формулой TiB2. В одном варианте реализации диборид титана представляет собой керамический материал в виде частиц. Используемый здесь термин «продукт диборид титана» относится к частицам диборида титана. В одном варианте реализации продукт диборид титана относится к конечному продукту стадии реагирования.
[0019] Используемый здесь термин «выбор» относится к выбору одного или более критериев. В некоторых вариантах реализации выбор может учитывать желаемые химические, материальные или физические свойства продукта диборида титана. Например, некоторые выбранные свойства могут включать размер частиц, площадь поверхности, чистоту и морфологию (например, форму). В некоторых вариантах реализации выбор может быть сделан заранее.
[0020] Используемый здесь термин «технологический параметр» относится к параметру, который можно варьировать или изменять. Например, существуют многочисленные технологические параметры, которые можно модифицировать или регулировать в соответствии с одним или более способами по настоящему изобретению. Некоторые неограничивающие примеры технологических параметров включают: количество серы, расход инертного газа (через реактор), температуру реакции и время выдержки, помимо прочих.
[0021] В некоторых вариантах реализации один или более технологических параметров можно варьировать или изменять для того, чтобы получить частицы диборида титана, имеющие целевой средний размер частиц.
[0022] В четырех отдельных вариантах реализации технологические параметры включают, по отдельности, количество серы, расход инертного газа (через реактор), температуру реакции и время выдержки («время пребывания»). В одном варианте реализации технологические параметры включают количество серы, расход инертного газа (через реактор), температуру реакции и время выдержки («время пребывания»). В другом варианте реализации технологические параметры включают количество серы, расход инертного газа и температуру реакции. В другом варианте реализации технологические параметры включают количество серы и расход инертного газа. В другом варианте реализации технологические параметры включают расход инертного газа, температуру реакции и время выдержки. В другом варианте реализации технологические параметры включают расход инертного газа и время выдержки. В другом варианте реализации технологические параметры включают температуру реакции и время выдержки.
[0023] Используемый здесь термин «условие» относится к конкретному ограничению или лимитированию. В некоторых вариантах реализации условие относится к величине или количеству. Неограничивающие примеры включают: время (в часах), количества (в мас.% или в массах), теплоту (измеренную в температуре) и/или скорости (расходы, скорости реакции(й)). В некоторых вариантах реализации условие может относиться к существованию условия (например, наличие серы против отсутствия серы, продувка аргоном против закрытого реакционного сосуда).
[0024] Используемый здесь термин «целевой» относится к цели. В качестве неограничивающего примера, «целевой» может относиться к тому среднему размеру частиц продукта диборида титана, который является целью данного способа. Может существовать более чем одно целевое значение, поскольку в различных областях использования и технологиях имеют применения различные целевые размеры частиц диборида титана.
[0025] Используемый здесь термин «частица» относится к единице чего-либо (например, отдельный кусок). Одним примером частицы является частица диборида титана из продукта TiB2.
[0026] Используемый здесь термин «размер частицы» относится к эффективной длине частицы (например, длине частицы диборида титана). Иногда по отношению к «частице» могут взаимозаменяемо использоваться термины «зерно», «кристалл» и/или «кристаллит». Аналогично, в некоторых примерах «размер частицы» может также именоваться «размером зерна» или «размером кристалла». Размер частицы у некоторого количества частиц (например, продукта диборида титана) может быть аппроксимирован усреднением значения по количеству. Неограничивающие примеры измерений среднего размера частиц включают: (1) «распределение частиц по размерам» (обозначаемое как «PSD») и (2) площадь поверхности (м2/г).
[0027] Используемый здесь термин «распределение частиц по размерам» относится к относительным количествам присутствующих частиц, отсортированных в соответствии с числом присутствующих размеров. Например, PSD D10 в 7 микрон означает, что 10% частиц меньше примерно 7 микрон, в то время как 90% частиц равны или больше чем примерно 7 микрон. В качестве другого примера, PSD D50 в 12 микрон означает, что половина частиц меньше примерно 12 микрон, в то время как другая половина частиц равна или больше чем примерно 12 микрон, а PSD D90 в 20 микрон означает, что 90% частиц меньше примерно 20 микрон, в то время как 10% частиц равны или больше чем примерно 20 микрон. В общем, при указании на один и тот же материал, распределения частиц по размерам от D10 до D90 будут возрастающими (т.е. значения D90 больше, чем значения как D50, так и D10, в то время как значения D50 больше, чем значения D10). Хотя здесь указываются значения D10, D50 и D90, совершенно очевидно, что при измерении размера частиц диборида титана PSD может быть любым применимым PSD, а не ограничиваться значениями D10, D50 и D90.
[0028] Используемый здесь термин «площадь поверхности» относится к величине площади открытой поверхности, которой обладает твердый объект, выраженной в единицах площади. Площадь поверхности измеряют в единицах м2/г. В общем, чем больше площадь поверхности, тем меньше отдельные частицы измеряемого образца.
[0029] В некоторых вариантах реализации выбранный и/или реальный размер частиц диборида титана может иметь узкий диапазон или широкий диапазон. В некоторых вариантах реализации распределение частиц по размерам (например, распределение среднего размера частиц) может иметь более одной моды (бимодальное, тримодальное и т.д.). В некоторых вариантах реализации размер частиц диборида титана составляет в диапазоне от примерно 0,1 микрона до примерно 0,5 микрона, от примерно 0,5 микрона до примерно 1,5 микрона, или от примерно 1,5 микрона до примерно 4,5 микрон, или от примерно 4,5 микрона до примерно 6,5 микрон, или от примерно 6,5 микрона до примерно 9 микрон, или от примерно 9 микрон до примерно 12 микрон, или от примерно 12 микрон до примерно 15,0 микрон, или от примерно 15 микрон до примерно 18 микрон, или от примерно 18 микрон до примерно 20 микрон. В одном варианте реализации распределение частиц по размерам составляет в диапазоне от примерно 0,5 микрона до примерно 4 микрон, или от примерно 4 микрон до примерно 8 микрон, или от примерно 8 микрон до примерно 12 микрон, или от примерно 12 микрон до примерно 20 микрон. В некоторых вариантах реализации распределение частиц по размерам составляет в диапазоне от примерно 20 микрон до примерно 30 микрон, или от примерно 30 микрон до примерно 40 микрон, или от примерно 40 микрон до примерно 50 микрон, или от примерно 50 микрон до примерно 60 микрон, или от примерно 60 микрон до примерно 70 микрон, или от примерно 70 микрон до примерно 80 микрон, или выше, что может быть желательным. В одном варианте реализации размер частиц диборида титана составляет в диапазоне от примерно 0,1 микрона до примерно 20 микрон. В некоторых вариантах реализации размер частиц диборида титана составляет менее примерно одного микрона. В других вариантах реализации размер частиц диборида титана составляет не более чем примерно 20 микрон, или не более чем примерно 30 микрон, или не более чем примерно 40 микрон, или не более чем примерно 50 микрон, не более чем примерно 60 микрон, не более чем примерно 70 микрон или не более чем примерно 80 микрон.
[0030] Используемый здесь термин «сера» означает серосодержащий материал (например, элемент(ы) и/или соединение(я), содержащие или включающие серу). Неограничивающие примеры серосодержащего материала включают элементарную серу, сульфид железа, сульфид цинка, сульфид меди, сульфид никеля, сульфат железа, сульфат цинка, сульфат меди, сульфат никеля, сульфид меди-железа и сульфат меди-железа, среди других добавок серосодержащих соединений, сульфидов металлов и сульфатов металлов. В некоторых вариантах реализации серосодержащий материал может быть вовлечен в карботермическую реакцию в качестве дополнительного предшественника или добавки.
[0031] Используемый здесь термин «количество серы» относится к количеству серы, например массовому проценту серы. Неограничивающие примеры включают: массовый процент или альтернативно объемный процент серы, присутствующей в смеси предшественников. В некоторых вариантах реализации сера существует в качестве примеси в одном или более реагентах смеси предшественников. В качестве неограничивающих примеров, определенные источники углерода, катализаторы и/или другие материалы содержат серу и, таким образом, вносят вклад в количество серы в смеси предшественников. В других вариантах реализации сера может быть добавкой, которую добавляют к смеси предшественников.
[0032] В другом аспекте настоящего изобретения предлагается электрод (например, катод). Данный катод включает продукт из порошка диборида титана, причем продукт выполнен из диборида титана со средним размером частиц диборида титана, составляющим не более чем примерно 6 микрон. В некоторых вариантах реализации катод, сформованный из диборида титана, имеет свойства, включающие: электропроводность; твердость, прочность, модуль упругости, стойкость к механической эрозии; сопротивление истиранию, легкость в обработке (например, более низкую температуру и давление, обусловленные более низким размером частиц).
[0033] В некоторых случаях, сера может присутствовать в источнике углерода в качестве примеси. Например, углеродная сажа может содержать примерно 1,3% серы, прокаленный нефтяной кокс может содержать примерно 1,20% серы, а синтетический графит может содержать серу в диапазоне от примерно 0,0% до примерно 0,1%. В некоторых вариантах реализации использование источника углерода, такого как синтетический графит, с примерно 0,008 мас.% серы, относит к свободному от серы или не содержащему серу материалу. Таким образом, сера может присутствовать в меняющихся количествах в одном или более из компонентов по настоящему изобретению.
[0034] В некоторых вариантах реализации сера может отсутствовать в смеси предшественников. В других вариантах реализации количество серы в смеси предшественников (и/или в источнике углерода) составляет по меньшей мере примерно 0,1%, или по меньшей мере примерно 0,2%, или по меньшей мере примерно 0,3%, или по меньшей мере примерно 0,4%, или по меньшей мере примерно 0,5%, или по меньшей мере примерно 0,6%, или по меньшей мере примерно 0,7%, или по меньшей мере примерно 0,8%, или по меньшей мере примерно 0,9%, или по меньшей мере примерно 1,0%, или по меньшей мере примерно 2,0%, или по меньшей мере примерно 4,0%, или по меньшей мере примерно 6%, или по меньшей мере примерно 8%, или по меньшей мере примерно 10%, или по меньшей мере примерно 15%. В других вариантах реализации количество серы в смеси предшественников может составлять не более чем примерно 0,1%, или не более чем примерно 0,2%, или не более чем примерно 0,3%, или не более чем примерно 0,4%, или не более чем примерно 0,5%, или не более чем примерно 0,6%, или не более чем примерно 0,7%, или не более чем примерно 0,8%, или не более чем примерно 0,9%, или не более чем примерно 1,0%, или не более чем примерно 2,0%, или не более чем примерно 4,0%, или не более чем примерно 6%, или не более чем примерно 8%, или не более чем примерно 10% или не более чем примерно 15%. В некоторых примерах, содержание серы в смеси предшественников составляет в диапазоне от примерно 0,0% до примерно 0,1%, или от примерно 0,1% до примерно 0,2%, или от примерно 0,2% до примерно 0,5%, или от примерно 0,5% до примерно 0,8%, или от примерно 0,8% до примерно 1,0%, или от примерно 1,0% до примерно 2,0%, или от примерно 2,0% до примерно 4,0%, или от примерно 4% до примерно 6%, или от примерно 6% до примерно 8%, или от примерно 8% до примерно 12%, или от примерно 12% до примерно 15%, и аналогично. В некоторых вариантах реализации источник серы, а также количество серы, может влиять на конечный продукт диборид титана. В качестве неограничивающего примера, когда в качестве источника серы использован сульфид железа, получаются большие кластеры диборида титана и зерна железа (например, по меньшей мере примерно 10 микрон) с дополнительным ростом зерен, находящихся в локализованных областях, содержащих, например, металлическое железо из сульфида железа.
[0035] Используемый здесь термин «получение» относится к изготовлению материала или продукта. В качестве неограничивающего примера, получение включает изготовление продукта диборида титана (т.е. химическое получение). В некоторых вариантах реализации получение диборида титана осуществляют на стадии реагирования.
[0036] Используемый здесь термин «реагирование» относится к химическому объединению одного или более материалов в другой (например, с образованием продукта). В качестве неограничивающего примера, реагирование включает химическое реагирование смеси предшественников при повышенной температуре, давлении или при том и другом. В одном варианте реализации реагирование может относиться к карботермическому реагированию компонентов с образованием продукта.
[0037] Используемый здесь термин «карботермическая реакция» относится к реакции, которая использует сочетание тепла и углерода. В качестве неограничивающего примера, диоксид титана и оксид бора могут быть восстановлены углеродом с образованием диборида титана и монооксида углерода. В другом неограничивающем примере диоксид титана и борная кислота могут реагировать с углеродом с образованием диборида титана, монооксида углерода и воды. Дополнительное обсуждение карботермической реакции и дополнительной родственной реакции приводится в разделе «Примеры», который следует далее.
[0038] В некоторых вариантах реализации способ дополнительно включает выбор температуры реакции. В качестве одного неограничивающего примера, температура реакции является температурой, при которой завершается стадия получения (например, реагирования с образованием TiB2). В некоторых вариантах реализации стадия реагирования дополнительно включает нагревание смеси предшественников. В некоторых вариантах реализации температура реакции составляет: по меньшей мере примерно 1300°С, по меньшей мере примерно 1325°С, по меньшей мере примерно 1350°С, по меньшей мере примерно 1375°С, по меньшей мере примерно 1400°С, по меньшей мере примерно 1425°С, по меньшей мере примерно 1450°С, по меньшей мере примерно 1475°С, по меньшей мере примерно 1500°С, по меньшей мере примерно 1525°С, по меньшей мере примерно 1575°С, по меньшей мере примерно 1600°С, по меньшей мере примерно 1625°С, по меньшей мере примерно 1650°С, по меньшей мере примерно 1675°С, по меньшей мере примерно 1700°С или выше. В других вариантах реализации температура реакции составляет: не более чем примерно 1300°С, не более чем примерно 1325°С, не более чем примерно 1350°С, не более чем примерно 1375°С, не более чем примерно 1400°С, не более чем примерно 1425°С, не более чем примерно 1450°С, не более чем примерно 1475°С, не более чем примерно 1500°С, не более чем примерно 1525°С, не более чем примерно 1575°С, не более чем примерно 1600°С, не более чем примерно 1625°С, не более чем примерно 1650°С, не более чем примерно 1675°С, не более чем примерно 1700°С или ниже. В некоторых случаях смеси могут быть нагреты при температуре в диапазоне от примерно 1350°С до примерно 1375°С, или от примерно 1400°С до примерно 1450°С, или от примерно 1450°С до примерно 1500°С, или от примерно 1500°С до примерно 1550°С, или от примерно 1550°С до примерно 1600°С, или от примерно 1600°С до примерно 1650°С, или от примерно 1650°С до примерно 1700°С. В некоторых вариантах реализации способ дополнительно включает выбор времени выдержки. Используемый здесь термин «время выдержки» (например, «время пребывания») относится ко времени, в течение которого материалам дают возможность находиться в контакте друг с другом при конкретной температуре в течение некоторого периода времени. Например, время выдержки представляет собой количество времени, в течение которого предшественники (в смеси предшественников) поддерживаются при конкретной температуре (или в пределах температурного диапазона) и взаимодействуют. В некоторых вариантах реализации время выдержки выбирают, исходя из по меньшей мере одного из следующих: целевой размер частиц диборида титана и/или один или более технологических параметров.
[0039] Неограничивающие примеры времени выдержки составляют: по меньшей мере примерно 10 секунд, по меньшей мере примерно минуту, по меньшей мере примерно 2 минуты, по меньшей мере примерно 4 минуты, по меньшей мере примерно 7 минут, по меньшей мере примерно 10 минут, по меньшей мере примерно 0,25 часа, по меньшей мере примерно 0,5 часа, или по меньшей мере примерно 1 час, или по меньшей мере примерно 2 часа, или по меньшей мере примерно 3 часа, или по меньшей мере примерно 4 часа, или по меньшей мере примерно 6 часов, или по меньшей мере примерно 8 часов, или по меньшей мере примерно 10 часов. В других вариантах реализации смесь может быть нагрета в течение периода времени не более чем примерно 10 секунд, не более чем примерно 1 минута, не более чем примерно 2 минуты, не более чем примерно 4 минуты, не более чем примерно 7 минут, не более чем примерно 10 минут, не более чем примерно 0,25 часа, не более чем примерно 0,5 часа, или не более чем примерно 1 час, или не более чем примерно 2 часа, или не более чем примерно 4 часа, или не более чем примерно 6 часов, или не более чем примерно 8 часов или не более чем примерно 10 часов. В некоторых примерах, смесь может быть нагрета в течение периода в диапазоне: от примерно 0,10 часа до примерно 0,5 часа, или от примерно 0,5 часа до примерно 1 часа, или от примерно 1 часа до примерно 1,5 часа, или от примерно 1,5 часа до примерно 2 часов, или от примерно 2 часов до примерно 3 часов, или от примерно 3 часов до примерно 4 часов, или от примерно 4 часов до примерно 5 часов, или от примерно 5 часов до примерно 6 часов, или от примерно 6 часов до примерно 7 часов, или от примерно 8 часов до примерно 9 часов, или от примерно 9 часов до примерно 10 часов или более.
[0040] Используемый здесь термин «смесь предшественников» относится к компонентам или материалам, которые используются для изготовления другого материала или продукта.
[0041] Используемый здесь термин «соответствует» означает находиться в согласии и/или в соответствии. В качестве неограничивающего примера, реальный продукт диборид титана может иметь размер частиц, который соответствует целевому размеру частиц продукта диборида титана. В некоторых вариантах реализации термин «соответствует» включает реальный средний размер частиц, который может использоваться тем же самым образом с тем же самым успехом и результатами, как и прогнозировалось для целевого среднего размера частиц. В качестве неограничивающих примеров, реальный средний размер частиц диборида титана может быть идентичен целевому среднему размеру частиц в пределах примерно 0,01 микрона, или в пределах примерно 0,05 микрона, или в пределах примерно 0,1 микрона, или в пределах примерно 0,25 микрона, или в пределах примерно 0,4 микрона, или в пределах примерно 0,5 микрона, или в пределах примерно 0,7 микрона, или в пределах примерно 0,8 микрона, или в пределах примерно 0,9 микрона, или в пределах примерно 1 микрона, или в пределах примерно 1,5 микрона, или в пределах примерно 2 микрон, или в пределах примерно 3 микрон, или в пределах примерно 4 микрон, и аналогичных. В качестве неограничивающих примеров, реальный продукт диборид титана может иметь размер частиц, который составляет в пределах по меньшей мере примерно 5% от целевого размера частиц продукта диборида титана, в пределах по меньшей мере примерно 10% от целевого размера частиц продукта диборида титана, в пределах по меньшей мере примерно 20% от целевого размера частиц продукта диборида титана, в пределах по меньшей мере примерно 50% от целевого размера частиц продукта диборида титана, в пределах по меньшей мере примерно 75% от целевого размера частиц продукта диборида титана, в пределах по меньшей мере примерно 100% от целевого размера частиц продукта диборида титана. В качестве неограничивающего примера, PSD и/или площадь поверхности у реального размера частиц TiB2 может полностью перекрываться или находиться в пределах определенного процента или целевого диапазона.
[0042] Используемый здесь термин «источник титана» относится к химическому реагенту, который обеспечивает титан в конечном продукте дибориде титана. Одним примером является, но не ограничивается этим, диоксид титана. Используемый здесь термин «источник бора» относится к химическому реагенту, который обеспечивает бор в конечном продукте дибориде титана. Неограничивающие примеры источников бора включают, но не ограничиваются ими, оксид бора и/или борную кислоту. Используемый здесь термин «источник углерода» относится к химическому реагенту, который обеспечивает углерод в химической реакции, чтобы запустить получение конечного продукта диборида титана. В некоторых вариантах реализации источники углерода могут быть встречающимися в природе, синтетическими или их сочетаниями. Неограничивающие примеры источников углерода включают, но не ограничиваются ими: углеродную сажу, синтетический графит и прокаленный нефтяной кокс, помимо прочих.
[0043] В одном варианте реализации в качестве источника углерода используется углеродная сажа. Углеродная сажа может быть получена крекингом нефтяного масла в реакторах и отделена от газообразных продуктов сгорания. В некоторых вариантах реализации углеродная сажа может обеспечивать тонкодисперсные распределения частиц по размерам.
[0044] В одном варианте реализации в качестве источника углерода используется синтетический графит. Синтетический графит может быть получен высокотемпературной обработкой аморфных углеродных компонентов (например, каменноугольной смолы или нефтяного кокса) в диапазоне температур графитизации от примерно 2000°С до примерно 3000°С, причем столь высокая температура способна производить углеродный компонент с низким содержанием примесей.
[0045] В одном варианте реализации в качестве источника углерода можно использовать прокаленный нефтяной кокс. Прокаленный нефтяной кокс может быть получен путем полимеризации посредством термообработки исходного сырья на основе нефти (например, не полностью закоксованного кокса) с дальнейшей термообработкой для удаления летучих соединений.
[0046] В некоторых вариантах реализации стадия получения включает, перед стадией реагирования, приготовление смеси предшественников (например, агломерированной формы объединенной смеси предшественников). В некоторых вариантах реализации стадия получения включает, например, подмешивание в жидкость источника бора, источника углерода, источника титана и необязательных добавок с образованием суспензии; и сушку суспензии с получением агломерированной смеси. В одном варианте реализации сушка включает распылительную сушку.
[0047] Используемый здесь термин «агломерация» относится к частицам, агрегированным или связанным вместе в кластеры. Например, в продукте дибориде титана частицы могут быть агломерированы вместе в более крупные комки или массы, причем каждый комок обладает некоторым видом связи или контактом между множеством частиц. Агломерированный продукт диборид титана может иметь небольшие пустоты или пространства между отдельными зернами в комке или массе (например, между отдельными зернами).
[0048] В некоторых вариантах реализации смесь предшественников включает реагенты и необязательные добавки. Используемый здесь термин «добавка» относится к чему-либо, что добавляют для видоизменения или улучшения общих свойств и/или качественных характеристик в материале. В некоторых вариантах реализации добавка относится к материалам, используемым в сочетании со смесью предшественников для улучшения чистоты, PSD или площади поверхности продукта диборида титана. Неограничивающие примеры добавок включают: катализаторы, поверхностно-активные вещества и жидкости, которые помогают довести реакцию до завершения и/или ограничить нежелательные побочные реакции. В качестве добавки к смеси предшественников могут использоваться жидкости, чтобы способствовать растворению, суспендированию и/или смешению одного или более из предшественников. В некоторых вариантах реализации жидкости являются реакционноспособными, в то время как в других вариантах реализации жидкости являются нереакционноспособными. Жидкости могут включать органические или неорганические материалы. Могут быть использованы кислотные, основные или нейтральные жидкости. В качестве неограничивающих примеров, одной из таких жидкостей является вода. В некоторых вариантах реализации могут использоваться катализаторы для стимулирования протекания реакции до предпочтительных промежуточных продуктов (интермедиатов) и/или продуктов. В качестве неограничивающих примеров, подходящие катализаторы включают оксиды переходных металлов, но не ограничиваются ими. В некоторых вариантах реализации катализаторы могут включать, но не ограничиваются ими, оксид железа, оксид никеля, оксид хрома, оксид марганца, оксид кобальта, оксид ванадия и аналогичные.
[0049] Неограничивающие примеры смешения включают: однородное смешение, тщательное смешение, гомогенное смешение, дисперсионное смешение и их комбинации. Неограничивающие примеры способов смешения включают: мокрый помол, распылительную сушку, сухой помол, сухую агломерацию, мокрую агломерацию, уплотнение прокаткой и их комбинации.
[0050] Используемый здесь термин «поверхностно-активное вещество» относится к материалу, который способствует смешению. Поверхностно-активные вещества могут использоваться с другими способствующими смешению добавками или без них (например, но не ограничиваясь этим, жидкостями), чтобы содействовать диспергированию предшественников и увеличивать контакт между одним или более реагентами. В качестве неограничивающего примера, поверхностно-активное вещество может быть добавлено к смеси предшественников, чтобы уменьшить поверхностное натяжение между жидкостью, позволяя ей проникать в твердые вещества для диспергирования и/или смешения.
[0051] В некоторых вариантах реализации способ включает деагломерацию реального продукта диборида титана для удаления множества агломератов в продукте дибориде титана. Например, деагломерация может включать помол продукта диборида титана в течение некоторого интервала времени, исходя из количества серы в смеси предшественников. Используемый здесь термин «деагломерация» относится к разделению частиц, которые скомканы или связаны вместе в агломерат. В некоторых вариантах реализации деагломерация совершается помолом. Неограничивающие примеры деагломерации включают, например, способы коммутации, известные в данной области техники, помол, измельчение ультразвуком, струйный помол и их комбинации.
[0052] Используемый здесь термин «помол» относится к процессу, который уменьшает размер материала. Например, помол может использоваться в продукте дибориде титана для удаления агломератов при сохранении размеров частиц диборида титана (например, разбивая скопления частиц, в то время как сами частицы остаются нетронутыми).
[0053] В некоторых вариантах ре