Способ получения полигидроксикарбоновой кислоты

Иллюстрации

Показать все

Изобретение относится к способу получения полимолочной кислоты и устройству для осуществления такого способа. Способ включает стадии осуществления полимеризации с раскрытием кольца с использованием катализатора и либо соединения деактиватора катализатора, либо добавки, блокирующей концевые группы, для получения неочищенной полимолочной кислоты с молекулярной массой более 10000 г/моль. Далее способ включает стадию очистки неочищенной полимолочной кислоты путем удаления и отделения низкокипящих соединений, включающих лактид и примеси, из неочищенной полимолочной кислоты, путем удаления летучих низкокипящих соединений в виде газофазного потока. Затем следует стадия очистки лактида со стадии удаления летучих компонентов, и удаления примесей из газофазного потока испаренных низкокипящих соединений с помощью конденсации испаренного газофазного потока с получением конденсированного потока и последующей кристаллизации из расплава конденсированного потока. Лактид очищают, и примеси, включающие остаток катализатора и соединение, содержащее по меньшей мере одну гидроксильную группу, удаляют, так что очищенный лактид полимеризуют, подавая его обратно в полимеризацию раскрытия кольца. Технический результат - обеспечение улучшенного способа получения полимолочной кислоты с увеличенным выходом продукта по сравнению с известным уровнем техники при сокращении оборудования, необходимого для обработки инертного газа. 2 н. и 11 з.п. ф-лы, 2 табл., 10 ил., 2 пр.

Реферат

Настоящее изобретение относится к способу получения полигидроксикарбоновой кислоты, в частности полимолочной кислоты, в котором выход конечного продукта увеличен за счет повторного использования лактида из боковой фракции, полученной при очистке неочищенной полимолочной кислоты, и за счет повторного использования лактида, полученного в результате данной очистки. Кроме того, настоящее изобретение относится к устройству для выполнения данного способа получения полимолочной кислоты. Настоящее изобретение также относится к способу послойной кристаллизации из расплава парообразного биоразлагаемого межмолекулярного циклического сложного диэфира альфа-гидроксикарбоновой кислоты.

Полимолочная кислота, которая будет также называться как ПМК в последующем тексте, является биоразлагаемым полимером, который синтезируют из молочной кислоты. Особым преимуществом таких полимеров является их биосовместимость. Термин биосовместимость означает, что они обладают только очень ограниченным отрицательным воздействием на какие-либо живые объекты в окружающей среде. Дальнейшее преимущество состоит в том, что полилактидные полимеры получают из полностью возобновляемого сырья, такого как, например, крахмал и другие сахариды, полученные из сахарного тростника, сахарной свеклы и аналогичного.

Полилактидные полимеры все в большей мере превращаются в источник дохода уже с середины 20 века. Однако в основном из-за ограниченной доступности мономера и высоких производственных затрат, их оригинальное использование осуществлялось в основном в медицинской области, такой как хирургические импланты или хирургические нити, например, штифты, винты, зашивочный материал или усиливающий материал при трещинах костей. Интересное свойство ПМК заключается в разложении полилактидных полимеров в теле, избавляя от вторичной хирургической обработки для удаления любого импланта. Кроме того, ПМК может использоваться в капсулах с замедленным высвобождением для контролируемого дозирования лекарств.

В последние десятилетия благодаря значительному увеличению цен на сырую нефть и осознанию важности экологических проблем, наряду с усовершенствованием способов производства, получение полилактидных полимеров стало более привлекательным для упаковки, в частности пищи, как жесткой упаковки, так и гибкой фольги, такой как одноосно- и двуосно-растянутые пленки. Другими применениями являются волокна, например, для тканей, используемых в одежде, в мебельных обивочных материалах или в коврах. Кроме того, экструдированные продукты, аналогичные одноразовым столовым приборам или контейнерам, для офисных поставок или гигиеническим изделиям. Полилактидные полимеры могут быть объединены с другими материалами с образованием композитных материалов.

В настоящее время известно два способа производства ПМК. Первый из данных способов получения включает прямую поликонденсацию молочной кислоты до полимолочной кислоты, как описано в JP733861 или в JP5996123. Для осуществления реакции поликонденсации дополнительно к молочной кислоте используют растворитель. Кроме того, необходимо непрерывно отбирать воду в ходе всего процесса поликонденсации для того, чтобы сделать возможным образование полилактидных полимеров с высокой молекулярной массой. По всем этим причинам данный способ не нашел применения в производстве.

Промышленный способ производства ПМК, использует промежуточный продукт лактид для начала последующей полимеризации с раскрытием кольца, ведущей от лактида к полимолочной кислоте. Ряд вариантов данных способов раскрывается, например, в US5142023, US4057537, US5521278, EP261572, JP564688B, JP2822906, EP0324245, WO2009121830. Все способы, описанные в этих документах, имеют следующие основные стадии. На первой стадии обрабатывают сырье, например, крахмал, или другие сахариды, извлеченные, например, из сахарного тростника или сахарной свеклы, кукурузы, пшеницы; на второй стадии выполняют ферментацию с использованием подходящих бактерий для получения молочной кислоты; на третьей стадии из смеси удаляют растворитель, обычно воду, чтобы дать возможность работать без растворителей в последующих стадиях. На четвертой стадии молочную кислоту каталитически димеризуют с образованием неочищенного лактида. Традиционно выполняют необязательную промежуточную стадию, которая включает предварительную полимеризацию молочной кислоты до полимолочной кислоты с низкой молекулярной массой и последующую деполимеризацию с образованием неочищенного лактида. Пятая стадия включает очистку лактида для удаления инородных веществ, которые могут оказывать отрицательное влияние на полимеризацию и вносить вклад в окрашивание, а также в запах конечного продукта. Разделение может выполняться или дистилляцией, или кристаллизацией. На шестой стадии получают полимеризацию с раскрытием кольца для получения неочищенной полимолочной кислоты с высокой молекулярной массой. Молярная масса составляет примерно от 20000 до 500000 г/моль в соответствии с US 6187901. Необязательно в процессе полимеризации с раскрытием кольца могут быть добавлены сополимеризационные соединения. На седьмой стадии неочищенную полимолочную кислоту очищают для получения очищенной полимолочной кислоты. На данной стадии удаляют низкокипящие соединения, которые уменьшают стабильность полимера и оказывают отрицательное влияние на такие параметры последующего производства пластиков, как вязкость или реологические свойства расплавленного полимера, и которые вносят вклад в окрашивание и наличие нежелательных запахов конечного продукта. В соответствии с US 5880254 неочищенную полимолочную кислоту можно сделать твердой, образуя гранулят, который приводится в контакт с умеренным потоком инертного газа, например, в псевдоожиженном слое. Наиболее низкокипящие соединения из неочищенной полимолочной кислоты уносятся инертным газом. Еще один способ описан в US 6187901. В соответствии с данным способом жидкая неочищенная полимолочная кислота распыляется множеством форсунок, чтобы образовать множество жидких нитей. Инертный газ проходит вокруг жидких нитей, и лактид испаряется в поток горячего инертного газа. Поток низкокипящих соединений обычно содержит вплоть до 5% по массе дилактида.

Молочная кислота имеет два энантиомера, L-молочную кислоту и D-молочную кислоту. Химически синтезированная молочная кислота содержит L-лактид и D-лактид в рацемической смеси, состоящей из 50% каждого из энантиомеров. Однако процесс ферментации делается более селективным при использовании соответствующих микробных культур для селективного получения L- или D-молочной кислоты.

Молекулы лактида, которые получают димеризацией молочной кислоты, существуют в трех различных формах: L-L-лактид, который также называют L-лактидом, D-D-лактид, который также называют D-лактидом, и L,D-лактид или D,L-лактид, который называют мезо-лактидом. L и D-лактиды являются оптически активными, в то время как мезо-лактид не является. Стадии очистки неочищенного лактида обычно включают разделение потока, обогащенного L-лактидом, и потока, обогащенного D-лактидом, и далее потока, обогащенного мезо-лактидами, каждый из которых может быть очищен отдельно. Путем смешивания, по меньшей мере, двух из трех форм лактидов, можно воздействовать на механические свойства и точку плавления полимеров, образованных полимолочной кислотой. Например, примешиванием подходящего количества одного энантиомера к другому уменьшают скорость кристаллизации полимера, что, в свою очередь, делает возможным вспенивание произведенной пластмассы без помех, вызванных слишком быстрым затвердеванием.

Были сделаны попытки увеличить выход процесса полимолочной кислоты и сократить производственные затраты на полимолочную кислоту.

В соответствии с US 5142023 газообразный поток низкокипящих компонентов из стадии очистки неочищенного лактида подается, по меньшей мере, частично, обратно в лактидный реактор. В лактидном реакторе образуется тяжелый остаток, который может быть частично отведен обратно в сам реактор, или подан обратно в устройство разделения для отделения растворителя от молочной кислоты после ферментации.

В соответствии с US 7488783 неочищенный лактид кристаллизуется с образованием очищенного лактида. Вторая стадия кристаллизации выполняется над остатком первой стадии кристаллизации, чтобы выделить оттуда лактид. Данный лактид подается обратно в первую стадию кристаллизации или в одну из предыдущих стадий процесса в соответствии с данным способом.

В соответствии с US 5521278 неочищенный лактид кристаллизуют. Поток остатка испаряют, селективно конденсируют и возвращают обратно в одну из предыдущих стадий процесса в соответствии с данным способом.

JP2822906 раскрывает затвердевание потока газообразного неочищенного лактида в чистый лактид. Остаток, который не затвердевает, возвращают обратно в лактидный ректор.

JP10101777 описывает, что поток газообразного неочищенного лактида частично затвердевает за счет охлаждения потоком инертного газа, образуя чистый лактид. Остаток подают обратно в лактидный реактор. Данный поток неочищенного лактида берет начало из непосредственной реакции поликонденсации. Данный поток неочищенного лактида является газообразным. Охлаждением потока неочищенного лактида, созданного указанной реакцией поликонденсации, до температуры, при которой лактид кристаллизуется, он кристаллизуется в кристаллизационном устройстве с противотоком с функцией самоочистки. Данное кристаллизационное устройство с противотоком имеет ротационные средства привода для вращения двух винтов, расположенных в цилиндре, посредством чего вращающиеся винты располагаются со сцепленными шестернями. Цилиндр охлаждается через рубашку в стенке цилиндра, до температуры, при которой часть из соединения лактида с низкой молекулярной массой и молочной кислоты кристаллизуется и направляется к выпускному отверстию двумя винтами и течет назад от данного выпускного отверстия в реактор поликонденсации периодического действия. Кристаллизацию осуществляют, используя растворитель. Такой растворитель, например вода, используется для понижения вязкости расплава, что, как считают, улучшает массоперенос. Следовательно, соединения с низкой температурой плавления отделяются более полно от соединений с высокой температурой плавления, которые образуют кристаллическую фракцию на поверхности кристаллизации устройства кристаллизации. Таким образом, считают, что загрязнение кристаллов должно уменьшиться, если вязкость расплава уменьшена. Целью изобретения, как раскрыто в JP10101777, является удаление растворителя.

Любой из описанных способов раскрывает повторное использование частичного потока из очистки неочищенного лактида. Любой из данных способов направлен на увеличение выхода данного способа, однако не раскрывает, можно ли повторно использовать лактид, который все еще находится в неочищенной полимолочной кислоте с содержанием до 5%.

Документ US 6187901 относится к способу удаления лактида из полилактида и к извлечению лактида из лактидсодержащего газа. Неочищенную полимолочную кислоту распыляют в пространство, содержащее горячий инертный газ, с помощью распылительных форсунок. Посредством чего образуются тонкие нити. Эти нити падают под действием силы тяжести в условиях ламинарного течения. Посредством чего полимерный расплав течет быстрее во внутренних частях нити, чем в поверхностной части. Посредством чего полимерный расплав, текущий во внутренней части достаточно тонкой нити, образует переходную поверхность нового материала для испарения лактида в процессе его движения вниз. Лактид частично испаряется и собирается в инертном газе, из которого он кристаллизуется в кристаллизационной камере за счет быстрого охлаждения. Полученные кристаллы отделяют в циклоне или на фильтровальном устройстве и повторно используют в реакторе полимеризации. Количество лактидов в полимолочной кислоте может быть уменьшено данной стадией процесса до 1%. Однако повторное использование лактида требует потока инертного газа, который должен быть очищен перед выпуском в виде потока отходов.

Документ US 5880254 раскрывает способ получения полимолочной кислоты. Неочищенную полимолочную кислоту кристаллизуют в форме гранулята. Гранулят подвергают действию потока горячего инертного газа, проходящего через гранулят, образуя псевдоожиженный слой. Лактид, содержащийся в грануляте, испаряется и уносится с потоком инертного газа, и подается обратно в реактор полимеризации. Очищенная полимолочная кислота содержит все еще примерно 1% дилактида.

Каждый из способов US 6187901 или US 5880254 требует инертного газа, который должен быть обработан для повторного использования, что, в свою очередь, требует дополнительного оборудования и приводит к увеличенным затратам на очистку полимолочной кислоты.

Сущность изобретения

Цель настоящего изобретения состоит в обеспечении улучшенного способа получения полимолочной кислоты, не имеющего недостатков ранее описанных способов, и дальнейшей целью является сокращение оборудования, необходимого для обработки инертного газа, и увеличение выхода по сравнению со способами в соответствии с US 6187901 и US 5880254.

В соответствии с настоящим изобретением, первая цель достигается способом получения полимолочной кислоты, включающим стадии осуществления полимеризации с раскрытием кольца, используя катализатор, и либо соединение деактиватора катализатора, либо добавку, блокирующую концевые группы, для получения неочищенной полимолочной кислоты с молекулярной массой более 10000 г/моль, очистки неочищенной полимолочной кислоты путем удаления и отделения низкокипящих соединений, включающих лактид и примеси, из неочищенной полимолочной кислоты путем удаления летучих компонентов низкокипящих соединений в виде газофазного потока, очистки лактида со стадии удаления летучих компонентов, и удаления примесей из газофазного потока испаренных низкокипящих соединений с помощью конденсации испаренного газофазного потока с получением конденсированного потока и последующей кристаллизации из расплава конденсированного потока, в котором лактид очищают, и удаленные примеси включают остаток катализатора и соединение, содержащее, по меньшей мере, одну гидроксильную группу, так что очищенный лактид полимеризуют, подавая его обратно в полимеризацию раскрытия кольца.

Дальнейшая цель достигается устройством осуществления данного способа, включающим реактор полимеризации для осуществления полимеризации с раскрытием кольца, чтобы получить неочищенную полимолочную кислоту, устройство удаления летучих компонентов для отделения низкокипящих соединений, включающих лактид и примеси, из неочищенной полимолочной кислоты, и устройство кристаллизации для очистки лактида и удаления примесей из конденсированного потока, в котором конденсатор для конденсации газофазного потока для получения конденсированного потока размещают между устройством удаления летучих компонентов и устройством кристаллизации.

В предпочтительном варианте осуществления данного способа кристаллизацию из расплава осуществляют послойной кристаллизацией или кристаллизацией из суспензии. В другом предпочтительном варианте осуществления данного способа испаренный газофазный поток со стадии удаления летучих компонентов содержит, по меньшей мере, 30% лактида, предпочтительно, по меньшей мере, 60%, наиболее предпочтительно, по меньшей мере, 90%. В еще одном предпочтительном варианте осуществления кристаллическое вещество, полученное в результате кристаллизации из расплава конденсированного потока, кристаллизуют в дополнительной стадии кристаллизации. В еще одном отличающемся варианте осуществления послойная кристаллизация включает стадию выпотевания, за которой следует стадия плавления отвержденной фракции, присутствующей в кристаллической форме на поверхности кристаллизации. В еще одном предпочтительном варианте осуществления удаленные примеси включают или металлорганическое соединение, или карбоновую кислоту. В еще одном предпочтительном варианте осуществления используют установку для кристаллизации из расплава, в которой нет потока инертного газа. В еще одном предпочтительном варианте осуществления, по меньшей мере, часть потока продувки из кристаллизации используют повторно на стадии очистки неочищенного лактида, стадии предварительной полимеризации и димеризации, или на стадии удаления растворителя в производстве очищенного лактида. В еще одном предпочтительном варианте осуществления маточную жидкость со стадии кристаллизации и/или жидкость со стадии выпотевания собирают и повторно кристаллизуют для извлечения лактида.

В предпочтительном варианте осуществления устройства по изобретению устройство кристаллизации представляет собой устройство послойной кристаллизации или устройство кристаллизации из суспензии. В другом предпочтительном варианте осуществления устройство послойной кристаллизации представляет собой устройство стационарной кристаллизации или устройство кристаллизации с нисходящей пленкой. В еще одном отличающемся предпочтительном варианте осуществления устройство кристаллизации из суспензии содержит промывочную колонну.

Подробное описание настоящего изобретения

Целью настоящего изобретения является способ, включающий очистку полимеризуемых мономеров или олигомеров, аналогичных лактиду, путем кристаллизации, в котором на первой стадии осуществляют полимеризацию с раскрытием кольца для получения неочищенной полимолочной кислоты с высокой молекулярной массой, составляющей более 10000 г/моль;

на второй стадии, неочищенную полимолочную кислоту очищают, чтобы получить очищенную полимолочную кислоту, в соответствии с чем в течение второй стадии низкокипящие соединения удаляют, и отделения низкокипящих соединений от полимолочной кислоты достигают путем удаления летучих компонентов, и на третьей стадии лактид повторно используют и примеси, удаляют из испаренного газофазного потока второй стадии с помощью кристаллизации или затвердевания из газовой фазы. На третьей стадии примеси удаляют так, чтобы очищенный лактид мог быть добавлен снова в полимеризацию с раскрытием кольца второй стадии. Такие примеси могут включать окрашивающие или образующие запах соединения или любые дополнительные побочные продукты, такие как вода, остатки катализатора, например, металлорганические соединения, побочные продукты реакции, соединения, включающие, по меньшей мере, одну гидроксильную группу (ОН), кислотные соединения, такие как карбоновые кислоты, соединения деактиваторов катализатора, или добавки, блокирующие концевые группы.

Преимущественно, молекулярная масса неочищенной полимолочной кислоты составляет, по меньшей мере, 10000 г/моль, предпочтительно, по меньшей мере, 15000 г/моль, особенно предпочтительно, по меньшей мере, 20000 г/моль. Необязательно могут быть включены другие полимеризуемые мономеры или олигомеры, такие как, по меньшей мере, один из группы гликолактидного сополимера, полигликолевой кислоты или полигликолидной кислоты (ПГА), блок-сополимера стирол-бутадиен-метакрилат (СБМ), сополимера полистирола, 1,4-полибутадиена, синдиотактического полиметилметакрилата (ПММА), тройного блок-сополимера с центральным блоком полибутилакрилата, окруженным двумя блоками полиметилметакрилата, полиметилметакрилата (ПММА), полиэфирэфиркетона (ПЭЭК), полиэтиленоксида (ПЭО), полиэтиленгликоля (ПЭГ), поликапролактама, поликапролактона, полигидроксибутирата.

Типичными сомономерами для сополимеризации молочной кислоты или лактида являются гликолевая кислота или гликолид (ГК), этиленгликоль (ЭГ), этиленоксид (ЭО), пропиленоксид (ПО), (R)-β-бутиролактон (БЛ), δ-валеролактон (ВЛ), ε-капролактон, 1,5-доксепан-2-он (DXO), триметиленкарбонат (ТМК), N-изопропилакриламид (ИПАА).

Неочищенная полимолочная кислота может также содержать дополнительные примеси.

В конце полимеризации достигается зависящее от температуры равновесие между мономером и полимером, в соответствии с чем неочищенная полимолочная кислота содержит примерно 5 мас.% непрореагировавшего лактида. Содержание мономера следует сократить до менее чем 0,5 мас.%, чтобы получить требуемые механические, химические, реологические и термические свойства полимера для его дальнейшей обработки.

Испаренный газофазный поток, выходящий из стадии удаления летучих компонентов, может быть сконденсирован, посредством чего получают сконденсированный поток. Испаренный газофазный поток содержит, по меньшей мере, 30% лактида по массе. Примеси должны присутствовать только в небольших количествах, так вода должна составлять, самое большое, 10 ч/млн, предпочтительно 5 ч/млн, особенно предпочтительно менее 0,5 ч/млн. Любая молочная кислота в испаренном газофазном потоке должна составлять меньше 100 ммоль/кг, предпочтительно менее 50 ммоль/кг, особенно предпочтительно менее 10 ммоль/кг. Сконденсированный поток кристаллизуется из своего жидкого состояния, и кристаллизацию преимущественно осуществляют без растворителя. Это является особым преимуществом, что дальнейшие стадии для удаления каких-либо растворителей не требуются.

Стадию кристаллизации преимущественно осуществляют в одном из устройств послойной кристаллизации из расплава или в устройстве десублимации, таком как, по меньшей мере, одно из устройств кристаллизации с нисходящей пленкой или устройство стационарной кристаллизации, или кристаллизацию из суспензии, которую осуществляют, по меньшей мере, в одном устройстве кристаллизации из суспензии. Если используют устройство кристаллизации из суспензии, сконденсированный поток охлаждают с тем, чтобы получить кристаллы лактида, свободно плавающие в жидкой фазе устройства кристаллизации из суспензии, посредством чего образуя поток частично кристаллизованной жидкости, который впоследствии подают в устройство промывки.

В качестве альтернативы, испаренный газофазный поток может быть десублимирован, а именно охлажден из газовой фазы напрямую в твердую фазу в стадии десублимации.

Кристаллическая фракция, полученная кристаллизацией в соответствии с любой из альтернатив, изложенных выше, содержит очищенный лактид. Преимущественно удаление летучих компонентов работает при парциальном давлении лактида, составляющем менее 20 мбар (2 кПа), предпочтительно менее 10 мбар (1 кПа), особенно предпочтительно менее 5 мбар (0,5 кПа). Затвердевшая фракция, содержащая очищенный лактид, может быть расплавлена в последующей стадии нагрева, чтобы быть поданной обратно в полимеризацию с раскрытием кольца. Стадия выпотевания может быть осуществлена перед стадией нагрева для затвердевшей фракции, присутствующей в кристаллической форме на поверхностях кристаллизации. Маточный раствор может оставаться между кристаллом и, посредством этого, образовывать включения, содержащие примеси. На стадии выпотевания эти примеси удаляют.

Испаренный газофазный поток со стадии удаления летучих компонентов содержит, по меньшей мере, 30% лактида, предпочтительно, по меньшей мере, 60% лактида, наиболее предпочтительно, по меньшей мере, 90% лактида. Для увеличения выхода лактида из испаренного газофазного потока маточный раствор и/или жидкость со стадии выпотевания могут быть поданы на стадию повторной кристаллизации.

В соответствии с предпочтительным вариантом осуществления настоящего изобретения, устройство кристаллизации связано напрямую с устройством удаления летучих компонентов с помощью газопровода или, необязательно, теплообменника, расположенного между удалением летучих компонентов и кристаллизацией. Теплообменник, в частности, имеет конфигурацию газоохладителя. Такой теплообменник обладает особым преимуществом уменьшать поверхность десублимации устройства кристаллизации, поскольку часть контактного тепла может удаляться из потока пара уже перед входом в устройство кристаллизации.

Прямая связь между устройством кристаллизации и устройством удаления летучих компонентов обеспечивает работу обоих устройств практически в одинаковых условиях вакуума. Это означает, что никакие средства дросселирования или вакуумные насосы не располагаются между устройством кристаллизации и устройством удаления летучих компонентов.

Авторами изобретения было обнаружено, что, как ни странно, вязкость фракции конденсированного лактида в стадии кристаллизации из расплава делает возможным достаточный массоперенос и, в свою очередь, достаточную очистку кристаллической фракции. Кристаллизацию из расплава следует понимать как кристаллизацию, которая не содержит растворителя. Вязкость расплава может составлять вплоть до 100 мПа·с, в соответствии с чем вязкость составляет, предпочтительно, менее 10 мПа·с, особенно предпочтительно - менее 5 мПа·с.

В соответствии с предпочтительным вариантом осуществления, данный способ включает первую стадию, на которой сырье обрабатывают для экстракции поддающихся ферментации полисахаридов. Сырье может быть получено из зерна, сахароносов, тростника, картофеля или других источников поддающихся ферментации полисахаридов. На второй стадии осуществляют ферментацию, использующую подходящие бактерии, для получения неочищенной молочной кислоты. На третьей стадии растворитель удаляют из данной смеси. В соответствии с предпочтительным способом, растворитель может быть удален выпариванием. Растворитель может, в частности, быть водой. На четвертой стадии молочную кислоту каталитически димеризуют с образованием неочищенного лактида. Может быть осуществлена необязательная промежуточная стадия, которая включает предварительную полимеризацию молочной кислоты до полимолочной кислоты с низкой молекулярной массой, и последующую деполимеризацию с образованием неочищенного лактида. Молочная кислота, которая не прореагировала до неочищенного лактида, может быть выведена и повторно использована в устройстве для осуществления третьей стадии. Тяжелые остатки из реактора лактида могут быть повторно использованы в реакторе второй или третьей стадии. Часть тяжелых остатков также может быть добавлена в последующую шестую стадию, которая включает полимеризацию очищенного лактида до полимолочной кислоты, или может быть повторно использована в устройстве для осуществления третьей стадии.

На пятой стадии осуществляют очистку лактида, чтобы удалить посторонние вещества, которые могут отрицательно влиять на полимеризацию и вносить вклад в окрашивание, а также в запах конечного продукта. Отделение может осуществляться дистилляцией или процессом кристаллизации. Нежелательные соединения, такие как непрореагировавшая молочная кислота, другие карбоновые кислоты содержатся в паровой фазе при использовании выпаривания. Эти нежелательные соединения присутствуют в некристаллизуемом остатке. Поток нежелательных соединений может быть повторно использован в любом устройстве третьей или четвертой стадии.

На шестой стадии происходит полимеризация с раскрытием кольца для получения неочищенной полимолочной кислоты с высокой молекулярной массой. В процессе полимеризации достигается зависящее от температуры равновесие между мономером и полимером. Неочищенная полимолочная кислота содержит примерно 4-6 мас.% непрореагировавшего лактида. Содержание мономера следует сократить до величины менее 0,5%, чтобы получать требуемые механические свойства полимера для его дальнейшей обработки. Следовательно, неочищенную полимолочную кислоту необходимо очищать.

На седьмой стадии неочищенную полимолочную кислоту очищают, чтобы получить очищенную полимолочную кислоту. На данной стадии удаляют низкокипящие соединения, которые обычно вносят вклад в окрашивание и в нежелательные запахи конечного продукта или могут содержать добавки, которые могли бы оказать нежелательное влияние на процесс полимеризации с раскрытием кольца при повторном использовании. Отделение низкокипящих соединений от неочищенной полимолочной кислоты достигается удалением летучих компонентов, например, мгновенным испарением в условиях вакуума. Испаренный поток содержит, по меньшей мере, 30% лактида, который не прореагировал до полимолочной кислоты в процессе полимеризации с раскрытием кольца в соответствии с шестой стадией. Более того, испаренный газофазный поток может содержать другие низкокипящие соединения, которые обкславливают окрашивание или запах конечного продукта, оба из которых являются наиболее нежелательными свойствами, побочные продукты реакции или добавки, оказывающие нежелательное влияние на полимеризацию с раскрытием кольца при повторном использовании.

Очистка в соответствии с седьмой стадией может быть осуществлена на одной или более последующих стадиях удаления летучих компонентов. Основная часть лактида, содержащегося в потоке неочищенной полимолочной кислоты, сохраняется на первой стадии удаления летучих компонентов, что составляет общее количество в 5% относительно основной части.

На восьмой стадии лактид очищают и повторно используют из испаренного газофазного потока седьмой стадии с помощью кристаллизации, которая может включать десублимацию, а значит и затвердевание из газовой фазы. На данной стадии соединения, образующие окрашивание и запах, или нежелательные добавки удаляют, так что очищенный лактид может быть снова добавлен в полимеризацию с раскрытием кольца шестой стадии, этим предотвращая любое накопление таких соединений, образующих окрашивание и запах или действующих разрушительным образом на процесс в шестой стадии процесса.

Содержание лактида в очищенной ПМК, выходящей со стадии удаления летучих компонентов, в качестве потока продукта, составляет менее 1%. Предпочтительно, содержание лактида в очищенной ПМК составляет менее 0,5 мас.%.

Содержание лактида в испаренном газофазном потоке составляет, по меньшей мере, 30 мас.%, предпочтительно, по меньшей мере, 60%, наиболее предпочтительно, по меньшей мере, 90%.

В соответствии с одним вариантом способа по настоящему изобретению, испаренный поток, выходящий со стадии удаления летучих компонентов, конденсируют и кристаллизуют из его жидкого состояния. Такую кристаллизацию можно осуществить без растворителя как послойную кристаллизацию в устройстве кристаллизации с нисходящей пленкой или в устройстве стационарной кристаллизации. Альтернативно, кристаллизацию можно осуществить в устройстве кристаллизации из суспензии, в котором сконденсированную смесь охлаждают так, чтобы образовать кристаллы лактида, свободно плавающие в жидкости, посредством чего образуя частично кристаллизованный поток жидкости. Данный частично кристаллизованный поток жидкости подают в устройство промывки, в котором осуществляют отделение твердых веществ от жидкого остатка.

Кристаллическая фракция, полученная с помощью любого из вышеуказанных устройств кристаллизации, содержит очищенный лактид и плавится на последней стадии кристаллизации, чтобы быть поданной обратно в полимеризацию с раскрытием кольца в соответствии с шестой стадией. Незакристаллизованный маточный раствор должен быть выпущен из процесса в виде потока отходов или может быть, по меньшей мере, частично, повторно использован на любой из вышеуказанных стадий процесса, расположенных выше по потоку, например, 3, 4, 5, как показано на Фиг.2.

В соответствии с одним вариантом способа по настоящему изобретению, устройство кристаллизации, в котором образуются кристаллы лактида, должно быть напрямую связано с устройством удаления летучих компонентов. Удаление летучих компонентов работает при парциальном давлении лактида, составляющем менее 20 мбар (2 кПа), предпочтительно менее 10 мбар (1 кПа), особенно предпочтительно менее 5 мбар (0,5 кПа). Лактид из испаренного газофазного потока затвердевает на охлажденных поверхностях кристаллизации, обеспеченных устройством кристаллизации, образующим кристаллизационные слои. Затвердевшая фракция, содержащая очищенный лактид, плавится на последующей стадии нагрева, чтобы подаваться обратно в полимеризацию с раскрытием кольца, в соответствии с шестой стадией. Жидкая фракция, которую не осадили в виде кристаллов на поверхностях кристаллизации, должна выводиться из процесса в виде потока отходов.

Стадии нагрева, предназначенной для плавления кристаллов на поверхностях кристаллизации, может предшествовать стадия выпотевания. На стадии выпотевания осуществляют частичное плавление кристаллов. Любые остатки нежелательных соединений, находящиеся между кристаллами поликристаллических слоев или на их поверхностях, могут быть отделены и удалены из кристаллов лактида. Под поликристаллическим слоем понимают слой, который содержит множество кристаллов. Между кристаллами такого поликристаллического слоя могут накапливаться примеси. Эти примеси могут удаляться стадией выпотевания. Жидкая фракция, образованная на стадии выпотевания, должна выводиться из процесса в виде потока отходов.

В послойной кристаллизации поликристаллические слои образуются на поверхностях теплообмена, обеспеченных устройством кристаллизации. В соответствии с предпочтительным вариантом осуществления, поверхности теплообмена представляют собой пластинки или трубки, через которые циркулирует охлаждающая среда. Устройство кристаллизации, имеющее пластинки в качестве поверхностей теплообмена, также известно как устройство стационарной кристаллизации. Устройство кристаллизации, имеющее трубки в качестве поверхностей теплообмена, также известно как устройство кристаллизации с нисходящей везде пленкой.

Для увеличения чистоты лактидов, образованных из испаренного газофазного потока со стадии удаления летучих компонентов, послойная кристаллизация может осуществляться на множестве стадий. Расплавленные кристаллы, образующиеся в результате кристаллизации разжиженного испаренного газофазного потока, могут кристаллизоваться на дальнейшей стадии кристаллизации, посредством чего чистота кристаллизованной фракции, образующейся в результате данной второй стадии кристаллизации, является закристаллизованной заново, посредством чего чистота кристаллов второй стадии увеличивается. Жидкий остаток со второй стадии кристаллизации может подаваться обратно вместе с любой жидкой фракцией со стадии выпотевания в сырье для первой стадии кристаллизации.

Можно предусмотреть заранее более двух стадий кристаллизации, посредством которых жидкий остаток с последней стадии кристаллизации может подаваться обратно вместе с любой жидкой фракцией со стадии выпотевания в сырье любой из предшествующих стадий кристаллизации. Оптимальное число стадий кристаллизации зависит от требуемой чистоты лактида.

Более того, кристаллы, образованные затвердеванием из газовой фазы, могут быть расплавлены и затем повторно кристаллизованы для увеличения чистоты лактида.

В соответствии с дальнейшим вариантом, для увеличения выхода лактида из потока испаренного газа, маточный раствор и/или жидкость со стадии выпотевания могут собираться и повторно кристаллизоваться для извлечения лактида, все еще содержащегося в этих двух фракциях.

Маточный раствор из первой стадии кристаллизации, а значит и сжиженный поток испаренного газа, кристаллизуют, чтобы получить лактид в виде кристаллизованной фракции так, что содержание лактида в маточном растворе и/или жидкости со стадии выпотевания данной стадии повторной кристаллизации ниже, чем в соответствующей фракции из кристаллизации сжиженного испаренного газового потока. Продукт кристаллизации из такой стадии повторной кристаллизации может также подаваться на стадию выпотевания и впоследствии плавиться, чтобы быть добавленным в сжиженную фракцию удаления летучих компонентов. Можно использовать дальнейшие стадии повторной кристаллизации, посредством чего содержание лактида в жидком остатке и/или жидкости со стадии выпотевания последующей стадии повторной кристаллизации уменьшится по сравнению с каждой предыдущей стадией повторной кристаллизации. Таким образом, маточный раствор и/ил