Модуль с градиентными катушками из сверхпроводника с криогенным охлаждением для магнитно-резонансной томографии

Иллюстрации

Показать все

Предложенная группа изобретений относится к магнитно-резонансной томографии и электроскопии, в частности к аппаратам, использующим элементы из сверхпроводника, и к способам использования таких аппаратов. Устройство для магнитно-резонансной томографии (МРТ) и/или магнитно-резонансной спектроскопии содержит модуль со сверхпроводящими градиентными катушками, выполненными с возможностью их криогенного охлаждения. Такой модуль со сверхпроводящими градиентными катушками в свою очередь содержит корпус с вакуумной тепловой изоляцией, содержащий герметичного уплотненный кожух с двойными стенками, который (i) охватывает снаружи герметично уплотненную внутреннюю полость, находящуюся под первым вакуумметрическим давлением порядка 10-6-10-12 Торр, и (ii) по существу вмещает вакуумированную полость, находящуюся под вторым вакуумметрическим давлением порядка 10-2-10-6 Торр; по меньшей мере, одну сверхпроводящую градиентную катушку, размещенную в указанной вакуумированной полости; теплоотводящий элемент, размещенный в указанной вакуумированной полости и находящийся в тепловом контакте по меньшей мере с одной сверхпроводящей градиентной катушкой, и входное отверстие, выполненное для криогенного охлаждения, по меньшей мере, указанного теплоотводящего элемента. Указанное устройство реализует соответствующий способ магнитно-резонансной томографии. Предложенная группа изобретений позволяет повысить качество МРТ-изображений, в частности его контрастность, разрешающую способность и быстродействие. 2 н. и 16 з.п. ф-лы, 7 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится вообще к магнитно-резонансной томографии и спектроскопии и, в частности, к аппарату для магнитно-резонансной томографии и спектроскопии, использующему элементы из сверхпроводника, и к способам для изготовления такого аппарата.

Уровень техники

Технология магнитно-резонансной томографии (МРТ) широко используется в настоящее время в медицинских учреждениях во всем мире и создала значительные и уникальные преимущества при использовании в медицинской практике. Хотя МРТ была разработана как надежный общепризнанный инструмент визуализации структуры и анатомии, она также была разработана для визуализации функциональной активности и других биофизических и биохимических характеристик или процессов (например, ток крови, метаболиты/обмен веществ, метаболизм, диализ). Некоторые из методов магнитно-резонансной томографии известны как функциональная МРТ, спектроскопическая МРТ или магнитно-резонансная спектроскопическая томография (МРСТ), диффузно-взвешенная томография (ДВТ), диффузионно-тензорная томография (ДТТ). Эти методы магнитно-резонансной томографии получили широкое клиническое и научное применение в дополнение к их значению в медицинской диагностике для идентификации и оценки патологии и определения состояния жизнеспособности обследуемой живой ткани.

При проведении обычного обследования с помощью магнитно-резонансной томографии тело пациента (или выбранный тестовый объект) размещают в зоне исследования и поддерживают с помощью стола для пациента в магнитно-резонансном томографе, где создается по существу постоянное и однородное главное (основное) магнитное поле с помощью главного (основного) магнита. Магнитное поле упорядочивает ядерную намагниченность прецессирующих в теле атомов водорода (протонов). Сборная конструкция из градиентных катушек, размещенная внутри магнита, создает небольшие колебания изменения магнитного поля в заданном месте, обеспечивая тем самым кодирование резонансной частоты в зоне визуализации. Радиочастотную (РЧ) катушку избирательно приводят в действие под управлением компьютера в импульсном режиме для генерирования в пациенте кратковременного сигнала осциллирующей поперечной намагниченности, который детектируется РЧ катушкой и который, посредством компьютерной обработки, может быть отображен для пространственно локализованных зон пациента, обеспечивая тем самым получение визуального изображения зоны, изучаемой при обследовании.

В обычной схеме МРТ статическое основное магнитное поле, как правило, создают с помощью устройством с соленоидом, а стол с пациентом размещают в цилиндрическом объеме, окруженном обмотками соленоида (т.е. во внутреннем канале основного магнита). Обмотки основного поля обычно выполняют из низкотемпературного сверхпроводникового материала и переохлаждают с помощью жидкого гелия для снижения электрического сопротивления и, следовательно, для минимизации количества выделяемой теплоты и количества энергии, необходимой для создания и поддерживания основного поля. Большинство существующих сверхпроводящих магнитов для МРТ, использующих низкотемпературные сверхпроводники, изготавливают из сплава титан-ниобий (NbTi) и/или материала, содержащего Nb3Sn, который охлаждают с помощью криостата до температуры 4,2K.

Как известно специалистам в данной области техники, градиентные катушки для магнитного поля обычно сконфигурированы для избирательного создания линейных градиентов магнитного поля вдоль каждой из трех основных осей декартовой системы в пространстве (одна из этих осей является направлением основного магнитного поля), так что величина магнитного поля изменяется в зависимости от местоположения внутри зоны исследования, и характеристики сигналов магнитного резонанса из различных мест внутри этой исследуемой области зоны, такие как частота и фаза сигналов, кодируют в соответствии с координатой внутри этой области (обеспечивая тем самым пространственную локализацию). Как правило, градиентные поля формируются электрическим током, протекающим через обмотки, навитые на соленоид или седлообразную катушку, которые прикреплены к цилиндрам, установленным коаксиально внутри цилиндра большего диаметра, содержащего обмотки основного магнитного поля. В отличие от основного магнитного поля, катушки, используемые для создания градиентных полей, как правило, представляют собой обычные медные обмотки, имеющие комнатную температуру. Градиентная напряженность и линейность поля имеют фундаментальное значение как для точности деталей полученного изображения, так и для информации о химическом составе исследуемой ткани (например, в МРСТ).

Со времени возникновения МРТ проводились непрерывные поиски улучшения качества и характеристик МРТ, например, за счет обеспечения более высокой пространственной разрешающей способности, лучшего разрешения по спектру (например, для МРСТ), большей контрастности и повышения скорости получения необходимых данных (скорости проведения исследования). Например, повышенная скорость визуализации (скорость получения необходимых данных) желательна для того, чтобы минимизировать размытие изображения, вызванное временными изменениями, происходящими в области, отображаемой в процессе получения изображений, например, изменений вследствие движений пациента, естественных анатомических и/или функциональных движений (например, сокращение сердца, дыхание, ток крови) и/или естественные биохимические изменения (вызванные, например, метаболизмом при проведении МРТ). Подобным образом, например, поскольку при проведении спектроскопической МРТ импульсный режим получения данных кодирует спектральные данные в дополнение к данным о пространственных параметрах, минимизация времени, необходимого для получения достаточной спектральной и пространственной информации для получения желаемого спектрального разрешения и пространственной локализации, является в особенности важным фактором улучшения клинической полезности и ценности спектроскопической МРТ.

Различные факторы вносят вклад в лучшее качество изображения в МРТ с точки зрения высокой контрастности, разрешающей способности и скорости сбора необходимых данных. Важным параметром, влияющим на качество изображения и скорость сбора данных, является отношение «сигнал-шум» (ОСШ). Увеличение ОСШ за счет увеличения сигнала перед предварительным усилителем системы МРТ является важным с точки зрения улучшения качества изображения. Один путь улучшения (увеличения) ОСШ заключается в повышении магнитной индукции магнита, поскольку величина ОСШ пропорциональна величине магнитного поля. В клинических применениях, однако, МРТ имеет потолок по величине магнитной индукции магнита (в настоящее время этот потолок согласно стандарту US FDA (Управление пищевых продуктов и медицинских препаратов США) составляет 3 Т (тесла)). Другие пути улучшения ОСШ включают, где это возможно, снижение шума от тестового объекта за счет уменьшения области сканирования (где это возможно), уменьшения расстояния между тестовым объектом и радиочастотными катушками и/или уменьшения шума от радиочастотных катушек.

Несмотря на непрерывные усилия и многочисленные достижения по усовершенствованию МРТ, тем не менее существует постоянная необходимость в еще больших усовершенствованиях в области МРТ, например, для обеспечения большей контрастности, улучшенного ОСШ, быстродействия, более высокой пространственной и временной разрешающей способности, и/или более высокого разрешению по спектру.

Кроме того, значительным фактором, влияющим на дальнейшее применение метода МРТ, являются высокие затраты, связанные с созданием систем с сильными магнитными полями, как по их приобретению, так и по эксплуатации. Таким образом, может быть выгодным создание высококачественной системы визуализации с применением МРТ, которую можно было бы изготовить и/или эксплуатировать при умеренных допустимых затратах, позволяющих использовать метод МРТ более широко.

Сущность изобретения

Различные воплощения настоящего изобретения обеспечивают создание модуля с градиентными сверхпроводящими катушками, сконфигурированного для криогенного охлаждения, содержащего: корпус с вакуумной тепловой изоляцией, содержащий герметично уплотненный кожух с двойными стенками, который (i) охватывает снаружи герметично уплотненную внутреннюю полость, находящуюся в условиях вакуума, и (ii) по существу вмещает часть внутренней полости, которая отделена от герметично уплотненной внутренней полости и выполнена с возможностью ее откачивания до условий вакуума; по меньшей мере, одну сверхпроводящую градиентную катушку, размещенную внутри указанной отдельной части внутренней полости и сконфигурированную для создания одного или более градиентов магнитного поля, по меньшей мере, для одного из магнитно-ядерной томографии и магнитно-резонансной спектроскопии; теплоотводящий элемент, размещенный в указанной отдельной части внутренней полости и находящийся в контакте с указанной, по меньшей мере, одной градиентной катушкой из сверхпроводящего материала; и отверстие, сконфигурированное для обеспечения криогенного охлаждения, по меньшей мере, указанного теплоотводящего элемента.

В некоторых воплощениях указанное отверстие соединено с криогенным охладителем, который имеет тепловую связь, по меньшей мере, с теплоотводящим элементом. Соединение криогенного охладителя с отверстием может обеспечить герметизацию отдельной части внутренней полости так, что указанная часть внутренней полости находится в условиях вакуума.

Герметично уплотненный кожух может быть герметично соединен с камерой, которая имеет внутренний объем, коэкстенсивный по отношению к вышеуказанной отдельной части внутренней полости и сконфигурированный с возможностью откачивания воздуха по существу до таких же условий вакуума, которые имеют место в указанной отдельной части внутренней полости, при этом указанное отверстие выполнено в указанной камере. Указанная камера может быть выполнена в виде камеры с двойными стенками (например, камера с двойными стенками из нержавеющей стали), включающей в себя герметично уплотненную внутреннюю полость, образованную двойными стенками, которая находится под вакуумом.

В соответствии с некоторыми воплощениями модуль может также содержать, по меньшей мере, одну радиочастотную катушку, размещенную внутри указанной внутренней части камеры, при этом, сформирована по меньшей мере, одна радиочастотная катушка, по меньшей мере, для одного из генерирования и приема радиочастотного сигнала для, по меньшей мере, одного из магнитно-резонансной томографии и магнитно-резонансной спектроскопии. Одна или более, по меньшей мере, из одной радиочастотной катушки может находиться и в тепловом контакте с теплоотводящим элементом. Одна или более, по меньшей мере, из одной радиочастотной катушки может содержать сверхпроводящий материал, которым может быть высокотемпературный сверхпроводящий (ВТС) материал.

Некоторые воплощения настоящего изобретения могут включать способ магнитно-резонансной томографии, включающий приложение, по меньшей мере, одного градиента магнитного поля внутри исследуемой области, используя, по меньшей мере, одну соответствующую сверхпроводящую катушку для создания градиентного поля, которую размещают в отдельной части внутренней полости модуля со сверхпроводящей градиентной катушкой, который содержит: корпус с вакуумной тепловой изоляцией, содержащий герметично уплотненный кожух с двойными стенками, который (i) охватывает герметично уплотненную внутреннюю полость, находящуюся под вакуумом, и (ii) вмещает в себя часть внутренней полости, которая отделена от герметично уплотненной внутренней полости и находится под вакуумом; теплоотводящий элемент, размещенный в указанной отдельной части внутренней полости и находящийся в тепловом контакте, по меньшей мере, с одной градиентной катушкой; и отверстие, сконфигурированное для криогенного охлаждения, по меньшей мере, теплоотводящего элемента и тем самым криогенного охлаждения, по меньшей мере, одной соответствующей сверхпроводящей катушки для создания градиентного поля, которая находится в тепловом контакте с указанным теплоотводящим элементом.

Способ может, кроме того, включать передачу или прием или и передачу и прием радиочастотных сигналов в и/или из исследуемой области, используя, по меньшей мере, одну РЧ катушку, которая размещена внутри указанного модуля, сконфигурирована для охлаждения и содержит, по меньшей мере, одно из (i) не сверхпроводящего материала, который при охлаждении до температуры ниже комнатной температуры имеет удельную электропроводность, которая выше, чем у меди при указанной температуре, и (ii) сверхпроводящего материала. По меньшей мере, одна из указанной, по меньшей мере, одной РЧ катушки может находиться в тепловом контакте с теплоотводящим элементом.

Специалистам в данной области техники будет понятно, что вышеприведенное краткое описание и нижеследующее подробное описание являются для настоящего изобретения иллюстративными и поясняющими и не предназначены для его сужения или ограничения преимуществ, которые могут быть достигнуты этим изобретением. Кроме того, понятно, что изложенная выше сущность изобретения является характеристикой некоторых воплощений изобретения и не является ни показательной, ни охватывающей весь объект и все воплощения в пределах объема настоящего изобретения. При этом сопровождающие чертежи, на которые здесь даны ссылки и которые являются частью, иллюстрирующей воплощения этого изобретения, служат вместе с подробным описанием для пояснения принципов воплощений изобретения. Аспекты, характерные особенности и преимущества воплощений изобретения, как в части конструкции, так и в части их функционирования будут понятны и станут более очевидно выраженными после раскрытия изобретения в нижеследующем описании, изложенном в сочетании с сопровождающими чертежами, на которых одинаковыми ссылочными номерами позиции обозначены одни и те же или сходные элементы для всех различных фигур.

Краткое описание чертежей

Аспекты, характерные особенности и преимущества воплощений изобретения как в части конструкции, так и в части их функционирования будут понятны и станут более очевидно выраженными при раскрытии изобретения в нижеследующем описании, изложенном в сочетании с сопровождающими чертежами, на которых одинаковыми ссылочными номерами позиции обозначены одни и те же или сходные элементы для всех различных фигур.

Фиг.1А и фиг.1B - взаимно перпендикулярные виды, иллюстрирующие модуль с криогенным охлаждением сверхпроводящих градиентных катушек в соответствии с некоторыми воплощениями настоящего изобретения.

Фиг.2А - схематическое изображение градиентных катушек модуля с криогенным охлаждением сверхпроводящих градиентных катушек, представленного на фиг.1А и фиг.1B в соответствии с некоторыми воплощениями настоящего изобретения.

Фиг.2B - схематическое изображение части цилиндрического опорного элемента для х-градиентной катушки согласно фиг.2А, показывающее на виде сверху катушку, которая является четвертью всей катушки для создания х-градиента, в соответствии с некоторыми воплощениями настоящего изобретения.

Фиг.3 - схематическое изображение вида в поперечном разрезе иллюстративной системы МРТ, которая содержит модуль с градиентными катушками, представленный на фиг.1А и фиг.1B, в соответствии с некоторыми воплощениями настоящего изобретения.

Фиг.4 - схематическое изображение вида в поперечном разрезе модуля с криогенным охлаждением сверхпроводящих градиентных катушек, содержащего, по меньшей мере, одну размещенную в нем РЧ-катушку в соответствии с некоторыми воплощениями настоящего изобретения.

Фиг.5 - схематическое изображение части модуля с криогенно охлаждаемыми сверхпроводящими градиентными катушками, включающей в себя резервуар с двойными стенками (сосуд Дьюара), спроектированного для использования в системе магнитно-резонансной томографии, специально предназначенной для томографии головы пациента, в соответствии с некоторыми воплощениями настоящего изобретения.

Осуществление изобретения

С учетом нижеследующего описания изобретения специалистам в данной области техники будет понятно, что модуль (модули) с криогенным охлаждением сверхпроводящих градиентных катушек (например, вставные секции) в соответствии с различными воплощениями настоящего изобретения может быть задействован в большом числе систем магнитно-резонансной томографии и спектроскопии, например, в системах, использующих обычные медные РЧ катушки, в системах, использующих сверхпроводящие РЧ-катушки (например, такие, как используют в системах, описанных в заявке на патент США №12/416606, дата подачи - 01.04.2009, которая включена в настоящее описание посредством ссылки), системы для исследования всего тела пациента, системы специального назначения (например, только для конечности тела, только для головы, домашнего животного, новорожденного и т.д.), системы с вертикально и горизонтально ориентированным основным магнитным полем, открытые и закрытые системы и т.п. Подобным образом специалистам в данной области техники будет понятно, что хотя различные части нижеследующего описания могут быть изложены в отношении системы МРТ, которая может быть использована для исследования структур тела пациента, модули с криогенным охлаждением сверхпроводящих градиентных катушек в соответствии с различными воплощениями настоящего изобретения могут быть использованы применительно к магнитно-резонансным (MP) системам, функционирующим и/или сконфигурированным для осуществления других методов, таких как функциональная МРТ, диффузионно-взвешенная или диффузионно-тензорная МРТ, MP-спектроскопия и/или спектроскопическая томография и т.п. Кроме того, для целей настоящего описания МРТ включает и охватывает магнитно-резонансную спектроскопическую томография, диффузионно-тензорную томографию (ДТВ), а также любые другие методы визуализации, основанные на ядерном магнитном резонансе.

На фиг.1А и фиг.1B схематически представлены взаимно поперечные виды типичного модуля 10 с криогенным охлаждением сверхпроводящих градиентных катушек, имеющего, в целом, цилиндрическую форму в соответствии с некоторыми воплощениями настоящего изобретения. В частности, на фиг.1А представлен вид в разрезе вдоль продольной оси, в то время как на фиг.1B представлен вид в плане или торцом вперед, если смотреть с левой стороны на фиг.1А, демонстрирующий вырез или поперечный разрез камеры 8 из нержавеющей стали и показывающий некоторую часть криогенного охладителя 7, размещенного внутри камеры 8.

Как показано на фиг.1А и фиг.1B, в некоторых воплощениях модуль 10 с криогенным охлаждением сверхпроводниковых катушек содержит (i) сосуд Дьюара 1 с двойными стенками, выполненный из стекла и/или других токонепроводящих механически прочных материалов, таких как G10, RF4, пластмасса и/или керамика; (ii) неметаллический проводник 2 тепла, например, керамический материал с высокой теплопроводностью, например, сапфир или оксид алюминия; (iii) сверхпроводящие градиентные катушки 3 (т.е. формируются три градиента, создающих изменения B-поля в ортогональных направлениях х, у, z), которые находятся в хорошем тепловом контакте с проводником 2 тепла и выполнены, например, из проволоки, изготовленной из низкотемпературного сверхпроводникового материала (НТС), такого как NbTi, Nb3Sn и т.п., или ленты, изготовленной из высокотемпературного сверхпроводникового материала, такого как YBCO (оксид меди, бария и иттрия), BSCCO (оксиды висмута, стронция, кальция и меди) и т.п.; (iv) камеру 8 с двойными стенками из нержавеющей стали, которая герметично соединена с сосудом Дьюара 1, выполненным с двойными стенками; и (v) криогенный охладитель 9, имеющий тепловую связь с проводником 2 тепла и герметично присоединенный к фланцу камеры 8 из нержавеющей стали. Следует понимать, что сосуд Дьюара 1 с двойными стенками может быть выполнен различными путями в виде сплошного, герметично уплотненного корпуса из стекла, охватывающего внутреннюю камеру 4 (или полость), в которой поддерживают, по меньшей мере, условие низкого вакуума и в соответствии с некоторыми воплощениями предпочтительно, по меньшей мере, поддерживают условие высокого вакуума (например, приблизительно 10-6 Торр или более низкое давление). Например, в соответствии с некоторыми воплощениями сосуд Дьюара 1 с двойными стенками может быть изготовлен следующим образом: (i) формование двух в целом цилиндрических структур с двойными стенками, имеющих каждая в целом U-образную форму поперечного сечения стенки; первая, соответствующая части 1а из сплошной стеклянной стенки, и вторая, соответствующая части 1b из сплошной стеклянной стенки, (ii) установку в целом цилиндрической сплошной части 1b из стеклянной стенки в кольцевой зазор, образованный в цилиндрической в целом сплошной части 1а из стеклянной стенки, используя, по возможности, размещенные между ними стеклянные дистанционирующие элементы; и (iii) откачивание полости 4 до высокого вакуума и герметизация открытого конца между частями 1а и 1b посредством склеивания стекла, сваривания или иным способом (т.е. конца, который впоследствии герметично присоединяют к камере 8 из нержавеющей стали) для герметичного уплотнения полости 4, находящейся под высоким вакуумом. Следует принимать во внимание, что указанная стадия герметизации может быть осуществлена множеством путей. Например, она может быть произведена полностью внутри вакуумной камеры, или концы частей 1а и 1b могут быть сварены друг с другом, исключая небольшую зону, которую используют как отверстие для вакуумирования и уплотняют после откачивания через него полости до высокого вакуума. В различных воплощениях сосуд Дьюара 1 с двойными стенками может быть реализован в соответствии с или подобно герметично уплотненным конструкциям с двойными стенками (и корпусом с вакуумной тепловой изоляцией), описанной в заявке на патент США №12/212122, дата подачи - 17.09.2008 и в заявке на патент США №12/212147, дата подачи - 17.09.2008, каждая из которых включена в настоящее описание полностью посредством ссылки.

В качестве примера, соединение между герметично уплотненным сосудом Дьюара 1 с двойными стенками (например, стеклянным) и камерой из нержавеющей стали может быть образовано посредством соединения эпоксидной смолой (соединение эпоксидной смолой и уплотнение 6 на фиг.1А), сваривания и другого герметично уплотненного фланцевого соединения, обеспечивая достаточное уплотнение для поддерживания, по меньшей мере, условия низкого вакуума (например, в интервале от приблизительно 10-2 до приблизительно 10-5 Торр) в отдельной части 5 внутренней полости, которая вмещает себя градиентные катушки 3 и проводник 2 тепла Кроме того, как пример, вакуумное уплотнение между криогенным охладителем 9 и фланцем камеры 8 из нержавеющей стали может быть обеспечено с помощью кольцевого уплотнителя или с помощью другого средства герметизации (например, соединение с помощью металлической прокладки и острой кромки) для, подобным образом, поддерживания указанного, по меньшей мере, условия низкого вакуума в отдельной части 5 внутренней полости, которая вмещает градиентные катушки 3 и проводник 2 тепла. Специалистам в данной области техники, однако, понятно, что камера 8 может быть изготовлена из материалов, отличающихся от нержавеющей стали, например, из алюминия или других металлических или неметаллических материалов, таких как стекло, керамические материалы, пластмассы или из комбинации этих материалов, и такие другие материалы могут быть надлежащим образом присоединены к сосуду Дьюара 1 и криогенному охладителю 9.

В различных воплощениях криогенный охладитель 9 может быть реализован в виде любого из различных одноступенчатых или многоступенчатых криогенных охладителей, например, криогенного охладителя Gifford McMahon (GM), охладителя с пульсационной трубой, охладителя Джоуля-Томпсона, охладителя Стирлинга или криогенного охладителя другого типа. В различных альтернативных воплощениях модуль 10 с градиентными катушками может быть сконфигурирован для охлаждения таким образом, чтобы катушки 3 охлаждались криогенным веществом, например, жидким гелием и жидким азотом.

На фиг.2А градиентные катушки 103, соответствующие градиентным катушкам 3 типичного модуля 10 с криогенным охлаждением сверхпроводящих градиентных катушек, представленного на фиг.1А и фиг.1B, показаны более детально в косой проекции в соответствии с некоторыми воплощениями настоящего изобретения. В таких воплощениях, как показано на фиг.2А, для создания изменений магнитного поля вдоль трех взаимно ортогональных направлений формируют или иным образом обеспечивают наличие трех отдельных градиентных катушек на и/или в пределах поверхностей трех соответствующих коаксиальных цилиндрических опорных элементов, а именно, опорный элемент 258 для создания х-градиента, опорный элемент 262 для создания y-градиента и опорный элемент 264 для создания z-градиента. В соответствии с общепринятым условием х и y обозначают два ортогональных направления, перпендикулярных основному магнитному полю (называемых иногда поперечными направлениями). Таким образом, опорный элемент 258 для создания х-градиента, опорный элемент 262 для создания y-градиента и опорный элемент 264 для создания z-градиента поддерживают соответствующие градиентные катушки для создания градиентов магнитного поля вдоль направлений х, y и z соответственно. Опорные элементы 258, 262 и 264 для градиентных катушек могут быть выполнены, например, из материала G10 или другого неферромагнитного, нетокопроводящего (например, из неметаллического, электроизоляционного) материала. В этом воплощении катушкой, создающей z-градиент, является соленоид, а катушки для создания х- и y-градиентов представляют собой катушки седлообразной формы, каждая из которых перекрывает или покрывает в окружном направлении приблизительно половину их соответствующих цилиндрических опорных элементов. Опорный элемент 262 катушки y-градиента устанавливают в хорошем тепловом контакте с опорным элементом 258 катушки х-градиента и опорным элементом 264 катушки z-градиента, которые устанавливают с образованием хорошего теплового контакта с теплоотводом ПО (соответствующим проводнику 2 тепла на фиг.1А и фиг.1B). В различных альтернативных воплощениях теплоотвод дополнительно или в качестве альтернативного выполнения может быть установлен в контакте с опорным элементом 258 для катушки х-градиента. При практическом осуществлении изобретения в дополнение к теплоотводу 110 (проводнику 2 тепла), подобный теплоотвод, находящийся в контакте с опорным элементом 258 катушки х-градиента, может охлаждаться или таким же криогенным охладителем, что и теплоотвод 110 (проводник 2 тепла), или с помощью отдельного криогенного охладителя.

Фиг.2 В схематически иллюстрирует на виде сверху некоторую часть цилиндрического опорного элемента 258 для катушки, создающей x-градиент, показанного на фиг.2А. На фиг.2B показана катушка 268, представляющая собой четверть всей катушки для создания х-градиента, которая поддерживается опорным элементом 258 для х-градиентной катушки в соответствии с воплощением настоящего изобретения. Поверхность опорного элемента 258 для катушки, создающей х-градиент, обычно выполняют с углублением (например, посредством травления или высекания), в котором размещают градиентную катушку 268 (проволоку), при этом проволоку, из которой образована градиентная катушка, фиксируют и закрепляют в указанной выемке, и поэтому эта проволока градиентной катушки, находящейся в магнитном поле, не будет перемещаться при прохождении через нее электрического тока (т.е. за счет действия силы Лоренца). Катушка для создания градиента в направлении y, размещенная на опорном элементе 262, имеет по существу такой же внешний вид и конструкцию, что и градиентная катушка 268 для создания градиента в направлении х, размещенная на опорном элементе 258 для создания х-градиента, за исключением незначительных изменений размеров с тем, чтобы учесть слегка меньший диаметр опорного элемента для катушки y-градиента, по сравнению с диаметром опорного элемента для катушки, создающей градиент, направленный по оси х. Соленоид для z-градиента (в деталях не показан) изготавливают подобным образом на и/или в поверхности опорного элемента 264 для катушки z-градиента, но в этом случае катушку, создающую z-градиент, наматывают по спирали вокруг оси цилиндрического опорного элемента 264 для катушки z-градиента, при этом половина катушки, сформированной вдоль оси цилиндрического опорного элемента 264, намотана в том же направлении, что и обмотка основного магнита, так что катушка для создания z-градиента усиливает магнитное поле в этой половине катушки. В то же время другая половина катушки, сформированной вдоль оси цилиндра, намотана в противоположном направлении, так что в пределах этой другой половины катушка для создания z-градиента ослабляет магнитное поле.

Как будет понятно специалистам в данной области техники, в целом цилиндрической формы модуль 10 с градиентными катушками, такой, как показан на фиг.1А и фиг.1B, соответствующий некоторым воплощениям настоящего изобретения, является вполне подходящим для применения, например, в системе МРТ, в которой используют цилиндрическую конструкцию с основным соленоидом, создающую по существу однородное горизонтальное магнитное поле. Например, такая система МРТ, схематически изображенная на фиг.3 в продольном разрезе, содержит цилиндрический основной магнит 17, имеющий внутренний канал, в котором размещен модуль 10 с градиентными катушками, а также РЧ катушка (катушки) 13 (которая может быть любой из различных типов РЧ катушки (катушек)) или конфигурации из ряда катушек для применений с целью визуализации всего тела, выделенных частей тела (например, головы или конечностей тела), для новорожденных, домашних животных и т.п.

Следует, однако, понимать, что модуль 10 с криогенным охлаждением сверхпроводящих градиентных катушек может быть реализован с конфигурациями основного магнита иными, чем цилиндрический соленоид, который обеспечивает горизонтальные поля и/или, например, может быть реализован с незамкнутым магнитом, таким как подъемный вертикальный магнит или магнит с двумя кольцами.

Следует также понимать, что хотя воплощения, представленные на фиг.1А-В и фиг.3, сконфигурированы для использования с одной или большим количеством РЧ-катушек, которые являются внешними по отношению к модулю 10 с криогенным охлаждением градиентных сверхпроводящих катушек, в соответствии с некоторыми воплощениями настоящего изобретения одна или большее количество РЧ-катушек в качестве альтернативы или дополнительно могут быть размещены внутри модуля с градиентными катушками. Например, в соответствии с некоторыми воплощениями, такими, как показано на фиг.4, РЧ-катушка (катушки) 13 находится (находятся) в хорошем тепловом контакте с тем же теплоотводом (т.е. проводником 2 тепла), который находится в тепловом контакте со сверхпроводящими градиентными катушками 3. В различных воплощениях РЧ-катушка (катушки) 13, размещенная в тепловом контакте с проводником 2 тепла и, таким образом, подверженная криогенному охлаждению, может быть реализована в виде одной или большего числа обычных медных катушек и/или в виде одной или большего количества РЧ-катушек (низкотемпературные сверхпроводники (НТС), и/или высокотемпературные сверхпроводники (ВТС)), и/или в виде одной или большего количества катушек, содержащих несверхпроводящий материал, который после охлаждения до температуры ниже комнатной температуры, имеет электропроводность, более высокую, чем медь при температуре ниже комнатной температуры (например, материалы на основе углеродных нанотрубок и/или на полупроводниковых структурах с двумерным электронным газом).

В качестве примера для рассматриваемого применения подходящей формой выполнения РЧ катушки из высокотемпературного сверхпроводника (ВТС) является лента из сверхпроводника, изготовленная, например, из композиции оксидов висмута, стронция, кальция и меди (BSCCO). Подробно методы изготовления РЧ ВТС-катушек из ленты, выполненной из высокотемпературного сверхпроводника, раскрыты, например, в патентном документе US 6943550, содержание которого включено в настоящее описание посредством ссылки. В альтернативных воплощениях сверхпроводящая РЧ-катушка может быть на практике выполнена в виде тонкой сверхпроводящей пленки, например, сверхпроводящей тонкой пленки, содержащей материал ВТС, например, оксид меди, бария и иттрия (YBCO), оксид меди, кальция, бария и таллия (ТВССО), MgB2, или MB, где M выбран из группы, включающей Be, Al, Nb, Mo, Та, Ti, Hf, V и Cr. Подробно метод изготовления катушки, содержащей пленку из ВТС на плоской подложке, описан в статье: Ma et al., "Superconducting MR Surface Coils for Human Imaging", Proc. Mag. Res. Medicine, 1, 171 (1999), содержание которой включено полностью в настоящее описание посредством ссылки. Другие идеи, касающиеся изготовления катушек из высокотемпературных сверхпроводников, описаны в статьях: Ma et al., "Superconducting RF Coils for Clinical MR Imaging at Low Field", Academic Radiology, vol. 10, no., 9, Sept. 2003, pp.978-987; Miller et al., "Performance of a High Temperature Superconducting Probe for In Vivo Microscopy at 2.0 T", Magnetic Resonance in Medicine, 41: 72-79 (1999), содержание которых включено полностью в настоящее описание посредством ссылки на них.

Как будет понятно специалистам в данной области техники, независимо от того, находится РЧ-катушка 13 внутри или вне модуля 10 с градиентными катушками, указанная РЧ катушка может быть выполнена в виде отдельных катушек для РЧ-передатчика и РЧ-приемника или в виде общей катушки для передатчика и приемника (т.е. приемопередающая катушка). Дополнительно в некоторых воплощениях, в которых катушки для передатчика и приемника являются отдельными катушками, только одна из этих катушек (например, приемная катушка) может быть реализована как сверхпроводящая катушка (например, другая катушка может быть выполнена в виде обычной медной катушки, размещенной, например, вне модуля 10 с градиентными катушками, в то время как сверхпроводящая катушка, например, может быть размещена на проводнике 2 тепла внутри модуля 10 с градиентными катушками). Кроме того, в некоторых воплощениях, независимо от того, размещена РЧ-катушка 13 внутри или вне модуля 10, она может быть выполнена в виде ряда РЧ-катушек, который в некоторых воплощениях может быть рядом сверхпроводящих РЧ-катушек, например, рядом катушек из высокотемпературного сверхпроводника.

Помимо этого, следует принимать во внимание, что размеры и форма модуля с криогенным охлаждением сверхпроводящих градиентных катушек могут быть изменены в зависимости от применения. К примеру, фиг.5 схематически иллюстрирует часть модуля с криогенным охлаждением сверхпроводящих градиентных катушек, выполненного в соответствии с некоторыми воплощениями настоящего изобретения, содержащую стеклянный сосуд Дьюара, предназначенный для использования в системе магнитно-резонансной томографии применительно только для томографии головы, при этом элементы, входящие в состав стеклянного сосуда Дьюара, могут иметь следующие приблизительные размеры, приведенные здесь лишь в качестве примера: цилиндр 60 имеет внутренний диаметр, внешний диаметр и осевую длину, равные 230 мм, 236 мм и 254 мм соответственно; цилиндр 62 имеет внутренний диаметр, внешний диаметр и осевую длину, составляющие 246 мм, 252 мм и 254 мм соответственно; цилиндр 64 имеет внутренний диаметр, внешний диаметр и осевую длину 280 мм, 286 мм и 312 мм соответственно; цилиндр 66 имеет внутренний диаметр, внешний диаметр и осевую длину, составляющие 296 мм, 302 мм и 330 мм соответственно; внутренняя плита основания (дискообразная/цилиндрическая) 74 имеет диаметр 236 мм и толщину 12,7 мм, внешняя плита основания (дискообразная/цилиндрическая) 76 имеет диаметр 252 мм и толщину 12,7 мм; кольцо (круговое) 66 имеет внутренний диаметр, внешний диаметр и толщину (вдоль оси) равные 246 мм, 286 мм и 12,7 мм соответственно; кольцо (круговое) 68 имеет внутренний диамет