Устройство обнаружения трехмерных объектов и способ обнаружения трехмерных объектов
Иллюстрации
Показать всеГруппа изобретений относится к вариантам выполнения устройства обнаружения трехмерных объектов. Устройство содержит: модуль 41 задания областей обнаружения для задания области обнаружения позади с правой стороны и с левой стороны от транспортного средства; модули 33, 37 обнаружения трехмерных объектов для обнаружения трехмерного объекта, который присутствует в правосторонней области A1 обнаружения или левосторонней области A2 обнаружения позади транспортного средства, на основе информации изображений из камеры 10 сзади транспортного средства; модуль 34 оценки трехмерных объектов для определения того, представляет или нет обнаруженный трехмерный объект собой другое транспортное средство VX, которое присутствует в правосторонней области A1 обнаружения или левосторонней области A2 обнаружения. Модуль 41 задания областей обнаружения, когда влажное состояние линзы обнаруживается, изменяет позицию первой области обнаружения, которая сначала задается в качестве области обнаружения, таким образом, что эта область не включает в себя область отображения белой линии дорожной разметки на стороне полосы движения транспортного средства из числа белых линий дорожной разметки в смежных полосах движения, которые являются смежными с полосой движения, в которой едет транспортное средство, и задает вторую область обнаружения в качестве новых областей A1, A2 обнаружения. Обеспечивается повышение безопасности движения за счет точности отражения реальной обстановки на дороге. 5 н. и 8 з.п. ф-лы, 28 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к устройству обнаружения трехмерных объектов и к способу обнаружения трехмерных объектов.
Данная заявка испрашивает приоритет заявки на патент (Япония) № 2012-166515, поданной 27 июля 2012 года, и в указанных государствах, которые признают включение документа по ссылке, содержимое, описанное в вышеуказанной заявке, содержится в данном документе по ссылке и считается частью описания настоящей заявки.
УРОВЕНЬ ТЕХНИКИ
[0002] В известном устройстве обнаружения помех, захваченные изображения окрестности транспортного средства преобразуются в вид «с высоты птичьего полета», и помеха обнаруживается с использованием разностей между двумя преобразованными изображениями вида «с высоты птичьего полета», захваченными в различные моменты времени (см. патентный документ 1).
ДОКУМЕНТЫ ПРЕДШЕСТВУЮЩЕГО УРОВНЯ ТЕХНИКИ
ПАТЕНТНЫЕ ДОКУМЕНТЫ
[0003] Патентный документ 1. Выложенная заявка на патент (Япония) № 2008-227646
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ПРОБЛЕМЫ, РАЗРЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
[0004] При обнаружении другого транспортного средства, едущего по смежной полосе движения относительно полосы движения рассматриваемого (ведущего) транспортного средства, в качестве помехи с использованием изображения, которое захватывает заднюю часть транспортного средства, если вода прилипает к линзе, и линза является влажной, искажается изображение белой линии дорожной разметки, которая представляет собой разделительную линию на дороге; следовательно, имеется проблема в том, что изображение искривленной белой линии дорожной разметки ошибочно некорректно идентифицируется в качестве изображения другого транспортного средства, едущего по смежной полосе движения.
[0005] Проблема, которая должна разрешаться посредством настоящего изобретения, заключается в том, чтобы предоставлять устройство обнаружения трехмерных объектов и способ обнаружения трехмерных объектов, которые позволяют обнаруживать другое транспортное средство, едущее по смежной полосе движения, с высокой степенью точности посредством предотвращения ошибочного обнаружения изображения белой линии дорожной разметки, которое захватывается, когда линза является влажной, в качестве другого транспортного средства, которое едет по смежной полосе движения, которая является смежной с полосой движения рассматриваемого транспортного средства.
СРЕДСТВО ДЛЯ РАЗРЕШЕНИЯ УКАЗАННЫХ ПРОБЛЕМ
[0006] Когда выполняется определение в отношении того, что линза находится во влажном состоянии, настоящее изобретение разрешает проблему посредством изменения позиции первой области обнаружения, которая сначала задается в качестве области обнаружения, таким образом, что эта область не включает в себя область отображения для разделительной линии на стороне полосы движения транспортного средства из разделительных линий на смежной полосе движения, которая является смежной с полосой движения, в которой едет транспортное средство, и задания второй области обнаружения.
ПРЕИМУЩЕСТВО ИЗОБРЕТЕНИЯ
[0007] Когда выполняется определение в отношении того, что линза находится во влажном состоянии, настоящее изобретение изменяет позицию первой области обнаружения, которая сначала задается в качестве области обнаружения, вдоль направления ширины транспортного средства, и задает вторую область обнаружения, в которой удаляется область отображения разделительной линии на стороне полосы движения транспортного средства из числа разделительных линий в смежных полосах движения, которые являются смежными с полосой движения, в которой едет транспортное средство; следовательно, возможно предотвращение включения разделительной линии на смежной полосе движения в область обнаружения, и возможно предотвращение ошибочного обнаружения искривленной разделительной линии, которая захватывается с использованием влажной линзы, в качестве другого транспортного средства, которое едет по смежной полосе движения, которая является смежной с полосой движения рассматриваемого транспортного средства. Как результат, возможно предоставление устройства обнаружения трехмерных объектов, которое обнаруживает другое транспортное средство, которое едет в смежной полосе движения, которая является смежной с полосой движения рассматриваемого транспортного средства, с высокой степенью точности.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0008] Фиг. 1 является схематичным видом транспортного средства согласно одному варианту осуществления, к которому применяется устройство обнаружения трехмерных объектов настоящего изобретения.
Фиг. 2 является видом сверху (обнаружение трехмерных объектов посредством информации форм разностных сигналов), иллюстрирующим состояние движения транспортного средства на фиг. 1.
Фиг. 3 является блок-схемой, иллюстрирующей подробности компьютера на фиг. 1.
Фиг. 4 является видом, показывающим общее представление обработки модуля совмещения на фиг. 3. Фиг. 4(a) является видом сверху, иллюстрирующим состояние движения транспортного средства, а фиг. 4(b) является изображением, иллюстрирующим общее представление совмещения.
Фиг. 5 является схематичным видом, иллюстрирующим способ, которым формируется форма разностного сигнала посредством модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 6 является видом, иллюстрирующим небольшие области, разделенные посредством модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 7 является видом, иллюстрирующим пример гистограммы, полученной посредством модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 8 является видом, иллюстрирующим взвешивание, используемое посредством модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 9 является видом, иллюстрирующим работу модуля обнаружения размытостей на фиг. 3, а также операцию вычисления для формы разностного сигнала, полученной за счет этого.
Фиг. 10 является видом, иллюстрирующим другой пример гистограммы, полученной посредством модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 11 является блок-схемой последовательности операций способа (первой), иллюстрирующей способ обнаружения трехмерных объектов с использованием информации форм разностных сигналов, который осуществляется посредством модуля преобразования точки обзора, модуля совмещения, модуля обнаружения размытостей и модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 12 является блок-схемой последовательности операций способа (второй), иллюстрирующей способ обнаружения трехмерных объектов с использованием информации форм разностных сигналов, который осуществляется посредством модуля преобразования точки обзора, модуля совмещения, модуля обнаружения размытостей и модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 13 является видом, иллюстрирующим состояние движения транспортного средства (обнаружение трехмерных объектов посредством информации краев) на фиг. 1. Фиг. 13(a) является видом сверху, иллюстрирующим позиционную взаимосвязь между областями обнаружения, а фиг. 13(b) является видом в перспективе, иллюстрирующим позиционную взаимосвязь между областями обнаружения в реальном пространстве.
Фиг. 14 является видом, показывающим работу модуля вычисления яркостного различия на фиг. 3. Фиг. 14(a) является видом, иллюстрирующим позиционную взаимосвязь между линией концентрации внимания, опорной линией, точкой концентрации внимания и опорной точкой в изображении вида «с высоты птичьего полета», а фиг. 14(b) является видом, иллюстрирующим позиционную взаимосвязь между линией концентрации внимания, опорной линией, точкой концентрации внимания и опорной точкой в реальном пространстве.
Фиг. 15 является видом, показывающим подробную работу модуля вычисления яркостного различия на фиг. 3. Фиг. 15(a) является видом, иллюстрирующим область обнаружения в изображении вида «с высоты птичьего полета», а фиг. 15(b) является видом, иллюстрирующим позиционную взаимосвязь между линией концентрации внимания, опорной линией, точкой концентрации внимания и опорной точкой в изображении вида «с высоты птичьего полета».
Фиг. 16 является видом, иллюстрирующим линию края и распределение яркости на линии края. Фиг. 16(a) является видом, иллюстрирующим распределение яркости, когда трехмерный объект (транспортное средство) присутствует в области обнаружения, а фиг. 16(b) является видом, иллюстрирующим распределение яркости, когда трехмерный объект не присутствует в области обнаружения.
Фиг. 17 является блок-схемой последовательности операций способа (первой), иллюстрирующей способ обнаружения трехмерных объектов с использованием информации краев, который осуществляется посредством модуля преобразования точки обзора, модуля вычисления яркостного различия, модуля обнаружения линий краев и модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 18 является блок-схемой последовательности операций способа (второй), иллюстрирующей способ обнаружения трехмерных объектов с использованием информации краев, который осуществляется посредством модуля преобразования точки обзора, модуля вычисления яркостного различия, модуля обнаружения линий краев и модуля обнаружения трехмерных объектов на фиг. 3.
Фиг. 19 является видом, иллюстрирующим пример изображения, который показывает операцию обнаружения краев.
Фиг. 20 является видом, иллюстрирующим пример захваченного изображения камеры.
Фиг. 21 является видом, показывающим информацию, которая генерируется в случае, если искажается белая линия дорожной разметки.
Фиг. 22 является видом, иллюстрирующим пример первой области обнаружения по умолчанию.
Фиг. 23 является видом, иллюстрирующим первый пример второй области обнаружения.
Фиг. 24 является видом, иллюстрирующим второй пример второй области обнаружения.
Фиг. 25 является видом, иллюстрирующим третий пример второй области обнаружения.
Фиг. 26 является видом, иллюстрирующим четвертый пример второй области обнаружения.
Фиг. 27 является видом, иллюстрирующим пример взаимосвязи между величиной неточного совмещения области обнаружения и пороговым значением, используемым для обнаружения трехмерного объекта.
Фиг. 28 является блок-схемой последовательности операций способа другого примера, иллюстрирующей процедуру управления устройства обнаружения трехмерных объектов настоящего варианта осуществления.
ПРЕДПОЧТИТЕЛЬНЫЕ ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0009] Фиг. 1 является схематичным видом транспортного средства согласно одному варианту осуществления, к которому применяется устройство 1 обнаружения трехмерных объектов настоящего изобретения; устройство 1 обнаружения трехмерных объектов настоящего примера представляет собой устройство для обнаружения другого транспортного средства, на котором водитель рассматриваемого транспортного средства V должен акцентировать внимание в ходе езды, например, другого транспортного средства, с которым возможен контакт, если рассматриваемое транспортное средство V должно сменять полосу движения, в качестве помехи. В частности, устройство 1 обнаружения трехмерных объектов настоящего примера обнаруживает другое транспортное средство, которое едет по смежной полосе движения, которая является смежной с полосой движения, в которой едет рассматриваемое транспортное средство (в дальнейшем также называемой просто "смежной полосой движения"). Кроме того, устройство 1 обнаружения трехмерных объектов настоящего примера имеет возможность вычислять проезжаемое расстояние и скорость движения другого транспортного средства, которое обнаруживается. Соответственно, в примере, описанном ниже, проиллюстрирован пример, в котором устройство 1 обнаружения трехмерных объектов монтируется на рассматриваемом транспортном средстве V, и из трехмерных объектов, обнаруженных в окрестности рассматриваемого транспортного средства, обнаруживается другое транспортное средство, которое едет по смежной полосе движения, которая является смежной с полосой движения, в которой едет рассматриваемое транспортное средство. Как проиллюстрировано на чертеже, устройство 1 обнаружения трехмерных объектов настоящего примера содержит камеру 10, датчик 20 скорости транспортного средства, компьютер 30, датчик 50 капель дождя, стеклоочиститель 60, навигационное устройство 70, содержащее устройство 71 связи и GPS-устройство 72, и устройство 80 очистки линзы.
[0010] Камера 10 присоединена к рассматриваемому транспортному средству V таким образом, что оптическая ось располагается под углом θ вниз от горизонта в местоположении на высоте h в задней части рассматриваемого транспортного средства V, как проиллюстрировано на фиг. 1. Из этой позиции, камера 10 захватывает предварительно определенную область окружения рассматриваемого транспортного средства V. Предусмотрена одна камера 1, которая предоставляется для обнаружения трехмерного объекта позади рассматриваемого транспортного средства V в настоящем варианте осуществления, но другие камеры могут предоставляться для других вариантов использования, например, для получения изображения окрестности транспортного средства. Датчик 20 скорости транспортного средства обнаруживает скорость движения рассматриваемого транспортного средства V и вычисляет скорость транспортного средства из скорости вращения колес, обнаруженной, например, посредством датчика скорости вращения колес для обнаружения скорости вращения колеса. Компьютер 30 обнаруживает трехмерный объект позади транспортного средства и в настоящем примере вычисляет проезжаемое расстояние и скорость движения трехмерного объекта. Датчик 50 капель дождя, стеклоочиститель 60, навигационное устройство 70 и устройство 80 очистки линзы обнаруживают наличие/отсутствие капель дождя, которые прилипают к рассматриваемому транспортному средству V, количество капель дождя, присутствие/отсутствие очищающей жидкости, которая прилипает к линзе 11, и количество очищающей жидкости и отправляют результаты обнаружения в модуль 38 оценки, упомянутый ниже. Ниже подробно описывается каждое устройство.
[0011] Фиг. 2 является видом сверху, иллюстрирующим состояние движения рассматриваемого транспортного средства V на фиг. 1. Как проиллюстрировано на чертеже, камера 10 захватывает заднюю сторону транспортного средства под предварительно определенным углом a обзора. В это время, угол а обзора камеры 10 задается равным углу обзора, который обеспечивает возможность захвата левой и правой полос движения в дополнение с полосой движения, в которой едет рассматриваемое транспортное средство V. Области, которые могут быть захвачены, включают в себя целевые области A1, A2 обнаружения в смежных полосах движения слева и справа от полосы движения рассматриваемого транспортного средства V позади рассматриваемого транспортного средства V. Задняя часть транспортного средства в настоящем варианте осуществления включает в себя не только место непосредственно позади транспортного средства, но также и бока задней стороны транспортного средства. Область сзади транспортного средства, которая захватывается, задается согласно углу обзора камеры 10. В качестве примера, непосредственно позади транспортного средства, вдоль направления длины транспортного средства предположительно он составляет нуль градусов, но он может задаваться с возможностью включать в себя область, которая составляет 0-90 градусов, предпочтительно 0-70 градусов и т.п., слева и справа от направления непосредственно позади.
[0012] Фиг. 3 является блок-схемой, иллюстрирующей подробности компьютера 30 на фиг. 1. Камера 10, а также датчик 20 скорости транспортного средства, датчик 50 капель дождя, стеклоочиститель 60, навигационное устройство 70 и устройство 80 очистки линзы, также проиллюстрированы на фиг. 3, чтобы четко указывать взаимосвязи соединений. Датчик 20 скорости транспортного средства, датчик 50 капель дождя, стеклоочиститель 60, навигационное устройство 70 и устройство 80 очистки линзы монтируются на транспортном средстве и могут отправлять и принимать информацию в/из компьютера 30 через бортовую сеть связи, такую как CAN (контроллерная сеть).
[0013] Как проиллюстрировано на фиг. 3, компьютер 30 содержит модуль 31 преобразования точки обзора, модуль 32 совмещения, модуль 33 обнаружения трехмерных объектов, модуль 34 оценки трехмерных объектов, модуль 38 оценки состояния линзы, модуль 41 задания областей обнаружения, контроллер 39 и модуль 40 обнаружения размытостей. Компьютер 30 настоящего варианта осуществления представляет собой конфигурацию, связанную с блоком обнаружения для трехмерного объекта, который использует информацию форм разностных сигналов. Компьютер 30 настоящего варианта осуществления также может иметь конфигурацию, связанную с блоком обнаружения для трехмерного объекта, который использует информацию краев. В этом случае, может быть предусмотрена такая конфигурация, в которой в конфигурации, проиллюстрированной на фиг. 3, блочная конфигурация A, сконфигурированная посредством модуля 32 совмещения и модуля 33 обнаружения трехмерных объектов, заменяется на блочную конфигурацию B, сконфигурированную посредством модуля 35 вычисления яркостного различия, обведенного посредством пунктирной линии, модуля 36 обнаружения линий краев и модуля 37 обнаружения трехмерных объектов. Конечно, может быть предусмотрена такая конфигурация, в которой предоставляются как блочная конфигурация A, так и блочная конфигурация B, чтобы предоставлять возможность обнаружения трехмерных объектов с использованием информации форм разностных сигналов, а также обнаружение трехмерных объектов с использованием информации краев. В случае если предоставляются блочная конфигурация A и блочная конфигурация B, блочная конфигурация A или блочная конфигурация B может работать согласно факторам окружающей среды, таким как яркость. Каждая из конфигураций описывается ниже.
[0014] ОБНАРУЖЕНИЕ ТРЕХМЕРНОГО ОБЪЕКТА ПОСРЕДСТВОМ ИСПОЛЬЗОВАНИЯ ИНФОРМАЦИИ ФОРМ РАЗНОСТНЫХ СИГНАЛОВ
Устройство 1 обнаружения трехмерных объектов настоящего варианта осуществления обнаруживает трехмерный объект, который присутствует в области A1 обнаружения в правосторонней смежной полосе движения или в области A2 обнаружения в левосторонней смежной полосе движения сзади транспортного средства, на основе информации изображений, полученной посредством монокулярной камеры, которая захватывает заднюю часть транспортного средства. Модуль 41 задания областей обнаружения задает области A1, A2 обнаружения позади с правой стороны и с левой стороны от рассматриваемого транспортного средства V в информации захваченных изображений и изменяет эти позиции. Позиции этих областей A2, A2 обнаружения не ограничены конкретным образом и могут быть надлежащим образом заданы согласно условиям обработки. В частности, когда модуль 38 оценки состояния линзы, упомянутый ниже, определяет, что линза 11 находится во влажном состоянии, модуль 41 задания областей обнаружения настоящего варианта осуществления изменяет позиции первых областей A11, A21 обнаружения, которые сначала задаются в качестве областей A1, A2 обнаружения, таким образом, что они не включают в себя область отображения белой линии дорожной разметки на стороне полосы движения рассматриваемого транспортного средства V из числа белых линий дорожной разметки на смежной полосе движения, которая является смежной с полосой движения, в которой едет рассматриваемое транспортное средство V, и задает вторые области A12, A22 обнаружения в качестве новых областей A1, A2 обнаружения. Ниже подробно описывается задание новых вторых областей A12, A22 обнаружения.
[0015] Далее описывается модуль преобразования точки обзора. Захваченные данные изображений предварительно определенной области, полученные посредством камеры 10, вводятся в модуль 31 преобразования точки обзора, и захваченные данные изображений, введенные таким способом, преобразуются в данные изображений вида «с высоты птичьего полета», которые представляют собой состояние вида «с высоты птичьего полета». Состояние вида «с высоты птичьего полета» представляет собой состояние просмотра объекта с точки обзора воображаемой камеры, которая смотрит вниз сверху, в частности, вертикально вниз. Преобразование точки обзора может быть выполнено способом, описанным, например, в выложенной заявке на патент (Япония) № 2008-219063. Причина, по которой захваченные данные изображений преобразуются в данные изображений вида «с высоты птичьего полета», основана на таком принципе, что перпендикулярные края, уникальные для трехмерного объекта, преобразуются в группу прямых линий, которая проходит через конкретную фиксированную точку, посредством преобразования точки обзора в данные изображений вида «с высоты птичьего полета»; использование этого принципа дает возможность различения плоского объекта и трехмерного объекта. Результаты процесса преобразования изображений посредством плоского объекта 31 также используются при обнаружении плоских объектов посредством информации краев, как описано ниже.
[0016] Данные изображений вида «с высоты птичьего полета», полученные посредством преобразования точки обзора, которое выполняется посредством модуля 31 преобразования точки обзора, последовательно вводятся в модуль 32 совмещения, и входные позиции данных изображений вида «с высоты птичьего полета» в различные моменты времени совмещаются. Фиг. 4 является видом, показывающим общее представление обработки модуля 32 совмещения; фиг. 4(a) является видом сверху, иллюстрирующим состояние движения рассматриваемого транспортного средства V, а фиг. 4(b) является изображением, иллюстрирующим общее представление совмещения.
[0017] Как проиллюстрировано на фиг. 4(a), предполагается, что рассматриваемое транспортное средство V в данный момент времени размещается в V1, и что рассматриваемое транспортное средство V за один момент времени до этого размещается в V2. Также предполагается, что другое транспортное средство VX размещается позади рассматриваемого транспортного средства V и едет параллельно рассматриваемому транспортному средству V, что другое транспортное средство VX в текущий момент времени размещается в V3, и другое транспортное средство VX за один момент времени до этого размещается в V4. Кроме того, предполагается, что рассматриваемое транспортное средство V проезжает расстояние d в течение одного момента времени. Фраза "за один момент времени до этого" может быть моментом времени в прошлом, которое составляет время, предварительно заданное (например, один цикл управления) с данного момента времени, либо она может быть моментом времени в прошлом, который составляет произвольное время.
[0018] В этом состоянии, изображение PBt вида «с высоты птичьего полета» в текущее время является таким, как показано на фиг. 4(b). Белые линии дорожной разметки, нарисованные на поверхности дороги, являются прямоугольными в этом изображении PBt вида «с высоты птичьего полета» и являются относительно точными в виде сверху, но позиция другого транспортного средства VX в позиции V3 сплющивается. Дополнительно, белые линии дорожной разметки, нарисованные на поверхности дороги, также являются прямоугольными в изображении PBt вида «с высоты птичьего полета» за один момент времени до этого и являются относительно точными в виде сверху, но другое транспортное средство VX в позиции V4 сплющивается. Как описано выше, перпендикулярные края трехмерного объекта (края, которые расположены вертикально прямо в трехмерном пространстве от поверхности дороги, также включаются в строгий смысл перпендикулярного края) выглядят как группа прямых линий вдоль направления сплющивания вследствие операции для преобразования точки обзора в данные изображений вида «с высоты птичьего полета»; тем не менее, но поскольку плоское изображение на поверхности дороги не включает в себя перпендикулярные края, такое сплющивание не возникает, даже когда точка обзора преобразована.
[0019] Модуль 32 совмещения совмещает изображения PBt и PBt-1 вида «с высоты птичьего полета», такие как изображения PBt и PBt-1, описанные выше, с точки зрения данных. Когда это выполняется, модуль 32 совмещения смещает изображение PBt-1 вида «с высоты птичьего полета» за один момент времени до этого и сопоставляет позицию с изображением PBt вида «с высоты птичьего полета» в данный момент времени. Левое изображение и центральное изображение на фиг. 4(b) иллюстрируют состояние смещения на проезжаемое расстояние d′. Величина d′ смещения является величиной перемещения в данных изображений вида «с высоты птичьего полета», которая соответствует фактическому проезжаемому расстоянию d рассматриваемого транспортного средства V, как проиллюстрировано на фиг. 4(a), и определяется на основе сигнала из датчика 20 скорости транспортного средства и времени от одного момента времени до этого до данного момента времени.
[0020] После совмещения модуль 32 совмещения получает разность между изображениями PBt и PBt-1 вида «с высоты птичьего полета» и генерирует данные разностного изображения PDt. Здесь, пиксельные значения разностного изображения PDt могут быть абсолютными значениями разности в пиксельных значениях изображений PBt и PBt-1 вида «с высоты птичьего полета»; альтернативно, они могут задаваться равными 1, когда абсолютное значение превышает предварительно определенное пороговое значение p, и задаваться равными 0, когда оно не превышает, с тем чтобы соответствовать варьированию в среде освещения. Правостороннее изображение на фиг. 4 представляет собой разностное изображение PDt.
[0021] Возвращаясь к фиг. 3, модуль 33 обнаружения трехмерных объектов обнаруживает трехмерный объект на основе данных разностного изображения PDt, показанных на фиг. 4(b). В этом случае, модуль 33 обнаружения трехмерных объектов настоящего примера вычисляет проезжаемое расстояние трехмерного объекта в фактически пространстве. Модуль 33 обнаружения трехмерных объектов сначала генерирует первую форму разностного сигнала, когда обнаруживается трехмерный объект, и должно быть вычислено проезжаемое расстояние. Проезжаемое расстояние в единицу времени для трехмерного объекта используется для вычисления скорости движения трехмерного объекта. Скорость движения трехмерного объекта может быть использована для того, чтобы определять то, представляет или нет трехмерный объект собой транспортное средство.
[0022] При генерировании формы разностного сигнала, модуль 33 обнаружения трехмерных объектов настоящего варианта осуществления задает область обнаружения в разностном изображении PDt. Устройство 1 обнаружения трехмерных объектов настоящего примера обнаруживает другое транспортное средство, на которое водитель рассматриваемого транспортного средства V обращает внимание, и в частности, другое транспортное средство, едущее по полосе движения, смежной с полосой движения, в которой едет рассматриваемое транспортное средство V, когда возможен контакт, если рассматриваемое транспортное средство V должно сменять полосу движения, в качестве объекта, который должен быть обнаружен. Соответственно, в настоящем примере, в котором трехмерные объекты обнаруживаются на основе информации изображений, две области обнаружения в правой стороне и левой стороне рассматриваемого транспортного средства V задаются в изображениях, полученных из камеры 1. В частности, в настоящем варианте осуществления, прямоугольные области A1, A2 обнаружения задаются слева и справа сзади позади рассматриваемого транспортного средства V, как проиллюстрировано на фиг. 2. Другое транспортное средство, которое обнаруживается в этих областях A1, A2 обнаружения, обнаруживается в качестве помехи, которая едет по смежной полосе движения, которая является смежной с полосой движения, в которой едет рассматриваемое транспортное средство V. Такие области A1, A2 обнаружения могут задаваться согласно относительной позиции до рассматриваемого транспортного средства V либо они могут задаваться на основе позиции белых линий дорожной разметки. Когда задаются на основе позиции белых линий дорожной разметки, устройство 1 обнаружения трехмерных объектов может использовать, например, то, что известно как технологии распознавания белых линий дорожной разметки.
[0023] Модуль 33 обнаружения трехмерных объектов распознает в качестве линий L1, L2 пересечения с землей (фиг. 2) границы областей A1, A2 обнаружения, заданные таким способом, на стороне рассматриваемого транспортного средства V (на стороне в соответствии с направлением движения). В общем, линия пересечения с землей означает линию, в которой трехмерный объект находится в контакте с землей; тем не менее, в настоящем варианте осуществления, линия пересечения с землей не представляет собой линию в контакте с землей, а вместо этого задается способом, описанным выше. Даже в таком случае, разность между линией пересечения с землей согласно настоящему варианту осуществления и нормальной линией пересечения с землей, определенной из позиции другого транспортного средства VX, не является чрезвычайно большой, как определено посредством опыта, и фактически не представляет собой проблемы.
[0024] Фиг. 5 является схематичным видом, иллюстрирующим способ, которым генерируется форма разностного сигнала посредством модуля 33 обнаружения трехмерных объектов, проиллюстрированного на фиг. 3. Как проиллюстрировано на фиг. 5, модуль 33 обнаружения трехмерных объектов генерирует форму DWt разностного сигнала из части, которая соответствует областям A1, A2 обнаружения в разностном изображении PDt (чертеж справа на фиг. 4(b)), вычисленном посредством модуля 32 совмещения. В этом случае, модуль 33 обнаружения трехмерных объектов генерирует форму DWt разностного сигнала вдоль направления сплющивания трехмерного объекта посредством преобразования точки обзора. В примере, проиллюстрированном на фиг. 5, для удобства показана только область A1 обнаружения, но форма DWt разностного сигнала также генерируется для области A2 обнаружения с использованием идентичной процедуры.
[0025] Более конкретно, модуль 33 обнаружения трехмерных объектов задает линию La в направлении сплющивания трехмерного объекта в данных для разностного изображения DWt. Модуль 33 обнаружения трехмерных объектов затем подсчитывает число разностных пикселов DP, указывающих предварительно определенную разность на линии La. Здесь, разностный пиксел DP, указывающий предварительно определенную разность, является пикселом, который превышает предварительно определенное пороговое значение в случае, если пиксельное значение разностного изображения DWt является абсолютным значением разности в пиксельных значениях изображений PBt, PBt-1 вида «с высоты птичьего полета»; разностный пиксел является пикселом, указывающим 1 в случае, если пиксельное значение разностного изображения DWt выражается посредством 0 или 1.
[0026] Модуль 33 обнаружения трехмерных объектов подсчитывает число разностных пикселов DP и после этого определяет точку CP пересечения линии La и линии L1 пересечения с землей. Модуль 33 обнаружения трехмерных объектов затем коррелирует точку CP пересечения и подсчитанное число, определяет позицию на горизонтальной оси, в частности, позицию на оси в вертикальном направлении на чертеже справа на фиг. 5, на основе позиции точки CP пересечения; затем, модуль обнаружения трехмерных объектов определяет позицию на вертикальной оси, в частности, позицию на оси в поперечном направлении на чертеже справа на фиг. 5, из подсчитанного числа и определяет позиции на графике в качестве подсчитанного числа в точке CP пересечения.
[0027] Аналогично, модуль 33 обнаружения трехмерных объектов задает линии Lb, Lc, …, в направлении, в котором трехмерный объект сплющивается, подсчитывает число разностных пикселов DP, определяет позицию на горизонтальной оси на основе позиции каждой точки CP пересечения, определяет позицию на вертикальной оси из подсчитанного числа (числа разностных пикселов DP) и определяет позиции на графике. Модуль 33 обнаружения трехмерных объектов повторяет вышеуказанное в последовательности, чтобы формировать частотное распределение, за счет этого генерируя форму DWt разностного сигнала, как проиллюстрировано на чертеже справа на фиг. 5.
[0028] Линии La и Lb в направлении, в котором трехмерный объект сплющивается, имеет различные расстояния, которые перекрывают область A1 обнаружения, как проиллюстрировано на чертеже слева на фиг. 5. Соответственно, число разностных пикселов DP больше на линии La, чем на линии Lb, когда предполагается, что область A1 обнаружения заполнена разностными пикселами DP. По этой причине, модуль 33 обнаружения трехмерных объектов выполняет нормализацию на основе расстояния, на котором перекрываются линии La, Lb в направлении, в котором трехмерный объект сплющивается, и область A1 обнаружения, когда позиция на вертикальной оси определяется из подсчитанного числа разностных пикселов DP. В конкретном примере, предусмотрено шесть разностных пикселов DP на линии La, и предусмотрено пять разностных пикселов DP на линии Lb на чертеже слева на фиг. 5. Соответственно, когда позиция на вертикальной оси определяется из подсчитанного числа на фиг. 5, модуль 33 обнаружения трехмерных объектов делит подсчитанное число на расстояние перекрытия или выполняет нормализацию другим способом. Значения формы DWt разностного сигнала, которые соответствуют линиям La, Lb в направлении, в котором трехмерный объект сплющивается, в силу этого становятся практически идентичными, как проиллюстрировано в форме DWt разностного сигнала.
[0029] После того, как сгенерирована форма DWt разностного сигнала, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние посредством сравнения с формой DWt-1 разностного сигнала за один момент времени до этого. Другими словами, модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние из изменения во времени форм DWt, DWt-1 разностных сигналов.
[0030] Более конкретно, модуль 33 обнаружения трехмерных объектов разделяет форму DWt разностного сигнала на множество небольших областей DWt1-DWtn (где n является произвольным целым числом в 2 или больше), как проиллюстрировано на фиг. 6. Фиг. 6 является видом, иллюстрирующим небольшие области DWt1-DWtn, разделенные посредством модуля 33 обнаружения трехмерных объектов. Небольшие области DWt1-DWtn разделяются с возможностью взаимно перекрываться, как проиллюстрировано, например, на фиг. 6. Например, небольшая область DWt1 и небольшая область DWt2 перекрывают друг друга, и небольшая область DWt2 и небольшая область DWt3 перекрывают друг друга.
[0031] Затем, модуль 33 обнаружения трехмерных объектов определяет величину смещения (величину перемещения в направлении по горизонтальной оси (в вертикальном направлении на фиг. 6) формы разностного сигнала) для каждой из небольших областей DWt1-DWtn. Здесь, величина смещения определяется из разности (расстояния в направлении по горизонтальной оси) между формой DWt-1 разностного сигнала за один момент времени до этого и формой DWt разностного сигнала в данный момент времени. В этом случае, модуль 33 обнаружения трехмерных объектов перемещает форму DWt-1 разностного сигнала за один момент времени до этого в направлении по горизонтальной оси для каждой из небольших областей DWt1-DWtn и далее оценивает позицию (позицию в направлении по горизонтальной оси), в которой ошибка относительно формы DWt разностного сигнала в данный момент времени является минимальной; и модуль обнаружения трехмерных объектов затем определяет в качестве величины смещения величину перемещения в направлении по горизонтальной оси в позиции, в которой ошибка относительно исходной позиции формы DWt-1 разностного сигнала является минимальной. Далее, модуль 33 обнаружения трехмерных объектов подсчитывает величину смещения определенной для каждой из небольших областей DWt1-DWtn и формирует гистограмму.
[0032] Фиг. 7 является видом, иллюстрирующим пример гистограммы, полученной посредством модуля 33 обнаружения трехмерных объектов. Как проиллюстрировано на фиг. 7, в величине смещения возникает некоторая величина переменности, которая представляет собой величину перемещения, в которой ошибка между небольшими областями DWt1-DWtn