Способ и система для определения цвета по изображению

Иллюстрации

Показать все

Изобретение относится к системам определения цвета цветового образца по изображению цветового образца. Техническим результатом является устранение искажения изображения известных калибровочных цветов за счет применения преобразования перспективы в зависимости от местоположения идентифицированных точек на изображении. Предложен способ определения цвета из изображения. Способ включает в себя этап, на котором осуществляют прием первых данных изображения, относящихся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться, и прием вторых данных изображения, относящихся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны. Далее определяют множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с известными колориметрическими данными калибровочных цветовых образцов, и вычисляют колориметрические данные неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и характеристикам цветовой калибровки. 2 н. и 40 з.п. ф-лы, 21 ил., 5 табл.

Реферат

Область техники, к которой относится изобретение

Варианты осуществления изобретения относятся к способу и системе для определения цвета цветового образца по изображению цветового образца.

Уровень техники для примеров изобретения

При выборе цвета краски для декорирования помещения часто случается, что потребитель желает согласовать цвет краски с цветом конкретного элемента, который должен содержаться в помещении, такого как элемент мебели, или декоративные ткани, такие как подушки, диваны, занавески, или подобное. Производители красок обычно предоставляют большие цветовые палитры, а в предприятиях розничной продажи краски предоставляются хорошие цветные дисплеи, чтобы обеспечивать возможность потребителям выбирать цвет. Для пользователя доступны карты цветовых образцов, чтобы забрать их домой и сопоставить с элементом, с которым цвет должен соответствовать. Однако обычно это требует того, чтобы потребитель посетил магазин предприятия розничной продажи краски, собрал цветовые карты, забрал цветовые карты домой и затем попытался сравнить цветовые образцы на цветовых картах с цветом элемента, подлежащего сопоставлению. Потребитель должен затем возвратиться в магазин, как правило, купить тестовые банки краски, возвратиться домой, использовать тестовые банки краски и затем, в конечном счете, сделать решение о покупке. В дополнение, такие стандартные способы полагаются на индивидуальное восприятие потребителя в отношении того, какой цвет является наилучшим соответствующим цветом краски. Однако хорошо известно, что цветовое восприятие значительно изменяется от человека к человеку, так что соответствующий цвет для образца, выбранный одним человеком, не будет казаться соответствующим цветом для другого человека.

Одно потенциальное решение для этой проблемы состоит в том, чтобы пробовать и сопоставлять цвета электронным образом, с использованием цифрового изображения. В этом отношении современные бытовые потребители обычно имеют много устройств захвата цифрового изображения в своем распоряжении, в форме цифровых камер или оснащенных камерой мобильных телефонов.

Однако характеристики захвата цвета обычных доступных в быту устройств захвата изображения, таких как цифровые камеры, мобильные телефоны или подобное, изменяются значительно от устройства к устройству, и, следовательно, точный захват цвета обычно не является возможным. Являются доступными специальные устройства спектрофотометра, которые могут точно измерять цвет, но их нет в распоряжении большинства бытовых потребителей. Обычные бытовые устройства захвата изображения захватывают изображение и представляют цвет с использованием пиксельных значений RGB. Обычно используется 16 бит или 24 бита RGB. Там, где используются значения 16 бит, каждый из красного и синего каналов обычно имеет пять бит, ассоциированных с ним, тогда как зеленый канал имеет шесть бит, ассоциированных с ним. В этом отношении человеческий глаз является более чувствительным к зеленым цветам, чем к красному и синему цветам, и, следовательно, большее количество зеленых цветов могут обнаруживаться. Там, где используются цвета 24 бит, тогда имеется восемь бит, или 256 цветов, в расчете на цветовой канал.

Однако из-за указанных выше различий в устройствах захвата изображения в точном захвате цвета и также в устройствах воспроизведения изображений, таких как мониторы и подобное, в воспроизведении цветов, значения RGB цвета не рассматриваются как стандартные значения. Вместо этого имеются установленные определяющие цвет стандарты, установленные Международной комиссией по освещению (CIE), как, например, трехкоординатные значения X, Y, Z CIE, или так называемые значения CIELAB (L*, a*, b*). Значения CIELAB связаны с трехкоординатными значениями XYZ посредством известной математической формулы. Трехкоординатные значения XYZ сами связаны с длинами волн, присутствующими в конкретном цвете.

Предшествующий уровень техники

Проблема калибровки устройства захвата изображения посредством соотнесения значений RGB, захваченных самим устройством, со стандартными значениями, такими как трехкоординатные значения XYZ, или значения CIELAB, решалась ранее, в US 5150199 и WO 01/25737.

Более конкретно, US 5150199 (Megatronics, Inc.) описывает способ для преобразования или коррелирования числовых значений RGB, созданных посредством разных инструментов, в стандартные трехкоординатные значения. В этом отношении итеративный регрессионный анализ используется, чтобы определять начальные функции, которые преобразуют значения RGB, сгенерированные посредством видеокамеры, из начальных цветов в стандартные трехкоординатные значения XYZ. Затем используется регрессионный анализ, чтобы определять дополнительные функции, которые преобразуют значения RGB, сгенерированные посредством видеокамеры, снимающей дополнительные цвета, другие, нежели начальные цвета, в стандартные значения XYZ. Функции, сгенерированные для видеокамеры, затем используются, чтобы преобразовывать значения RGB, сгенерированные посредством видеокамеры в формировании изображения цветного объекта, в стандартные значения XYZ.

Более конкретно, в US 5150199 как значения RGB, так и значения XYZ определяются по набору цветовых образцов. Значения RGB определяются с использованием стандартной видеокамеры и оборудования оцифровки, выполненного с возможностью обнаружения и записи числовых значений для компонентов RGB каждого цвета. Значения XYZ цветовых образцов определяются посредством использования стандартного колориметра или спектрофотометра.

После захвата этих данных, в качестве первого этапа в анализе выполняется итеративный регрессионный анализ, чтобы находить X как функцию R, Y как функцию G, и Z как функцию B. Этот регрессионный анализ использует так называемые значения "серой шкалы" в цветовых образцах, где значения R, G и B являются приблизительно равными. Результирующие функции являются степенными функциями. После этого, на этапе 2, выполняется многовариантный анализ степенных функций, определяя функции, которые соотносят каждое из X, Y и Z индивидуально ко всем R, G и B. В US 5150199 также описывается дополнительный способ, который приспосабливает функцию Y как функцию красной цветности, хотя это не имеет отношения к данной заявке.

Таким образом, US 5150199 описывает базовый способ для определения характеристики функции передачи захвата цвета устройства захвата изображения, чтобы обеспечивать возможность значениям RGB, захваченным посредством устройства, транслироваться в трехкоординатные значения XYZ. Однако, как отмечено, чтобы использовать компоновку из US 5150199, чтобы определить характеристику захваченного изображения, пользователь должен иметь доступ к колориметру или спектрофотометру, чтобы измерять цвет цветовых образцов, для которых также формируется изображение устройством захвата изображения, у которого определяется характеристика. Обычно, в сценарии использования, очерченного в разделе уровня техники выше, пользователь не будет иметь доступ к такому специальному оборудованию, такому как колориметр или спектрофотометр. Следовательно, способ из US 5150199 является в значительной степени экспериментальным.

Однако источник WO 01/25737 частично решает эти недостатки из US 5150199. WO 01/25737 также описывает сопоставление захваченных значений RGB со стандартными колориметрическими данными и, в частности, сопоставление со значениями CIELAB. Математический анализ, описанный в WO 01/25737, является, по существу, таким же, как тот, что описан в US 5150199, хотя WO 01/25737 вводит понятие калибровочного шаблона известных цветов, колориметрические данные для которых являются известными. Для неизвестного цвета, подлежащего измерению, затем формируется изображение одновременно с калибровочным шаблоном. Калибровочный шаблон содержит в одном примере 65 известных цветов и в другом примере 37 известных цветов, распределенных по цветовому пространству. Посредством захвата значений RGB калибровочных цветов можно вычислить математическую модель, необходимую, чтобы преобразовывать измеренные сигналы известных цветов в колориметрические данные (например, значения CIELab). Как только эта модель получена, цвета (в цветовом пространстве CIELab) любых неизвестных цветов в изображении могут тогда определяться из их значений RGB.

Источник WO 01/25737 описывает, что изображение цветового образца, подлежащего определению, захватывается в то же время, что и калибровочный шаблон, с использованием, например, планшетного сканера или цифровой камеры. Захваченное изображение затем обрабатывается, чтобы определять неизвестные цвета в изображении. Компоновка описывается как являющаяся особенно полезной в индустрии ремонта машин. В этом отношении цвет автомобиля, подлежащего ремонту, измеряется с использованием электронного устройства формирования изображений. До этого или в одно и то же время делается запись панели, на которой нанесены разные калибровочные цвета. Колориметрические данные цвета автомобиля затем вычисляются и затем находится цветовая формула, которая будет давать цвет, идентичный цвету автомобиля, подлежащего ремонту. Цветовая формула подготавливается в дозаторе и затем применяется.

Источник WO 01/25737 поэтому описывает компоновку, подлежащую использованию в профессиональных ситуациях, таких как ремонт машин или окрасочные цеха. Как таковой источник WO 01/25737 не решает все проблемы, относящиеся к проблемам, таким как изменение освещения по захваченному изображению, нахождение изображения в некорректной ориентации, или случаи, когда цветовой образец фактически содержит разные цвета пространственно смешанные по образцу. В противоположность описанному, в бытовой ситуации могут происходить все из этих нестандартных ситуаций.

Другие документы предшествующего уровня техники для изобретения включают в себя WO 02/13136, WO 2008/108763 и WO 2004/028144.

Сущность примеров изобретения

Варианты осуществления изобретения решают некоторые из отмеченных выше проблем и относятся к определению цвета цветового образца по изображению цветового образца, при этом изображение обычно (хотя не исключительно) захватывается неквалифицированным пользователем с использованием неспециального оборудования. В одном варианте осуществления обеспечивается карта захвата цветовых образцов, имеющая напечатанные на ней цветовые образцы известного цвета (например, трехкоординатные значения XYZ). Изображение тестового цветового образца затем захватывается с использованием доступного в быту оборудования, такого как потребительская цифровая камера или оснащенный камерой мобильный телефон, при этом изображение также содержит карту захвата цветовых образцов. В одном варианте осуществления изображение затем передается в удаленную службу цветового определения для цветового определения цветового образца. Регрессионный анализ выполняется с использованием цветовых образцов RGB в изображении и его известных цветов XYZ, чтобы определить характеристику отклика захвата цвета устройства захвата изображения. После определения характеристики устройства захвата изображения цвет XYZ неизвестного цветового образца может определяться из его цвета RGB в изображении. Зная цвет XYZ, цвет может затем точно сопоставляться с палитрой цветов краски, чтобы определять цвет краски, который соответствует неизвестному цвету. В дополнение, в палитре красок могут идентифицироваться комплементарные (дополнительные) цвета.

В выполнении вышеописанного, в одном варианте осуществления могут учитываться различия в пространственной яркости по изображению. В другом варианте осуществления ошибки расположения карты в изображении также корректируются до обработки, с использованием устранения искажения изображения и вращательных преобразований. В дополнительном варианте осуществления цвет XYZ вычисляется в два прохода, с использованием информации из первого прохода, чтобы обеспечивать информацию для второго прохода. В еще дополнительном варианте осуществления, где цветовой образец фактически содержит более чем один цвет, индивидуальные цвета определяются с использованием способов кластеризации, чтобы идентифицировать доминирующие цвета в образце.

Ввиду вышеописанного, первый аспект изобретения обеспечивает способ, содержащий: прием первых данных изображения, относящихся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться; и прием вторых данных изображения, относящихся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны. Затем определяются множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и колориметрические данные неизвестного цветового образца вычисляются в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки. Определенные колориметрические данные неизвестного цветового образца могут затем сопоставляться с цветовой палитрой цветов краски, чтобы идентифицировать соответствующий цвет краски, и информация, относящаяся к соответствующему цвету краски, предоставляется пользователю.

В одном варианте осуществления первые данные изображения и вторые данные изображения принимаются от удаленного пользователя посредством телекоммуникационной сети. В дополнение, информация, относящаяся к соответствующему цвету краски, предоставляется пользователю посредством телекоммуникационной сети. Таким образом, сопоставление цветов краски с неизвестным цветовым образцом может обеспечиваться с использованием удаленной службы.

В одном варианте осуществления первые данные изображения и вторые данные изображения принимаются как любое из: i) сообщение электронной почты; ii) сообщение MMS; и/или iii) как данные изображения в Веб-странице. В дополнение, информация, относящаяся к соответствующему цвету краски, может также обеспечиваться как любое из i) сообщение электронной почты; ii) сообщение MMS; iii) сообщение SMS и/или iv) данные в Веб-странице. Такие протоколы связи способствуют обеспечению службы сопоставления краски удаленно, что хорошо знакомо пользователям и является легким для использования.

В одном варианте осуществления первые данные изображения и вторые данные изображения создаются пользователем с использованием устройства захвата изображения; при этом устройство захвата изображения является предпочтительно любым из: i) цифровой камерой; ii) оснащенным камерой мобильным телефоном; и/или iii) цифровой записывающей видеокамерой. Снова, для обычного пользователя такое оборудование легко получить в распоряжение, и пользователь хорошо знаком с работой такого оборудования.

В одном варианте осуществления определенные колориметрические данные и/или известные колориметрические данные являются трехкоординатными значениями XYZ. Трехкоординатные значения XYZ определяют фиксированные и конкретные стандартизированные цвета.

В одном варианте осуществления могут определяться комплементарные цвета для соответствующего цвета, и информация, относящаяся к определенным комплементарным цветам, предоставляется пользователю. Посредством обеспечения комплементарных цветов цветовые схемы могут более легко определяться.

В одном варианте осуществления, по меньшей мере, вторые данные изображения ориентируются в известной ориентации, чтобы обеспечивать возможность для распознавания известных калибровочных цветовых образцов. Автоматическое ориентирование данных изображения обеспечивает возможность упрощенного использования для конечного пользователя, так как захваченные вторые данные изображения не должны захватываться в любой конкретной требуемой ориентации.

В этом варианте осуществления ориентирование предпочтительно содержит выполнение обнаружения границ, чтобы идентифицировать местоположение набора известных калибровочных цветовых образцов во вторых данных изображения. В дополнение, ориентирование может дополнительно содержать идентификацию множества предварительно определенных точек, относящихся к набору известных калибровочных цветовых образцов во вторых данных изображения. Как только эти известные точки идентифицируются, ко вторым данным изображения может применяться преобразование перспективы в зависимости от местоположения идентифицированных точек, чтобы устранять искажения изображения набора известных калибровочных цветовых образцов.

Более того, в этом варианте осуществления ориентирование может дополнительно содержать идентификацию предварительно определенных меток вращательной ориентации, относящихся к набору известных калибровочных цветовых образцов во вторых данных изображения. Вторые данные изображения могут затем вращаться в зависимости от местоположения идентифицированных меток вращательной ориентации, так что известные калибровочные цветовые образцы помещаются в известное положение во вторых данных изображения.

В одном варианте осуществления могут также компенсироваться яркостные различия по набору известных калибровочных цветовых образцов. Это обеспечивает возможность захватывать данные изображения в неуправляемых условиях освещения, где может быть неодинаковое освещение по изображению. Снова, это обеспечивает простоту использования для конечного пользователя.

В этом варианте осуществления компенсация может содержать определение первого набора одной или более функций, имеющих первый набор калибровочных коэффициентов, при этом упомянутая одна или более функций соотносят измеренные цвета известных калибровочных цветовых образцов из вторых данных изображения с известными колориметрическими данными калибровочных цветовых образцов и известным положением каждого известного образца в изображении. Определенные функции затем анализируются, чтобы находить второй набор функций, имеющих второй набор калибровочных коэффициентов. Первый и второй наборы функций и калибровочных коэффициентов затем используются в вычислении колориметрических данных неизвестного цветового образца.

В этом варианте осуществления анализ может содержать вычисление промежуточных цветовых значений для, по существу, каждого известного калибровочного цветового образца и затем использование вычисленных промежуточных цветовых значений, чтобы определять второй набор функций, имеющих второй набор калибровочных коэффициентов.

Более конкретно, вычисленные промежуточные цветовые значения подвергаются многовариантной подгонке, чтобы определять второй набор функций, имеющих второй набор калибровочных коэффициентов. Предпочтительно многовариантная подгонка имеет форму:

В дополнение, более предпочтительно компенсация яркости дополнительно содержит, до определения первого набора функций, определение предшествующего набора функций, имеющих предшествующий набор калибровочных коэффициентов, которые соотносят измеренные цвета известных калибровочных цветовых образцов из вторых данных изображения с известными колориметрическими данными калибровочных цветовых образцов без учета положения известных цветовых образцов. Предшествующий набор калибровочных коэффициентов затем используются как часть первого набора калибровочных коэффициентов в определении первого набора одной или более функций. В одном варианте осуществления предпочтительно предшествующий набор калибровочных коэффициентов находится с только использованием образцов серой шкалы.

В одном варианте осуществления характеристики цветовой калибровки определяются с использованием N известных калибровочных цветовых образцов, при этом N является меньшим, чем полное количество известных калибровочных цветовых образцов по всему цветовому пространству. В некоторых обстоятельствах это может обеспечивать более точные результаты.

Более предпочтительно, в вышеописанном варианте осуществления N известных калибровочных цветовых образцов являются теми N образцами, которые являются самыми близкими в цветовом пространстве к оцененному цвету неизвестного цветового образца. Это эффективно обеспечивает возможность осуществлять "приближение к" цветовому пространству, при определении характеристик цветовой калибровки, так что часть цветового пространства, которая содержит неизвестный цветовой образец, характеризуется более точно.

В вышеописанном варианте осуществления оцененный цвет может получаться посредством определения первого набора калибровочных характеристик с использованием всех доступных известных калибровочных цветовых образцов и вычисления оцененного цвета с использованием первого набора калибровочных характеристик. Затем выполняется "второй проход" обработки, с использованием N ближайших известных калибровочных цветовых образцов для оцененного цвета. Таким образом, используется подход обработки в два прохода, который обеспечивает возможность определять характеристику общего цветового пространства и затем более детально определять характеристику части пространства, содержащего неизвестный цветовой образец, чтобы обеспечивать более точные результаты.

Альтернативно, N известных калибровочных цветовых образцов являются N образцами, используемыми в ограниченном цветовом пространстве, для которого известно, что его представляют вторые данные изображения. В этом отношении может быть, что известно, что известные калибровочные цветовые образцы находятся внутри ограниченной части цветового пространства, например могут все быть красными или синими. То есть если пытаться сопоставлять красный цвет, то пользователь использует известные калибровочные цветовые образцы, которые являются преобладающе красными или близкими к красным, чтобы тем самым ограничивать часть цветового пространства устройства захвата, характеристику которого необходимо определить.

В дополнительной альтернативе N известных калибровочных цветовых образцов являются теми N образцами, которые имеют измеренные цветовые значения из вторых данных изображения, которые являются наиболее подобными измеренному цветовому значению неизвестного образца из первых данных изображения. Например, могут использоваться N известных калибровочных цветовых образцов, которые имеют самые близкие значения RGB или sRGB к неизвестному цветовому образцу.

В вышеописанных вариантах осуществления N находится предпочтительно в диапазоне от, по существу, 5 до, по существу, 250, или более предпочтительно от, по существу, 10 до, по существу, 100, или более предпочтительно от, по существу, 20 до, по существу, 85, или более предпочтительно от, по существу, 30 до, по существу, 70, или более предпочтительно от, по существу, 40 до, по существу, 60, или наиболее предпочтительно равно или около 50. В другом варианте осуществления тогда могут использоваться разные числа или диапазоны для N.

В одном варианте осуществления изобретения алгоритм кластеризации может применяться к пиксельным значениям пикселей, представляющих неизвестный цветовой образец в первом изображении, чтобы определять количество цветов в изображении образца и цвет, идентифицированный для каждого идентифицированного кластера. С таким вариантом, если неизвестный цветовой образец содержит более чем один цвет, то либо может идентифицироваться доминирующий цвет и/или отдельно идентифицироваться индивидуальные цвета.

В этом варианте осуществления пиксельные значения сначала калибруются с использованием характеристик цветовой калибровки. Это имеет эффект гарантии, что алгоритм кластеризации работает с реальными цветами в цветовом образце. Предпочтительно пиксельные значения калибруются, чтобы определять значения L*a*b* или XYZ для кластеризации.

Алгоритм кластеризации при использовании может затем работать посредством: i) вычисления среднего значения пикселей в кластере; ii) затем определения количества пикселей в пределах предварительно определенного порогового расстояния среднего значения; и затем iii) увеличения количества кластеров, если определенное количество пикселей является меньшим, чем предварительно определенная доля количества пикселей в первых данных изображения, относящихся к неизвестному образцу. Таким образом, становится возможным идентифицировать разные цвета в образце, при этом каждый идентифицированный кластер относится к соответственному индивидуальному цвету, и также иметь уверенность, что наблюдалось достаточно пикселей, чтобы идентифицировать доминирующие цвета.

Там, где имеется более чем один кластер, определение количества пикселей в пределах предварительно определенного порогового расстояния среднего значения содержит суммирование соответствующего количества пикселей в пределах предварительно определенного порога каждого кластера, при этом количество кластеров увеличивается, если эта сумма является меньшей, чем предварительно определенная доля. Снова это обеспечивает, что наблюдалось достаточно пикселей, чтобы иметь уверенность, что доминирующие цвета были идентифицированы.

Чтобы обеспечивать, что доминирующие или важные цвета в образце обнаруживаются, вариант осуществления может также фильтровать кластеры, чтобы удалять те кластеры из рассмотрения, которые не содержат порогового количества пикселей в пределах второго порогового расстояния среднего у кластера. Следовательно, только цветовые кластеры с маленьким количеством пикселей не идентифицируются как доминирующие или важные цвета в образце.

Настоящее описание также описывает способ, содержащий: прием первых данных изображения, относящихся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться; прием вторых данных изображения, относящихся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых являются уже известными; определение множества характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и вычисление колориметрических данных неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом способ характеризуется тем, что дополнительно содержит ориентирование, по меньшей мере, вторых данных изображения в известную ориентацию, чтобы там обеспечивать возможность для распознавания известных калибровочных цветовых образцов.

Настоящее описание также описывает способ, содержащий: прием первых данных изображения, относящихся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться; прием вторых данных изображения, относящихся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; определение множества характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и вычисление колориметрических данных неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом способ характеризуется тем, что дополнительно содержит компенсирование яркостных различий по набору известных калибровочных цветовых образцов в определении множества характеристик цветовой калибровки.

Настоящее описание также описывает способ, содержащий: прием первых данных изображения, относящихся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться; прием вторых данных изображения, относящихся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; определение множества характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и вычисление колориметрических данных неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом способ характеризуется тем, что характеристики цветовой калибровки определяются с использованием N известных калибровочных цветовых образцов, при этом N является меньшим, чем полное количество известных калибровочных цветовых образцов по всему цветовому пространству.

Настоящее описание также описывает способ, содержащий: прием первых данных изображения, относящихся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться; прием вторых данных изображения, относящихся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; определение множества характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и вычисление колориметрических данных неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом способ характеризуется тем, что вычисление дополнительно содержит: применение алгоритма кластеризации к пиксельным значениям пикселей, представляющих неизвестный цветовой образец в первом изображении, чтобы определять количество цветов в изображении образца; и возвращение цвета для каждого идентифицированного кластера.

Из второго аспекта изобретения также обеспечивается устройство, содержащее: по меньшей мере, один процессор; и, по меньшей мере, одно запоминающее устройство, включающее в себя компьютерный программный код, при этом упомянутые, по меньшей мере, одно запоминающее устройство и компьютерный программный код сконфигурированы с возможностью, с помощью упомянутого, по меньшей мере, одного процессора, побуждать устройство выполнять, по меньшей мере, следующее: i) принимать первые данные изображения, относящиеся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться, и вторые данные изображения, относящиеся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; ii) определять множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; iii) вычислять колориметрические данные неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; iv) сопоставлять определенные колориметрические данные неизвестного цветового образца с цветовой палитрой цветов краски, чтобы идентифицировать соответствующий цвет краски, и v) предоставлять информацию, относящуюся к соответствующему цвету краски, пользователю.

Настоящее описание также описывает систему, содержащую: приемник данных, который при использовании принимает первые данные изображения, относящиеся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться, и вторые данные изображения, относящиеся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; процессор, который при использовании: i) определяет множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и ii) вычисляет колориметрические данные неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом первые данные изображения и вторые данные изображения принимаются от удаленного пользователя посредством телекоммуникационной сети.

Настоящее описание также описывает систему, содержащую: приемник данных, который при использовании принимает первые данные изображения, относящиеся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться, и вторые данные изображения, относящиеся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; процессор, который при использовании: i) определяет множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и ii) вычисляет колориметрические данные неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом система характеризуется тем, что процессор дополнительно выполнен с возможностью ориентировать, по меньшей мере, вторые данные изображения в известную ориентацию, чтобы обеспечивать возможность для распознавания известных калибровочных цветовых образцов там.

Настоящее описание также описывает систему, содержащую: приемник данных, который при использовании принимает первые данные изображения, относящиеся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться, и вторые данные изображения, относящиеся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; процессор, который при использовании: i) определяет множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и ii) вычисляет колориметрические данные неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом система характеризуется тем, что процессор дополнительно выполнен с возможностью, чтобы компенсировать яркостные различия по набору известных калибровочных цветовых образцов в определении множества характеристики цветовой калибровки.

Настоящее описание также описывает систему, содержащую: приемник данных, который при использовании принимает первые данные изображения, относящиеся к неизвестному цветовому образцу, колориметрические данные для которого должны определяться, и вторые данные изображения, относящиеся к множеству известных калибровочных цветовых образцов, колориметрические данные для которых уже известны; процессор, который при использовании: i) определяет множество характеристик цветовой калибровки, соотносящих цветовые измерения известных калибровочных цветовых образцов из вторых данных изображения с соответственными известными колориметрическими данными калибровочных цветовых образцов; и ii) вычисляет колориметрические данные неизвестного цветового образца в зависимости от его цветовых измерений по первым данным изображения и определенным характеристикам цветовой калибровки; при этом система характеризуется тем, что характеристики цветовой калибровки определяются с использованием N известных калибровочных цветовых образцов, при этом N являются меньшим, чем полное количество известных калибровочных цветовых образцов по всему цветовому пространству.

Настоящее описание также описывает сис