Стабилизирующая композиция для сухого хранения биологических материалов (варианты)

Иллюстрации

Показать все

Предложена сухая стабилизирующая композиция для биологического материала. Композиция включает углеводную смесь дисахаридов, олигосахаридов и полисахаридов, составляющую от 0,5% до 90%, гидролизованный белок, составляющий от 0,5% до 40% от общей массы композиции, и соль карбоновой кислоты. Также предложен способ получения сухой стабилизирующей композиции для биологического материала и варианты состава для оральной доставки. Способ предусматривает комбинирование биологического материала со смесью соединений стабилизирующей композиции в водном растворе с получением вязкой суспензии. После чего суспензию быстро замораживают в жидком азоте с получением твердых замороженных частиц, гранул, капель или нитей. Затем направляют на стадию первичной сушки жидкости из состава выпариванием под вакуумом при температуре состава выше его температуры замерзания и на вторичную сушку состава под максимальным вакуумом и при температуре 20°C или выше в течение периода времени, достаточного для снижения активности воды состава. Изобретение позволяет защитить биологические материалы в стеклообразной структуре с сохранением их существенной активности. 6 н. и 21 з.п. ф-лы, 6 ил., 14 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области стабилизации биологических материалов в стеклообразной сухой структуре.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ

Важной проблемой для пищевой, нутрицевтической и фармацевтической отраслей является сохранение структуры и функции биологических материалов при длительном хранении при высокой температуре и высокой влажности. Чувствительные биологические материалы, такие как белки, ферменты, клетки, бактерии и вирусы, часто должны сохраняться в течение длительного периода хранения для дальнейшего использования. Простое замораживание, часто проводимое при сушке, или вредно или не подходит для конечного продукта. Для сохранения в сухом состоянии традиционно используют способ лиофильной сушки. Другие способы, такие как сушка воздухом комнатной температуры, сушка под вакуумом при комнатной температуре (вакуумная сушка) или сушка контактированием мелкодисперсных капель тумана с теплым воздухом (распылительная сушка) и сушка при использовании десикации, как правило, не подходят для чувствительныхбиологически активных веществ, таких как живые или аттенуированные бактерии и вирусы. Высокая температура сушки, используемая в этих способах, приводит к значительному повреждению биологически активного вещества.

Часто процесс лиофильной сушки может привести к значительной потере активности и повреждению биологически активного агента из-за образования кристаллов льда в процессе медленной сушки. При лиофильной сушке комбинируются стрессовые воздействия обоих, и замораживания, и сушки. Стадия замораживания в этом процессе может оказывать нежелательное воздействие, такое как денатурация белков и ферментов и разрушение клеток. Можно до определенной степени избежать повреждения, вызванного замораживанием, добавлением в раствор криопротекторных соединений или агентов. Такие защитные агенты представляют, как правило, химические вещества с высокой степенью растворимости, которые при добавлении в состав защищают клеточные мембраны и белки в процессе замораживания и повышают стабильность во время хранения. Традиционные стабилизаторы включают сахара, такие как сахароза, трегалоза, глицерин или сорбит при высоких концентрациях (Morgan et al., 2006; Capela et al., 2006). Дисахариды, такие как сахароза и трегалоза, представляют натуральные криопротекторы с хорошими защитными свойствами. Трегалоза по существу является привлекательным криопротектором, поскольку фактически выделена из растений и живых организмов, которые находятся в состоянии анабиоза во время засухи. Трегалоза продемонстрировала свою эффективность в качестве защитного агента для различных биологических материалов (смотрите, Crowe, J. H., 1983). В нескольких патентах описывается применение трегалозы или трегалозы в комбинации с другими криопротекторами для защиты белков и других биологических макромолекул, таких как ферменты, сыворотки, комплименты сыворотки, антитела, антигены, флуоресцентные белки и компоненты вакцины в процессе замораживания, сушки и регидратации (патент США № 5556771).

Однако существуют некоторые недостатки, ассоциируемые с применением трегалозы или других дисахаридов или моносахаридов, в качестве единственного криопротектора. Трегалоза может неадекватно проникнуть в клетку для защиты активных компонентов во внутриклеточном объеме, что может привести к нестабильности при хранении прошедших лиофильную сушку веществ. Дополнительно, иногда необходимы концентрации трегалозы более чем 60% по массе от заданной консервирующей среды. Даже еще более серьезная проблема, связанная с применением трегалозы, состоит в том, что биологические материалы, сохраненные при использовании только одной трегалозы, не стабильны при хранении в течение длительного периода времени, в частности при хранении при высоких температурах и/или высокой влажности. Таким образом, продолжает существовать необходимость в разработке оптимального состава и процесса сушки, минимизирующего потери при сушке, с достижением при этом адекватной стабильности при хранении прошедших сушку материалов.

Некоторые проблемы, связанные с трегалозой и процессом лиофильной сушки, были решены при использовании комбинации определенных составов и вакуумной сушки в стеклообразном состоянии (патент США № 6190701). В этих составах биологически активный агент защищен в стеклообразной матрице от неблагоприятных условий окружающей среды, таких как высокие температуры и влажность. Однако, в этих составах присутствие воды вы виде влаги окружающей среды действует как пластифицирующий агент и снижает температуру стеклования (Tg) стеклообразной матрицы. При высоких содержаниях воды Tg значительно снижена до такой степени, что сухой состав при комнатной температуре находится в нежелательном резиноподобном или пластикоподобном состоянии.

Преимущества сохранения стеклообразной формы состава включают повышенную физическую стабильность твердого вещества и снижение нежелательных межмолекулярных реакций. Подробное обсуждение физической химии взаимодействий вода-пищевой полимер, связанных со стеклообразным состоянием и температурой стеклования, может быть найдено в M. Le Meste, et al. 2002. Однако, ограничения аморфных систем, такие как физическая нестабильность и высокая химическая реакционная способность, препятствуют их широкой коммерциализации.

Следовательно, продолжает существовать необходимость в стабилизирующей композиции, которую используют для широкого ряда биологических материалов. Дополнительно, продолжает существовать необходимость в стабилизирующей композиции, которая может быть эффективно использована в обоих процессах: и процессе лиофильной сушки, и процессе сушки, включающем сушку при комнатной температуре. Также продолжает существовать необходимость в композиции смеси, менее дорогостоящей, чем таковая используемая в настоящее время. Наконец, и это главное, продолжает существовать необходимость в композиции смеси, обеспечивающей стабильную среду для сохранения биологических материалов в течение длительного периода времени при повышенных температурах и различных степенях влажности, которые могут возникать в процессе транспортировки и хранения материалов, с сохранением при этом значительной степени активности при регидратации.

Все эти проблемы разрешаются при использовании композиции смеси, способов сушки по настоящему изобретению с получением в результате сохраненных композиций биологического материала.

КРАТКОЕ ОПИСАНИЕ

Настоящее изобретение включает композиции и способы сушки для сохранения чувствительных биологически активных материалов, таких как пептиды, белки, гормоны, нуклеиновые кислоты, антитела, лекарственные средства, вакцины, дрожжи, бактерии (пробиотические или иные), вирусы и/или суспензии клеток, при хранении.

Композиция по настоящему изобретению включает смесь углеводов из ди-, олиго- и полисахаридов и ионов органических кислот, предпочтительно лимонной кислоты и/или аскорбиновой кислоты. Состав получают диспергированием всех твердых компонентов в растворе. Раствор быстро замораживают при использовании средств, известных из предшествующего уровня техники, таких как жидкий азот или сухой лед, с получением мелких гранул, нитей или капель. Замороженные гранулы могут храниться в устройстве глубокой заморозки (от -30°C до -80°C) для последующего использования в замороженном состоянии или размещенными на поддонах в замороженном состоянии для сушки в традиционном устройстве для лиофильной сушки. Предпочтительный способ сушки оптимально начинается с короткой продувки и стадии стабилизации структуры замороженных частиц под вакуумным давлением менее чем <2000 мм рт. ст. с последующей стадией первичной сушки под вакуумным давлением более чем >2000 мм рт. ст. и при заданной температуре. На стадии вторичной и конечной сушки материала прилагают полное вакуумное давление и повышенную температуру с достижением конечной заданной активности воды сухого материала.

В одном конкретном варианте воплощения настоящего изобретения биологический материал включает живые бактерии (например, пробиотические бактерии). Примеры подходящих микроорганизмов включают без ограничения дрожжи, такие как Saccharomyces, Debaromyces, Candida, Pichia и Torulopsis, плесени, такие как Aspergillus, Rhizopus, Mucor, Penicillium и Torulopsis, и бактерии, такие как рода Bifidobacterium, Clostridium, Fusobacterium, Melissococcus, Propionibacterium, Streptococcus, Enterococcus, Lactococcus, Kocuriaw, Staphylococcus, Peptostrepococcus, Bacillus, Pediococcus, Micrococcus, Leuconostoc, Weissella, Aerococcus, Oenococcus и Lactobacillus. Конкретные примеры подходящих пробиотических микроорганизмов могут быть представлены следующими видами и включают все биотипы культур этих видов: Aspergillus niger, A. oryzae, Bacillus coagulans, B. lentus, B. licheniformis, B. mesentericus, B. pumilus, B. subtilis, B. natto, Bacteroides amylophilus, Bac. capillosus, Bac. ruminocola, Bac. suis, Bifidobacterium adolescentis, B. animalis, B. breve, B. bifidum, B. infantis, B. lactis, B. longum, B. pseudolongum, B. thermophilum, Candida pintolepesii, Clostridium butyricum, Enterococcus cremoris, E. diacety lactis, E faecium, E. intermedius, E. lactis, E. muntdi, E. thermophilus, Escherichia coli, Kluyveromyces fragilis, Lactobacillus acidophilus, L. alimentarius, L. amylovorus, L. crispatus, L. brevis, L. case 4 L. curvatus, L. cellobiosus, L. delbrueckii ss. bulgaricus, L farciminis, L. fermentum, L. gasseri, L. helveticus, L. lactis, L. plantarum, L. johnsonii, L. reuteri, L. rhamnosus, L. sakei, L. salivarius, Leuconostoc mesenteroides, P. cereviseae ( damnosus), Pediococcus acidilactici, P. pentosaceus, Propionibacterium freudenreichii, Prop, shermanii, Saccharomyces cereviseae, Staphylococcus carnosus, Staph, xylosus, Streptococcus infantarius, Strep. salivarius ss. thermophilus, Strep. Thermophilus и Strep. lactis.

В одном конкретном варианте воплощения настоящего изобретения состав включает смесь углеводов ди-, олиго- и полисахаридов, в которую заключен биологически активный материал. Примеры подходящих полисахаридов включают без ограничения ацетат фталат целлюлозы (CAP), карбоксиметилцеллюлозу, пектин, альгинат натрия, соли альгиновой кислоты, гидроксипропилметилцеллюлозу (HPMC), метилцеллюлозу, каррагенан, геллановую камедь, гуаровую камедь, камедь акации, ксантановую камедь, камедь рожкового дерева, хитозан и производные хитозана, коллаген, полигликолевую кислоту, крахмалы и модифицированные крахмалы. Примеры подходящих олигосахаридов включают без ограничения циклодекстрины, инулин, FOS, мальтодекстрины, декстраны и тому подобное; и их комбинации. Примеры подходящих дисахаридов включают без ограничения лактозу, трегалозу, сахарозу и тому подобное. В одном конкретном варианте воплощения настоящего изобретения предпочтительным полисахаридом является альгинат натрия или геллановая камедь. Предпочтительно смесь углеводов включает в процентах по массе по сухому веществу 0,1-10% полисахаридов, 1-10% олигосахаридов и 10-90% дисахаридов. В другом варианте воплощения настоящего изобретения смесь углеводов включает ди-, олиго- и полисахариды в массовом соотношении 10:0,1-4:0,1-2, и более предпочтительно, когда массовое соотношение дисахаридов/олигосахаридов/ полисахаридов составляет от около 10:0,2:0,1 до около 10:2:1.

В другом варианте воплощения настоящего изобретения полисахариды в смеси углеводов перекрестносшиты с ионами двухвалентных металлов с получением плотного гидрогеля.

В другом варианте воплощения настоящего изобретения композиция включает значительные количества соединений, усиливающих формирование стеклообразной структуры, включая соли органических кислот, таких как молочная кислота, аскорбиновая кислота, малеиновая кислота, щавелевая кислота, малоновая кислота, яблочная кислота, янтарная кислота, лимонная кислота, глюконовая кислота, глютаминовая кислота и тому подобное. Соли могут включать катионы, такие как натрий, калий, кальций, магний и тому подобное. Примеры включают цитрат натрия, лактат натрия, малеат натрия, глюконат магния, аскорбат натрия и тому подобное. Предпочтительными являются соли, имеющие высокую температуру стеклования (Tg) и высокую растворимость. Самой предпочтительной органической кислотой является лимонная кислота и ее соли (например, цитрат натрия или калия, дигидрат тринатрий цитрата) и аскорбиновая кислота и ее соли (например, аскорбат натрия, аскорбат калия, аскорбат магния). Предпочтительное общее количество ионов цитрата или аскорбата в сухой композиции находится в таком молярном соотношении ионов к молям углеводных соединений, как от около 0,01 до около 0,3 и наиболее предпочтительно от около 0,1 до около 0,2.

Другие используемые усилителями формирования стеклообразной структуры включают белки, гидролизаты белков, полипептиды и аминокислоты. Они включают желатин, альбумин, сывороточный белок, соевый белок, казеин, казеинат, иммуноглобулины, соевые белки, гороховые белки, белки семян хлопка или другие пищевые и молочные или растительные белки и/или их гидролизаты. Примеры полиаминокислот включают полиаланиновую, полиаргининовую, полиглициновую, полиглутаминовую кислоту и тому подобное. Используемые аминокислоты включают лизин, глицин, аланин, аргинин или гистидин, наряду с гидрофобными аминокислотами (триптофан, тирозин, лейцин, фенилаланин и тому подобное) и метиламином, таким как бетаин. Предпочтительное общее количество белков, гидролизатов белков и аминокислот в сухой композиции составляет от около 1% до около 30% от общей массы смеси углеводов и наиболее предпочтительно от около 5% до около 20% массы углеводов. Идеально соединения представляют соединения, признанные полностью безопасными (GRAS), GRAS соединения предпочтительны перед не GRAS соединениями.

Следует отметить, что необходимое количество усилителей формирования стеклообразной структуры в композиции может зависеть от заданных характеристик сухой композиции. Определение необходимого количества усилителей формирования стеклообразной структуры должны быть сделаны согласно заданным условиям хранения. Например, композиция, содержащая смесь углеводов и белков или гидролизатов белков, может быть использована для усиления химической стабильности биологического материала при хранении при умеренной температуры и относительной влажности, таких как 25°C и 25% ОВ. Предпочтительными для включения в усилитель формирования стеклообразной структуры могут быть ионы цитрата с получением дополнительных преимуществ стабилизации при более высокой температуре и влажности. В качестве альтернативы, это может быть случай, когда более предпочтительна для включения в композицию комбинация ионов цитрата и/или аскорбата с другим усилителем формирования стеклообразной структуры, таким как белок или гидролизат белка.

Предпочтительный процесс смешивания биологического материала и композиции проводят добавлением всей композиции сухой смеси в концентрат культуры или раствор среды, содержащей биологический материал. Вес массы биологического материала в культуральной среде, как правило, составляет от около 5% до 30% масса/объем, и более предпочтительно от около 10% до 20% масса/объем, добавленный вес массы композиции смеси в культуральной среде, как правило, составляет от около 10% до около 60% и более предпочтительно от около 20% до 40%. Конечное содержание твердых сухих веществ в смешанной суспензии составляет от около 20% до около 60% и более предпочтительно от около 30% до около 50%. Предпочтительно раствор смешивают при комнатной температуре или немного нагретым для способствования растворению материалов в вязком растворе (например, от 20°C до 40°C). В варианте воплощения настоящего изобретения для достижения заданной вязкости и плотности состава регулируют общее количество углеводов смеси в составе, что позволяет проводить эффективную сушку, избегая при этом резиноподобного состава или избыточного пенообразования, которое может происходить во время стадии сушки. Предпочтительная вязкость суспензии составляет от около 1000 сП до около 500000 сП, и наиболее предпочтительно в пределах от около 10000 сП до около 300000 сП. Заданная вязкость и плотность конечной суспензии может быть достигнута при использовании любых средств, известных из предшествующего уровня техники, например, некоторое регулирование количества полисахаридов в смеси углеводов или дегазированием или инжектированием газа, такого как воздух, азот, диоксид углерода, аргон и тому подобное.

Суспензию биологического материала по настоящему изобретению, как правило, подвергают быстрому замораживанию при температуре от -30°C до -180°C, более предпочтительно состав подвергают быстрому замораживанию в жидком азоте мелкодисперсным распылением, капельным распылением или инжектированием в ванну с жидким азотом. Сбор частиц, гранул, нитей или капель из ванны с жидким азотом и сушка в лиофильной сушилке или вакуумной сушилке или, в качестве альтернативы, хранение их в устройстве для глубокой заморозки (от -30°C до -80°C) для последующего использования в замороженной форме или до момента сушки.

Как правило, используемая технология процесса сушки включает распылительную сушку; лиофилизацию с последующим измельчением для получения тонко измельченного порошка; и мелкодисперсное разбрызгивание на холодную поверхность с последующей сублимацией и сбором тонко измельченного порошка; сушку выпариванием не замороженного раствора в вакуумном сушильном шкафу или центробежном выпарном аппарате при температурах выше температуры замораживания суспензии (от -20 до 50°C), последующее измельчение до заданного размера частиц. Полученные в результате частицы порошка представляют внутри стеклообразные или кристаллоподобные, большая часть поверхности которых покрыта стеклообразным материалом. Преимущество нанесения покрытия из стеклообразных материалов на биологический материал повышает физическую стабильность продукта и снижает нежелательные межмолекулярные реакции в частицах. В предпочтительном варианте воплощения настоящего изобретения замороженные частицы загружают на поддоны и сразу же перемещают в камеру вакуумной сушилки, где проводят процесс сушки в три основные стадии, включающие: (1) необязательную короткую продувку и стадию стабилизации структуры замороженных частиц под вакуумным давлением менее чем <2000 мм рт. ст.,(2) стадию первичной сушки под вакуумным давлением более чем >2000 мм рт. ст. и при температуре выше, чем точка замерзания суспензии, и (3) стадию вторичной и конечной сушки стеклообразного аморфного материала при полном вакуумном давлении и повышенной температуре в течение периода времени, достаточного для снижения активности воды прошедшей сушку композиции до 0,3 Aw или менее.

Прошедшая сушку и стабильная биологическая композиция может быть использована непосредственно в виде хлопьев или измельчена в порошок и просеяна с получением среднего размера частиц от около 10 µм до около 1000 µм. Состав может быть введен непосредственно животному, включая человека, в виде концентрированного порошка, в виде восстановленной жидкости (например, напиток), или может быть введена, как в форме хлопьев, так и форме порошка в существующий пищевой продукт или кормовой продукт.

Эти и другие преимущества и признаки настоящего изобретения будут описаны более полно в детальном в описании предпочтительных вариантов воплощения, приведенных ниже.

КРАТКОЕ ОПИСАНИЕ ФИГУР

На Фигуре 1 показано усиление стабильности коммерчески доступных пробиотических бактерий и пробиотических бактерий в сухой композиции по настоящему изобретению.

На Фигуре 2 показано воздействие различных молярных соотношений между усилителями формирования стеклоообразной структуры и углеводной смесью в композиции на пробиотическую стабильность (L. paracasei) при условиях ускоренного хранения (37°C и 33% ОВ).

На Фигуре 3 показано воздействие композиции по настоящему изобретению на стабильность при хранении пробиотических бактерий L. acidophilus. Стабильность сухих пробиотических бактерий тестируют при условиях ускоренного хранения 24°C и 33% ОВ в течение 537 дней.

На Фигуре 4 показано воздействие различных соединений-усилителей формирования стеклообразной структуры на стабильность хранения пробиотических бактерий L. acidophilus. Стабильность сухих пробиотических бактерий тестируют при условиях ускоренного хранения 24°C и 43% ОВ в течение 180 дней.

На Фигуре 2 показано воздействие различных соотношений гидролизат белка/сахар на стабильность хранения (35°C и 43% ОВ) пробиотических бактерий Bifidobacterium lactis.

На Фигуре 6 показана оптимизация pH для максимальной стабильности пробиотика L. rhamnosus (при условиях ускоренного хранения при температуре 40°C и 33% ОВ в течение 8 недель).

ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

ОПРЕДЕЛЕНИЯ

Следует понимать, что терминология, используемая в описании настоящей патентной заявки, использована только для целей описания вариантов воплощения настоящего изобретения и не ограничивает его. Использованные в описании и приложенной формуле изобретения формы единственного числа включает множественное число, если ясно не указано иное. Таким образом, например, «белок» включает значение белок или комбинация двух или более белков; «фермент», «бактерия» и тому подобное включает единственный тип или смесь нескольких типов и тому подобное.

В описании и формуле изобретения настоящей патентной заявки используют следующую терминологию в соответствии с приведенными ниже определениями.

Используемый в описании настоящей патентной заявки термин «биологический материал», «биологическая композиция» и «биологический состав» относится к препаратам, которые находятся в такой форме, которая обеспечивает биологическую активность биологически активных ингредиентов или агентов при однозначной их эффективности.

Используемый в описании настоящей патентной заявки термин «усилитель формирования стеклообразной структуры» представляет химическое соединение со способностью образовывать аморфную или стеклообразную структуру при температуре ниже критической, температуре стеклования (Tg). В случае, когда усилитель формирования стеклообразной структуры сушат при температуре ниже этой Tg, будет образовываться стеклообразная структура. Однако, в случае, когда усилитель формирования стеклообразной структуры сушат при температуре выше этой Tg, то стеклообразная структура не образуется. В процессе образования стеклообразной структуры биологическое вещество может встроиться в стеклообразную структуру. Подходящие для использования в настоящем изобретении усилители формирования стеклообразной структуры включают без ограничения соли органических кислот, таких как молочная кислота, аскорбиновая кислота, малеиновая кислота, щавелевая кислота, малоновая кислота, яблочная кислота, янтарная кислота, лимонная кислота, глюконовая кислота, глютаминовая кислота и тому подобное. Соли могут включать катионы, такие как натрий, калий, кальций, магний, фосфат и тому подобное. Другие используемые усилители формирования стеклообразной структуры включают белки, гидролизаты белков, полипептиды и аминокислоты. Также входит в единую композицию комбинация агентов, образующих стеклообразную структуру. Процесс, используемый для получения стеклообразной структуры для целей настоящего изобретения, как правило, представляет сублимацию растворителя и/или технологию выпаривания. Идеально, когда соединения представляют соединения GRAS, GRAS соединения предпочтительны перед не GRAS соединениями.

Используемый в описании настоящей патентной заявки термин «углеводы» или «полигидроксисоединения» относится к сахаридам, главным образом состоящим из углерода, водорода и кислорода. Как правило, сахарид состоит из сахарного скелета повторяющихся структурных единиц, соединенных линейно или нелинейно, некоторые из которых содержат положительно или отрицательно заряженные химические группы. Повторяющиеся единицы могут составлять в пределах от двух до нескольких миллионов. Используемые сахариды включают редуцирующие и нередуцирующие сахара, сахарные спирты, дисахариды, олигосахариды, водорастворимые полисахариды и их производные. Два моносахарида соединены вместе с образованием дисахарида. Два моносахарида, используемые для образования дисахарида, могут быть одинаковыми или отличающимися. Примеры дисахаридов, которые могут быть использованы в углеводной смеси по настоящему изобретению, включают сахарозу, трегалозу, лактозу, мальтозу, изомальтозу. Малое число моносахаридов, соединенных вместе (как правило, от трех до десяти), образует олигосахарид. Моносахариды, используемые для образования олигосахарида, могут быть одинаковыми или отличающимися компонентами сахаров. Примеры олигосахаридов, подходящих для использования, включают инулин, мальтодекстрин, декстраны, фруктооолигосахариды (FOS), галактоолигосахариды (GOS), маннанолигосахариды (MOS) и их комбинации. Большое число моносахаридов, соединенных вместе (как правило, больше чем десять), образует полисахарид. Моносахариды, используемые для образования полисахарида, могут быть одинаковыми или отличающимися компонентами сахаров. Примеры полисахаридов, подходящих для использования, включают без ограничения метилцеллюлозу, гидроксипропилцеллюлозу, гидроксиэтилцеллюлозу и гипромеллозу; растворимые крахмалы или фракции крахмалов, ксантановую камедь, гуаровую камедь, пектины, каррагенан, галактоманнан, геллановую камедь, включая любые их производные, ацетат фталат целлюлозы (CAP), карбоксиметилцеллюлозу, альгинат натрия, соли альгиновой кислоты, гидроксипропилметилцеллюлозу (HPMC), камедь акации, камедь рожкового дерева, хитозан и производные хитозана, коллаген, полигликолевую кислоту, крахмалы и модифицированные крахмалы и циклодекстрины.

Используемый в описании настоящей патентной заявки термин «стабильный» состав или композиция представляет таковую, в которой биологически активный материал по существу сохраняет при хранении свою физическую стабильность, химическую стабильность и/или биологическую активность. Стабильность может быть измерена при выбранной температуре и влажности в течение выбранного периода времени. Анализ показателей может быть использован для оценки ожидаемого срока годности перед фактическим хранением материала в течение такого периода времени. Например, для живых бактерий стабильность определяют, как время, требуемое для потери 1 log КОЕ/г сухого состава при заранее заданных условиях температуры, влажности и периода времени.

Используемый в описании настоящей патентной заявки термин «жизнеспособность» в отношении бактерий относится к способности образовывать колонию (Кое или колониеобразующая единица) на питательной среде, подходящей для роста этих бактерий. Жизнеспособность в отношении вирусов относится к способности инфицировать и воспроизводиться в подходящей клетке - хозяине с образованием в результате налета на газоне из клеток-хозяев.

Используемый в описании настоящей патентной заявки термин «комнатная» температура или условия относится к таковым в любое данное время в данной окружающей среде. Как правило, комнатная температура, составляющая 22-25°C, атмосферное давление и атмосферную влажность легко могут быть измерены и могут варьировать в зависимости от времени года, погоды и климатических условий, высоты над уровнем моря и тому подобное.

Используемый в описании настоящей патентной заявки термин «активность воды» или «Aw» в контексте сухого состава композиций относится к доступности воды и представляет энергетический статус воды в системе. Она определена, как давление водяных паров над образцом, деленное на чистую воду при той же температуре. Чистая дистиллированная вода имеет активность воды точно один или Aw=1,0.

Используемый в описании настоящей патентной заявки термин «относительная влажность» или «ОВ» в контексте стабильности при хранении относится к количеству водяного пара в воздухе при данной температуре. Относительная влажность, как правило, меньше чем таковая, требуемая для насыщения воздуха, и выражается в процентах от насыщенной влажности.

Используемый в описании настоящей патентной заявки термин «сухой» и его варианты относится к физическому состоянию, которое представляет дегидратированное или безводное, то есть, по существу с отсутствием жидкости. Сушка включает, например, распылительную сушку, лиофилизацию и вакуумную сушку.

Используемый в описании настоящей патентной заявки термин «лиофилизация» или лиофильная сушка относится к получению композиции в сухой форме быстрым замораживанием и дегидратацией в замороженном состоянии (иногда указывается, как сублимация). Лиофилизация происходит при температуре, которая в результате приводит к кристаллизации полимеров. Этот процесс может происходить при вакуумном давлении, достаточном для сохранения замороженного продукта, предпочтительно менее чем около <2000 мм рт. ст.

Используемый в описании настоящей патентной заявки термин «первичная сушка» или «сушка жидкости» в отношении процессов, приведенных в описании настоящей патентной заявки, относится к дегидратационной сушке, которая происходит с момента оттаивания замороженных частиц до момента начала вторичной сушки. Как правило, основная часть первичной сушки происходит за счет экстенсивного испарения, при этом температура продукта остается значительно более низкой, чем температура источника тепла. Этот процесс может происходить под вакуумом при давлении, достаточном для сохранения оттаянного продукта, предпочтительно более чем около >2000 мм рт. ст.

Используемый в описании настоящей патентной заявки термин «вторичная сушка» в отношении процессов, приведенных в описании настоящей патентной заявки, относится к стадии сушки, которая происходит при температуре выше температуры замораживания состава и близка к температуре источника тепла. Этот процесс может происходить под вакуумом при давлении, достаточном для снижения активности воды состава, предпочтительно менее чем около <1000 мм рт. ст. В типичном процессе сушки состава стадия вторичной сушки снижает активность воды состава до Aw 0,3 или менее.

Композиции и способы сушки по настоящему изобретению решают проблему обеспечения более дешевых и промышленно применимых замороженных или высушенных составов, содержащих чувствительные биологически активные материалы, такие как пептиды, белки, гормоны, нуклеиновые кислоты, антитела, лекарственные средства, вакцины, дрожжи, бактерии, вирусы и/или суспензии клеток со значительно более длительным сроком годности в сухом состоянии. Настоящее изобретение обеспечивает консервирующую композицию и способ сушки, включающий биологический материал, окруженный аморфной стеклообразной структурой из соединений с высокой степенью растворимости. Процесс замораживания и сушки включает: смешивание биологического материала и композиции в жидкую суспензию, быстрое замораживание указанной композиции суспензии в жидком азоте с образованием капель, нитей или гранул, продувку замороженных частиц под высоким вакуумом с последующей сушкой биологически активного материала с достижением стеклообразного состояния сахара выпариванием влаги при пониженном давлении с нагреванием композиции.

Настоящее изобретение основывается на поразительном открытии, состоящем в том, что биологические материалы могут быть защищены в стеклообразной структуре с сохранением при этом существенной активности. Когда биологический материал комбинируют с композицией смеси по настоящему изобретению и подвергают вакуумной сушке по настоящему изобретению, достигается превосходная стабильность при длительном воздействии неблагоприятной температуры и влажности. Настоящее изобретение включает композиции, содержащие биологический материал, смесь растворимых углеводов и соли карбоновой кислоты, усиливающие формирование стеклообразной структуры. Композиции по настоящему изобретению по своей природе отличаются по физической структуре и функции от не вязких или концентрированных сахарных композиций, которые просто сушат при использовании традиционных процессов сушки. Например, в патенте США № 6919172 описывается аэрозольная порошкообразная композиция для ингаляционного введения, которая содержит смесь различных углеводов и цитрата натрия. Однако в описанной в патенте композиции отсутствует дополнительное белковообразное соединение, что является существенным для дополнительной стабильности и для образования заданной физической структуры во время сушки растворов с высокой концентрацией сахаров. Также в описанной в этом патенте композиции отсутствует вязкая или гидрогелевая структура, которая позволяет эффективную сушку оттаянного или незамороженного раствора для усиления формирования стеклообразной структуры. В противоположность, композиция и процесс сушки по настоящему изобретению разрешают все эти вопросы с достижением при этом превосходной стабильности биологического материала.

в предшествующем уровне техники усиленной стеклообразной структуры, как правило, достигают за счет вспенивания или кипячения раствора под вакуумом для содействия эффективной сушке. Как правило, вспенивания на стадии вспенивания достигают в результате экстенсивного кипения и выплеска раствора, что является неизбежными последствиями сушки незамороженного раствора, и в результате заполняется только очень малый рабочий объем сосуда или емкости (смотрите, например, патент США № 6534087, в котором толщина конечного вспененного продукта составляет менее чем 2 мм). Композиции и способы сушки по настоящему изобретению позволяют избежать кипения и вспенивания состава, что позволяет обеспечить значительно большую загрузку материала на площадь сушки, и в результате она легко может быть увеличена для получения больших количеств материала без использования специально разработанных емкостей и поддонов или устройств.

Широкий ряд биологических материалов может быть использован в композиции по настоящему изобретению с образованием водной консервирующей среды по настоящему изобретению. Затем эта консервирующая среда может быть подвергнута процессам сушки по настоящему изобретению с получением стабильного сухого порошка биологического материала. Эти биологические материалы включают без ограничения ферменты, такие как панкреатические ферменты, липазы, амилазы, протеазы, фитазы, лактатдегидрогеназы; белки, такие как инсулин; вакцины; вирусы, такие как аденовирус; клетки, включая прокариотические клетки (включая бактерии), и эукариотические клетки, другие биологические материалы, включая лекарственные средства, нуклеиновые кислоты и липосомы.

По существу были показаны преимущества композиций и способов сушки по настоящему изобретению для пробиотических бактерий. Стабильный сухой пробиотический порошок, полученный согласно композициям и способам по настоящему изобретению, включая смешивание свежих, замороженных или сухих культур пробиотических бактерий со смесью углеводов и соединениями, усиливающими формирование стеклообразной структуры, быстрое замораживание вязкого состава в жидком азоте с образованием замороженных твердых капель, нитей или гранул и вакуумную сушку за счет начального приложения достаточного вакуумного давления для продувки и стабилизации структуры замороженных частиц, повышение температуры состава выше температуры замораживания и снабжение источником тепла 20°C и выше для содействия первичному удалению воды. Поддержание температуры состава выше точки замерзания может быть осуществлено регулированием вакуумного давления и подведением тепла к составу. Для завершения процесса сушки и дополнительного снижения активности воды состава ниже Aw 0,3 или менее, вторую стадию сушки проводят при максимальном вакуумном давлении и при повышенной температуре вплоть до 70°C. Такая композиция может оставаться стабильной при неблагоприятных условиях хранения, таких как 40°C и 33% ОВ в течение 60 дней или более.

Получение композиций

Композиция для получения стабильного замороженного или сухого порошка из биологических материалов по настоящему изобретению включает углеводную смесь и усилитель формирования стеклообразной структуры. Такие материалы при смешивании с предпочтительным биологически активным материалом образуют гранулы, нити или капли в жидком азоте и могут быть эффективно высушены с получением аморфной стеклообразной структуры согласно способам по настоящему изобретению и обеспечивают большие количества стабильных сухих композиций для хранения и введения указанного биологически активного материал