Способ (варианты) и система определения количества конденсата в охладителе воздуха наддува с использованием датчика кислорода на впуске холодного воздуха

Иллюстрации

Показать все

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ управления двигателем (10) включает в себя использование исполнительных устройств двигателя для регулирования работы двигателя в зависимости от накопления воды в охладителе (80) воздуха наддува. Накопление воды определяют по выходному сигналу расположенного ниже по потоку от охладителя (80) воздуха наддува датчика (162) кислорода и по влажности окружающего воздуха. Раскрыты вариант способа управления двигателем и система двигателя. Технический результат заключается в предотвращении пропусков зажигания и/или нестабильности горения топлива. 3 н. и 17 з.п. ф-лы, 4 ил.

Реферат

Уровень техники

Двигатели с турбокомпрессорами и механическими нагнетателями с целью повышения мощности могут быть выполнены с возможностью сжатия поступающего в двигатель окружающего воздуха. При сжатии воздух может нагреваться, поэтому могут быть использованы промежуточный охладитель или охладитель воздуха наддува (ОВН), которые охлаждают нагретый воздух, тем самым повышая его плотность и еще более повышая потенциальную мощность двигателя. При снижении температуры окружающего воздуха, или во влажную или дождливую погоду, когда впускной воздух охлаждается ниже точки росы, в ОВН может образовываться конденсат. Конденсат может скапливаться в нижней части ОВН, или во внутренних каналах и охладительных турбулизаторах. При определенных условиях воздушного потока, конденсат может выходить из ОВН и попадать во впускной коллектор двигателя в виде капель воды. При попадании в двигатель слишком большого количества конденсата могут случаться пропуски зажигания и/или нестабильность горения.

Бороться с пропусками зажигания из-за попадания конденсата пытаются, избегая скапливания конденсата. В одном примере, для того, чтобы образовывалось меньше конденсата, можно снизить эффективность охлаждения ОВН. Однако авторами настоящей заявки были определены определенные слабости таких способов. В частности, хотя некоторые способы могут уменьшить количество или скорость образования конденсата в ОВН, со временем конденсат все равно может появиться. Если его аккумулирование не удастся остановить, попадание конденсата в двигатель во время ускорения может привести к пропускам зажигания. Кроме того, в другом примере, для повышения стабильности горения при попадании конденсата можно отрегулировать исполнительные устройства двигателя. В одном примере, попадание конденсата может быть оценено по массовому расходу воздуха и количеству конденсата в ОВН; однако эти параметры могут и неточно отражать количество воды в воздухе наддува, выходящем из ОВН и входящим во впускной коллектор. В результате опять не удастся избежать пропусков зажигания и/или нестабильности горения.

Описанные выше проблемы в одном примере могут решаться способом регулирования исполнительных устройств двигателя в зависимости от накопления воды в ОВН, причем накопление воды рассчитывают по сигналу датчика кислорода, расположенного ниже по потоку от ОВН и по влажности окружающего воздуха. В частности, датчик кислорода может быть расположен на выходе ОВН. Контроллер двигателя может использовать сигнал датчика кислорода для определения накопления воды в ОВН. В одном примере, накопление воды может включать в себя одно или более из следующего: количество накопившейся воды или скорость накопления воды (например, скорость аккумулирования воды в ОВН). После этого контроллер двигателя может отрегулировать работу двигателя для того, чтобы повысить стабильность горения, уменьшить образование конденсата в ОВН и/или удалить конденсат из ОВН в зависимости от полученных величин накопления воды. В результате можно уменьшить образование конденсата внутри ОВН, а также ослабить проблемы пропуска зажигания и нестабильности горения в результате попадания воды.

Следует понимать, что вышеприведенное краткое описание служит лишь для того, чтобы ознакомить в простой форме с некоторыми концепциями, которые далее будут описаны подробно. Это описание не предназначено для того, чтобы обозначить ключевые или существенные отличительные признаки заявленного предмета изобретения, объем которого уникально определен формулой изобретения, приведенной после раздела «Осуществление изобретения». Кроме того, заявленный предмет изобретения не ограничен реализациями, которые устраняют какие-либо недостатки, указанные выше или в любой другой части настоящего раскрытия.

Краткое описание чертежей

На фиг. 1 схематически показан пример двигательной системы, содержащей охладитель воздуха наддува.

На фиг. 2 показана блок-схема способа эксплуатации датчика кислорода для определения накопления воды в охладителе воздуха наддува.

На фиг. 3 показана блок-схема способа регулирования работы двигателя в зависимости от накопления воды в охладителе воздуха наддува.

На фиг. 4 показаны графики, иллюстрирующие примеры регулирования работы двигателя в зависимости от накопления воды в охладителе воздуха наддува.

Осуществление изобретения

Нижеследующее описание относится к системам и способам оценки накопления воды в ОВН системы двигателя, такой как система, изображенная на фиг. 1. Первый датчик кислорода может быть расположен на выходе ОВН. В одном примере, датчик кислорода может быть впускным датчиком кислорода переменного напряжения, который может работать между режимом переменного напряжения (VVs, от англ. Variable Voltage) и базовым режимом. Способ использования первого датчика кислорода для определения накопления воды в ОВН показан на фиг. 2. В частности, по выходному сигналу первого датчика кислорода и влажности окружающего воздуха можно определить количество скопившейся воды или количество воды, аккумулировавшейся в ОВН. Первый датчик кислорода может отличаться от второго впускного датчика кислорода, установленного внутри впускного коллектора для определения потока рециркуляции отработавших газов (РОГ). Контроллер двигателя может регулировать работу двигателя по количеству скопившейся воды, как показано на фиг. 3. Регулирование работы двигателя может включать в себя регулирование исполнительных устройств двигателя для снижения эффективности охлаждения ОВН, продувки конденсата из ОВН и/или повышения стабильности горения при попадании воды в двигатель. На фиг. 4А-В показан пример регулирования исполнительных устройств двигателя в зависимости от накопления воды в ОВН. Таким образом, расположение первого датчика кислорода на выходе ОВН может позволить определять накопление конденсата в ОВН. Выполненные на основе данных о накоплении конденсата регулировки исполнительных устройств двигателя могут затем уменьшить образование конденсата в ОВН, повысить стабильность горения при продувке конденсата из ОВН и/или уменьшить накопление воды внутри ОВН.

На фиг. 1 схематически представлен пример двигателя 10, который может быть частью двигательной системы автомобиля. Двигатель 10 показан с четырьмя цилиндрами или камерами 30 сгорания. Тем не менее, в соответствии с настоящим описанием может быть использовано иное количество цилиндров. Двигателем 10 можно управлять, по меньшей мере, частично, посредством системы управления, содержащей контроллер 12, и посредством команды оператора 132 транспортного средства через устройство 130 ввода. В настоящем примере, устройство 130 ввода содержит педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала положения педали (ПП). Каждая камера 30 сгорания (т.е. цилиндр) двигателя 10 может содержать стенки камеры и поршень (не показан), расположенный внутри. Поршни могут быть связаны с коленчатым валом 40 для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Коленчатый вал 40 через промежуточную трансмиссионную систему 150 может быть соединен по меньшей мере с одним ведущим колесом транспортного средства. Кроме того, для запуска двигателя 10 в работу с коленчатым валом 40 через маховик может быть связан двигатель стартера. Коленчатый вал 40 может быть также использован для приведения в действие генератора переменного тока (не показан на фиг. 1).

Выходной крутящий момент двигателя может передаваться на преобразователь крутящего момента (не показан) для приведения в действие автоматической трансмиссионной системы 150. Кроме того, для приведения автомобиля в движение могут быть использованы несколько муфт, включая муфту 154 переднего хода. В одном примере, преобразователь крутящего момента может упоминаться в качестве компонента трансмиссионной системы 150. Кроме того, трансмиссионная система 150 может включать в себя множество зубчатых муфт 152, которые могут по необходимости приводиться в сцепление для активации множества фиксированных передаточных чисел. В частности, путем изменения зацепления множества зубчатых муфт 152, трансмиссия может переключаться между более высокой передачей (то есть, в которой передаточное число ниже) и более низкой передачей (то есть, в которой передаточное число выше). Таким образом, разница в передаточных числах позволяет умножать более низкий крутящий момент по трансмиссии на более высокой передаче и позволять умножать более высокий крутящий момент по трансмиссии на более низкой передаче. Транспортное средство может иметь четыре доступные передачи, причем четвертая передача является наивысшей доступной передачей, а первая передача является наинизшей доступной передачей. В других вариантах осуществления, транспортное средство может иметь больше или меньше, чем четыре доступные передачи. Как задумано в настоящей заявке, контроллер может изменять передачу трансмиссии (например, включать более высокую или более низкую передачи) для регулирования количества крутящего момента (то есть выходного крутящего момента вала двигателя), передаваемого на колеса 156 транспортного средства по трансмиссии и преобразователю крутящего момента.

После того, как трансмиссия переключается на более низкую передачу, скорость (полезная мощность или число об/мин) вращения коленчатого вала двигателя увеличивается, увеличивая расход воздуха через двигатель. Разрежение во впускном коллекторе, генерируемое вращающимся двигателем, может быть увеличено при увеличенных значениях числа об/мин. В некоторых примерах, как будет рассмотрено далее, включение более низкой передачи может быть использовано для увеличения расхода воздуха через двигатель и продувки конденсата, скопившегося в ОВН 80.

Камеры 30 сгорания могут получать впускной воздух из впускного коллектора 44 и выпускать отработавшие газы через выпускной коллектор 46 в выпускной канал 48. Впускной 44 и выпускной 46 коллекторы могут выборочно сообщаться с камерой 30 сгорания через соответствующие впускные и выпускные клапаны (не показаны). В некоторых вариантах осуществления, камера 30 сгорания может содержать два или более впускных клапанов и/или два или более выпускных клапанов.

Топливные форсунки 50 показаны соединенными напрямую с камерой 30 сгорания для впрыска топлива непосредственно в нее, пропорционально ширине импульса сигнала ШИВ (ширина импульса впрыска), получаемого от контроллера 12. При этом топливная форсунка 50 осуществляет «прямой впрыск» топлива в камеру 30 сгорания, хотя следует понимать, что также возможен так называемый «впрыск топлива во впускные каналы». Топливо может доставляться к топливной форсунке 50 топливной системой (не показана), включающей в себя топливный бак, топливный насос и топливную рейку.

В процессе, называемом зажиганием, впрыснутое топливо поджигается известными средствами, такими как свеча 52 зажигания, в результате чего происходит горение. Момент зажигания может регулироваться таким образом, чтобы искра появлялась раньше (опережение) или позже (запаздывание) момента времени, указанного изготовителем. Например, момент зажигания может быть выставлен позже момента максимального предельного крутящего момента (МПКМ) для предупреждения детонации двигателя или раньше этого момента в условиях высокой влажности. В частности, МПКМ можно опередить для учета низкой скорости горения. В одном примере, момент зажигания можно выставить на запаздывание при перегазовке. В альтернативном варианте, для поджигания впрыснутого топлива может быть использовано компрессионное воспламенение.

Впускной коллектор 44 может получать впускной воздух из впускного канала 42. Впускной канал 42 содержит дроссель 21, содержащий дроссельную заслонку 22 для регулирования потока во впускной коллектор 44. В данном частном примере, контроллер 12 может изменять положение дроссельной заслонки 22 (ПДЗ), осуществляя электронное управление дроссельной заслонкой». Таким образом, дроссель 21 можно приводить в действие, чтобы изменять поток воздуха, подаваемого в камеру 30 сгорания. Например, контроллер 12 может так отрегулировать дроссельную заслонку 22, чтобы увеличить просвет дросселя 21. Увеличение просвета дросселя 21 может увеличить количество воздуха, подаваемого во впускной коллектор 44. В альтернативном примере, просвет дросселя может быть уменьшен или же полностью закрыт для прекращения подачи воздуха во впускной коллектор 44. В некоторых вариантах осуществления, во впускном канале 42 могут присутствовать дополнительные дроссели, например, дроссель, расположенный выше по потоку от компрессора 60 (не показан).

Кроме того, в раскрытых вариантах осуществления, система РОГ может направлять требуемую часть отработавших газов от выпускного канала 48 во впускной канал 42 через канал РОГ, например, через канал 140 РОГ высокого давления. Объем РОГ, подаваемый в впускной канал 42, может изменяться контроллером 12 посредством клапана РОГ, например, клапана 142 РОГ высокого давления. В некоторых условиях, система РОГ может быть использована для регулирования температуры воздушно-топливной смеси в камере сгорания. На фиг. 1 показана система РОГ высокого давления, в которой РОГ направляют от точки выше по потоку от турбины турбонагнетателя к точке ниже по потоку от компрессора турбонагнетателя через канал 140 РОГ. На фиг. 1 также показана система РОГ низкого давления, в которой РОГ направляют от точки ниже по потоку от турбины турбонагнетателя к точке выше по потоку от компрессора турбонагнетателя по каналу 157 РОГ низкого давления. Клапан 155 РОГ низкого давления может управлять объемом РОГ, подаваемым в впускной канал 42. В некоторых вариантах осуществления, двигатель может содержать сразу обе системы - РОГ низкого давления и РОГ высокого давления, как показано на фиг. 1. В других вариантах осуществления, двигатель может включать в себя лишь одну из систем - либо РОГ высокого давления, либо РОГ низкого давления. В процессе работы, система РОГ может порождать образование конденсата из сжатого воздуха, особенно, если сжатый воздух охлаждается охладителем воздуха наддува, как описывается более подробно далее по тексту.

Двигатель 10 может также включать в себя устройство сжатия, такое как турбонагнетатель или механический нагнетатель, включающие в себя, по меньшей мере, компрессор 60, установленный вдоль впускного канала 42. В случае турбонагнетателя, компрессор, по меньшей мере, частично может приводиться в движение турбиной 62 через, например, вал, или другое соединяющее устройство. Турбина 62 может быть установлена вдоль выпускного канала 48. Для приведение в движение компрессора могут быть предусмотрены различные устройства. В случае механического нагнетателя, компрессор 60, по меньшей мере, частично может приводиться в движение двигателем и/или электрической машиной, и может не содержать турбины. Таким образом, степень сжатия, обеспечиваемая для одного или нескольких цилиндров турбонагнетателем или механическим нагнетателем, может варьировать посредством контроллера 12.

В показанном на фиг. 1 варианте осуществления, компрессор 60 может приводиться в движение в основном турбиной 62. Турбина 62 может приводиться в движение отработавшими газами, проходящими через выпускной канал 48. То есть, приводное движение турбины 62 может приводить в движение компрессор 60. Таким образом, скорость компрессора 60 может зависеть от скорости турбины 62. При возрастании скорости компрессора 60, во впускной коллектор 44 через впускной канал 42 будет подаваться все большее нагнетание.

Кроме того, выпускной канал 48 может содержать регулятор 26 давления наддува для отвода отработавших газов от турбины 62. Дополнительно, впускной канал 42 может содержать перепускной или рециркуляционный клапан 27 компрессора (РКК), выполненный с возможностью обводить впускной воздух вокруг компрессора 60. Регулятор 26 давления наддува и/или РКК 27 могут управляться контроллером 12 таким образом, чтобы, например, открываться тогда, когда требуется более низкое давление нагнетания. К примеру, в случае помпажа компрессора или предпосылки к помпажу компрессора, контроллер 12 может открыть РКК 27 для того, чтобы снизить давление на выходе компрессора 60. Это может ослабить или остановить помпаж компрессора.

Впускной канал 42 может также содержать охладитель 80 воздуха наддува (например, промежуточный охладитель), предназначенный для снижения температуры газов, прошедших турбонагнетатель или механический нагнетатель. В некоторых вариантах осуществления, ОВН 80 может быть теплообменником типа «воздух - воздух». В других вариантах осуществления, ОВН 80 может быть теплообменником типа «воздух - жидкость». ОВН 80 может быть также ОВН регулируемого объема. Горячий воздух наддува (нагнетаемый воздух) от компрессора 60 поступает на вход ОВН 80, охлаждается по мере прохождения через ОВН, а затем выходит, проходя через дроссель 21 и входя во впускной коллектор 44 двигателя. Поток окружающего воздуха из-за пределов транспортного средства может попадать в двигатель 10 через фронтальную часть транспортного средства, проходя через ОВН и способствуя охлаждению воздуха наддува. В ОВН может образовываться и аккумулироваться конденсат в условиях, когда снижается температура окружающего воздуха или во влажную или дождливую погоду, когда воздух наддува охлаждается ниже температуры точки росы воды. Кроме того, когда входящий в ОВН воздух нагнетают (например, когда давление нагнетания т/или давление ОВН выше атмосферного давления), конденсат может образоваться, если температура ОВН упадет ниже температуры точки росы. Если воздух наддува содержит рециркулированные отработанные газы, то конденсат может стать кислотным и разъедать корпус ОВН. Коррозия может привести к возникновению протечек между воздухом наддува, атмосферой и, возможно, хладагентом, в случае, если используются охладители «вода-воздух». Кроме того, если конденсат скапливается в ОВН, в периоды увеличенной подачи воздуха он может попадать в двигатель. Результатом этого может стать нестабильное горение и/или пропуски зажигания в двигателе.

Двигатель 10 также может содержать один или более датчиков кислорода, расположенных во впускном канале 42. Таким образом, один или более датчиков кислорода могут называться впускными датчиками кислорода. В изображенном варианте осуществления, первый датчик 162 кислорода расположен ниже по потоку от ОВН 80. В одном примере, первый датчик 162 кислорода может быть расположен на выходе ОВН 80. Таким образом, первый датчик 162 кислорода здесь может называться выходным датчиком кислорода ОВН. В другом примере, первый датчик 162 кислорода может быть расположен ниже по потоку от выхода ОВН 80. В некоторых вариантах осуществления, как показано на фиг. 1, опциональный второй датчик 164 кислорода может быть расположен во впускном коллекторе 44. Как описывается далее, второй датчик 164 кислорода может быть использован для оценки потока РОГ. В другом варианте осуществления, второй датчик 164 кислорода может быть расположен во впускном канале 42 ниже по потоку от компрессора 60 и канала 140 РОГ (или канала 157 РОГ, если двигатель содержит только РОГ низкого давления). В других вариантах осуществления на входе ОВН может быть расположен третий датчик кислорода.

Впускные датчики 162 и/или 164 кислорода могут быть любыми датчиками, пригодными для обеспечения индикации концентрации кислорода в воздухе наддува (например, в воздухе, протекающем через впускной канал 42), например линейными датчиками кислорода, впускными универсальными или широкодиапазонными датчиками содержания кислорода в отработавших газах, датчиками кислорода с двумя состояниями и т.п. В одном примере, впускные датчики 162 и/или 164 кислорода могут быть впускными датчиками кислорода, содержащими в качестве измерительного элемента нагреваемый элемент. В процессе работы, ток накачки впускного датчика кислорода может служить индикатором количества кислорода в потоке газов.

В другом примере, впускной датчик 162 и/или 164 кислорода может быть впускным датчиком кислорода с переменным напряжением (переменное напряжение Vs или VVs), в котором опорное напряжение датчика могут модулировать между более низким или базовым напряжением, при котором обнаруживают кислород, и более высоким напряжением, при котором могут диссоциировать молекулы воды в потоке газов. Например, в базовом режиме работы, впускной датчик кислорода может работать при базовом опорном напряжении. При базовом опорном напряжении, когда вода ударяет в датчик, нагретый элемент датчика может испарить воду и измерить ее как локальный пар или разбавитель. Здесь такой режим работы может называться базовым режимом. Впускной датчик кислорода может также работать и во втором режиме, в котором опорное напряжение увеличивают до значения второго опорного напряжения. Второе эталонное напряжение может быть выше базового опорного напряжения. Эксплуатация впускного датчика кислорода на втором опорном напряжении может называться переменным режимом Vs (VVs). При работе впускного датчика кислорода в режиме VVs, нагретый элемент датчика диссоциирует воду в воздухе, а затем измеряет концентрацию воды. В этом режиме ток накачки датчика может служить индикатором количества кислорода в потоке газов плюс количества кислорода от диссоциировавших молекул воды. Однако, если опорное напряжение увеличивать еще больше, могут диссоциировать дополнительные молекулы, такие как CO2, и датчик может учесть в измерении кислород также и из этих молекул. В одном неограничивающем примере, более низкое, то есть базовое опорное, напряжение может составлять 450 мВ, а более высокое, второе опорное напряжение может составлять более 950 мВ. Однако в показанном на фиг. 2 примере определения количества воды в воздухе наддува, второе опорное напряжение может выдерживаться меньше значения, при котором могут также диссоциировать молекулы CO2. Таким образом, второе опорное напряжение можно установить так, чтобы в VVs режиме мог измеряться кислород только из воды (но не из CO2).

Первый датчик 162 кислорода может использоваться для оценки накопления конденсата или воды в ОВН 80. Как будет рассмотрено ниже со ссылкой на фиг. 2, концентрация кислорода в воздухе, покидающем ОВН 80 (например, определенная первым датчиком 162 кислорода) может быть использована для определения концентрации воды внутри ОВН 80. Для оценки содержания воды внутри ОВН 80 можно воспользоваться разнообразными способами. Например, впускной датчик кислорода может измерять количество кислорода в воздухе наддува, а затем оценивать количество воды в воздухе наддува, используя метод разбавления. Если впускной датчик кислорода является датчиком VVs, то датчик может оценивать количество воды в воздухе наддува, используя метод диссоциации (например, работая в VVs режиме и модулируя между базовым опорным напряжением и более высоким, вторым опорным напряжением). Оба эти способа измерения и/или оценки количества воды в воздухе наддува будут рассмотрены еще далее по тексту.

Первый способ оценки содержания воды в воздухе наддува с использованием впускного датчика кислорода включает в себя метод разбавления. При использовании метода разбавления, впускной датчик кислорода может эксплуатироваться в базовом режиме при базовом опорном напряжении. В одном примере, базовое опорное напряжение может составлять 450 мВ. В другом примере, базовое опорное напряжение может быть больше или меньше 450 мВ. Впускной датчик кислорода может произвести измерение и определить количество кислорода в газе (например, во впускном воздухе или воздухе наддува) по току накачки датчика. Затем, для определения количества воды, как разбавителя в воздухе наддува, можно произвести сравнение измеренной концентрации кислорода с количеством воздуха. Метод разбавления может дать неточную оценку содержания воды, если разбавитель содержит иные, чем вода, вещества, например РОГ и/или пары топлива.

Второй способ оценки содержания воды в воздухе наддува с использованием впускного датчика кислорода включает в себя метод диссоциации. В частности, для метода диссоциации впускной датчик VVs кислорода может работать в режиме VVs, при котором опорное напряжение увеличивают с базового опорного напряжения до более высокого, второго опорного напряжения. В одном примере, второе опорное напряжение может составлять 950 мВ. В другом примере, второе опорное напряжение может превышать 950 мВ. Однако второе опорное напряжение могут поддерживать на значении, меньшем, чем то, при котором датчик диссоциирует CO2. В режиме VVs впускной датчик кислорода диссоциирует воду на водород и кислород и измеряет количество кислорода из диссоциировавших молекул воды дополнительно к количеству кислорода, содержащегося в газе. Вычислив разницу в измерениях при втором опорном напряжении и базовом опорном напряжении, можно получить оценку общей концентрации воды в воздухе наддува. Кроме того, при разных температурных условиях на выходе ОВН, может производиться разное количество насыщенной воды. Если известно количество насыщенной воды при определенных температурных условиях на выходе ОВН (например, из справочной таблицы, хранящейся в контроллере), то контроллер 12 может вычесть эту величину из общей концентрации воды, измеренной впускным датчиком кислорода, получив при этом количество воды, находящейся в воздухе наддува в виде водяных капель. Например, насыщенная вода при определенных температурных условиях на выходе ОВН может включать в себя массу воды при давлении насыщенного пара на выходе ОВН. Таким образом, контроллер может определить количество жидкой воды в выходящем из ОВН воздухе наддува, используя измерения впускного датчика температуры.

Дополнительно, в обоих методах (то есть, в методе разбавления и в методе диссоциации) оценки содержания воды в выходящем из ОВН воздухе наддува, измерение концентрации кислорода впускным датчиком кислорода (IAO2) (например, выходной сигнал первого датчика 162 кислорода) может быть отрегулировано по дополнительным разбавителям в воздухе наддува, таким как продувочные пары (например, возникающие при событии продувки топливного бака), поток принудительной вентиляции картера (ПВК) и т.п. В некоторых вариантах осуществления, поправочные коэффициенты для потока продувки и/или потока ПВК могут быть заранее определены для различных условий работы двигателя. Затем поправочные коэффициенты могут быть использованы для корректировки выходного сигнала IAO2 перед оценкой концентрации воды. В результате, с помощью поправочных коэффициентов можно будет учесть любое снижение концентрации кислорода в результате действий потока продувки или потока ПВК. Это может дать более точную оценку количества воды.

Кроме того, количество воды, находящейся (т.е. аккумулированной) в ОВН можно определить по разнице между оценкой воды, поступающей в ОВН и оценкой воды, выходящей из ОВН (определяемой по выходному сигналу первого датчика 162 кислорода). Количество воды, поступающей в ОВН, может быть аппроксимировано влажностью окружающего воздуха. В одном примере, влажность окружающего воздуха можно измерять датчиком влажности окружающего воздуха. В другом примере, влажность окружающего воздуха можно оценить по температуре на пуске, давлению на впуске и/или режиму работы стеклоочистителя ветрового стекла. Еще в одном примере, влажность окружающего воздуха можно определить по информации от местных метеостанций, или используя показания датчика IAO2, когда нет потока РОГ и отсутствует воздействие потока ПВК или продувки (например, при отсутствии потоков ПВК или продувки). Например, влажность окружающего воздуха определяется, как описано, только при отсутствии потока РОГ низкого давления и/или в условиях, когда поток РОГ низкого давления вообще отсутствует. В других примерах, в двигателе не содержится системы РОГ низкого давления. Таким образом, скорость скапливания воды в ОВН может быть определена по разности между влажностью окружающего воздуха и концентрацией воды в воздухе на выходе ОВН, определяемой по сигналу первого датчика 162 кислорода. Кроме того, количество воды, находящейся внутри ОВН, может быть определено по скорости скапливания воды за некоторый период времени. В некоторых примерах, оценка количества воды внутри ОВН таким способом может производиться только тогда, когда поток РОГ отсутствует. Другими словами, оценка количества воды в ОВН по влажности окружающего воздуха и выходному сигналу первого датчика 162 кислорода может быть точной только тогда, когда РОГ отключена или находится ниже порогового расхода, который определяют, исходя из того, какой расход РОГ не сможет значительно изменить выходной сигнал датчика кислорода. Как будет рассмотрено ниже, при наличии потока РОГ можно использовать альтернативные способы оценки аккумулирования воды в ОВН.

Контроллер 12 может использовать измерения первого датчика 162 кислорода и значение влажности окружающего воздуха (оцененное или измеренное) для определения скорости скапливания воды и/или количества воды в ОВН 80 (например, количества воды, аккумулированной внутри ОВН 80). К примеру, количество воды, скопившейся в ОВН 80, может быть оценено по измерениям первого датчика 162 кислорода, расположенного на выходе ОВН. Контроллер 12 может определить количество скопившейся воды одним или более описанными выше методами (то есть, методом разбавления и методом диссоциации). В другом примере, количество воды, выносимой из ОВН, может быть определено по измерениям первого датчика 162 кислорода.

По оценкам накопления воды контроллер 12 может отрегулировать исполнительные устройства двигателя для регулировки параметров горения, активировать процедуры продувки конденсата и/или отрегулировать исполнительные устройства для увеличения или уменьшения эффективности охлаждения ОВН. Регулировки исполнительных устройств двигателя по измерениям накопления воды датчиками кислорода подробнее описаны ниже со ссылкой на фиг. 3.

Второй датчик 164 кислорода может быть использован для определения потока РОГ. Например, контроллер 12 может оценить процент разбавления потока РОГ по данным обратной связи от второго датчика 164 кислорода. В некоторых примерах, контроллер 12 затем может отрегулировать одно или более из следующего: клапан 142 РОГ, клапан 155 РОГ, дроссель 21, РКК 27 и/или регулятор 26 давления наддува для того, чтобы достичь требуемого процента разбавления РОГ впускного воздуха. То есть, в данном примере, первый датчик 162 кислорода отличается от второго датчика 164 кислорода, используемого для оценки потока РОГ. В других примерах, поток РОГ может быть определен по показаниям первого датчика 162 кислорода.

Контроллер 12 на фиг. 1 показан в виде микрокомпьютера, содержащего: микропроцессорное устройство 102 (МПУ), порты 104 ввода/вывода, электронную среду хранения исполняемых программ и калибровочных значений, в данном примере изображенную в виде чипа 106 постоянного запоминающего устройства (ПЗУ), оперативное запоминающее устройство 108 (ОЗУ), энергонезависимое запоминающее устройство 110 (ЭЗУ) и шину данных. Контроллер 12 может принимать различные сигналы от датчиков, соединенных с двигателем 10, для выполнения различных функций, обеспечивающих работу двигателя 10. Дополнительно к тем сигналам, о которых говорилось выше, эти сигналы могут содержать измерения: массового расхода воздуха (МРВ) наддува от МРВ датчика 120; температуры хладагента двигателя отдатчика 112 температуры, схематично показанного в одном месте внутри двигателя 10; сигнал профиля зажигания от датчика 118 на эффекте Холла (или датчика иного типа), соединенного с коленчатым валом 40, сигнал положения дроссельной заслонки (ПДЗ) от датчика положения дроссельной заслонки, как было рассмотрено выше, и сигнал от датчика 122 абсолютного давления в коллекторе (АДК), как было рассмотрено выше. Сигнал частоты вращения коленчатого вала двигателя (числа об/мин) может быть сгенерирован контроллером 12 из сигнала профиля зажигания (ПЗ). Сигнал давления в коллекторе от датчика давления в коллекторе может быть использован для индикации разрежения или давления во впускном коллекторе 44. Следует отметить, что могут быть использованы различные сочетания вышеуказанных датчиков, например, МРВ датчик без датчика давления в коллекторе, или наоборот. При работе при стехиометрическом отношении, датчик давления в коллекторе может давать индикацию крутящего момента двигателя. Кроме того, указанный датчик, вместе с измеренной частотой вращения коленчатого вала двигателя, может обеспечивать оценку заряда горючей смеси (включая воздух), поступающей в цилиндр. В одном из примеров, датчик 118 на эффекте Холла, который также используется в качестве датчика частоты вращения коленчатого вала двигателя, может на каждый оборот коленчатого вала 40 формировать заданное число равноотстоящих импульсов.

К другим датчикам, которые могут посылать сигналы на контроллер 12, относятся датчик 124 температуры и/или давления на выходе охладителя 80 воздуха наддува, первый датчик 162 кислорода, второй датчик 164 кислорода и датчик 126 давления нагнетания. Могут присутствовать и другие, не показанные датчики, например, датчик для определения скорости впускного воздуха на входе охладителя воздуха наддува и другие датчики. В некоторых примерах, чип 106 постоянного запоминающего устройства может быть запрограммирован машиночитаемыми данными, представляющими инструкции, исполняемые микропроцессорным устройством 102 для реализации способов, описанных ниже, а также других вариантов, которые предполагаются, но конкретно не перечисляются. Примеры алгоритмов представлены здесь на фиг. 2, фиг. 3.

Изображенная на фиг. 1 система представляет собой систему двигателя, содержащую впускной коллектор, охладитель воздуха наддува, расположенный выше по потоку от впускного коллектора, датчик кислорода, расположенный на выходе охладителя воздуха наддува, и контроллер с машиночитаемыми инструкциями для регулирования работы двигателя в зависимости от накопления воды в охладителе воздуха наддува, причем накопление воды рассчитывают по выходному сигналу датчика кислорода и влажности окружающего воздуха в отсутствие потока РОГ. В одном примере, регулирование работы двигателя включает в себя регулирование одного или более из следующего: момента зажигания, массового расхода воздуха, активных жалюзи решетки радиатора транспортного средства, вентиляторов охлаждения двигателя, насоса хладагента охладителя воздуха наддува и/или включение более низкой передачи трансмиссии. Кроме того, данные о накоплении воды включают в себя одно или более, из следующего: количество скопившейся в охладителе воздуха наддува воды или скорость скапливания воды в охладителе воздуха наддува.

На фиг. 2 изображен способ 200 использования датчика кислорода для определения накопления воды в ОВН. В частности, таким датчиком может быть датчик кислорода, расположенный вблизи выхода ОВН. В одном примере, способ 200 может исполняться контроллером 12, показанным на фиг. 1. Способ 200 может быть использован в системе двигателя, в которой для определения параметров накопления воды в ОВН используют показания датчика кислорода на выходе ОВН (например, датчика 162 кислорода, показанного на фиг. 1) и влажность окружающего воздуха. В одном примере, датчик кислорода является VVs датчиком кислорода, выполненным с возможностью модулирования двух опорных напряжений. В другом примере, датчик кислорода может не быть VVs датчиком и может оценивать накопление воды в ОВН методом разбавления.

Способ начинается этапом 202, на котором оценивают и/или измеряют условия работы двигателя. Условия работы двигателя могут включать в себя скорость вращения коленчатого вала двигателя и нагрузку на двигатель, расход РОГ, массовый расход воздуха, состояние охладителя воздуха наддува (например, температуру и давление на входе и/или выходе), влажность окружающего воздуха, температуру окружающего воздуха, запрошенный крутящий момент и т.д. На этапе 204 определяют, отключена ли РОГ (например, если поток РОГ отсутствует). Как было рассмот